Characterization of Antimicrobial Resistance Patterns of Klebsiella pneumoniae Isolates Obtained from Wound Infections

Page: [119 - 124] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Background: Multidrug resistance among ESBL producing isolates has limited the administration of proper antibiotics. It is, therefore, important to monitor the resistance patterns of Klebsiella pneumoniae isolates and provide infection control strategies to prevent nosocomial outbreaks. This study was aimed to determine antimicrobial resistance patterns of K. pneumoniae isolates obtained from wound infections of patients in Tehran, Iran.

Methods: A total of 102 K. pneumoniae isolates were obtained from wound infections of patients in Tehran, Iran. The production of phenotypic ESBL and carbapenemase was assessed using the double-disc synergy test (DDST) and modified Hodge test (MHT), respectively. PCR was performed for the detection of ESBL, carbapenemase, quinolone and aminoglycoside resistance genes.

Results: Forty-six (45.1%) and 23 (22.5%) isolates, out of the 102 isolates, were phenotypically detected as ESBL and carbapenemase producers, respectively. The PCR results showed that 80/102 (78.4%) and 51/102 (50%) isolates possessed at least one of the assessed ESBL and carbapenemase genes, respectively. Quinolone resistance determinants (QRDs) and aac(6')-Ib genes were found amongst 50 (49%) and 67 (65.7%) isolates, respectively. Four isolates carried blaTEM, blaSHV, blaCTX-M, qnrB, qnrS and aac(6’)-Ib genes, simultaneously.

Conclusion: Due to the presence of multiple resistance genes among some K. pneumoniae strains, antibiotic agents should be used with caution to preserve their efficacy in case of life-threatening infections.

Keywords: Klebsiella pneumoniae, ESBL, carbapenemase, quinolone, aminoglycoside, resistance genes.

Graphical Abstract

[1]
Kazemian, H.; Heidari, H.; Ghanavati, R.; Ghafourian, S.; Yazdani, F.; Sadeghifard, N.; Valadbeigi, H.; Maleki, A.; Pakzad, I. Phenotypic and Genotypic Characterization of ESBL-, AmpC-, and Carbapenemase-Producing Klebsiella pneumoniae and Escherichia coli Isolates. Med. Princ. Pract., 2019, 28(6), 547-551.
[http://dx.doi.org/10.1159/000500311] [PMID: 30995662]
[2]
Kazemian, H.; Heidari, H.; Ghanavati, R.; Mohebi, R.; Ghafourian, S.; Shavalipour, A. Characterization of antimicrobial resistance pattern and molecular analysis among extended spectrum [beta]-lactamase-producing Escherichia coli. Pharm. Sci., 2016, 22(4), 279.
[http://dx.doi.org/10.15171/PS.2016.43]
[3]
Shafaati, M.; Boroumand, M.; Nowroozi, J.; Amiri, P.; Kazemian, H. Correlation between qacE and qacEΔ1 efflux pump genes, antibiotic and disinfectant resistant among clinical isolates of E. coli. Recent Pat. Antiinfect. Drug Discov., 2016, 11(2), 189-195.
[http://dx.doi.org/10.2174/1574891X11666160815094718] [PMID: 27527725]
[4]
Nordmann, P.; Naas, T.; Poirel, L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis., 2011, 17(10), 1791-1798.
[http://dx.doi.org/10.3201/eid1710.110655] [PMID: 22000347]
[5]
Solgi, H.; Badmasti, F.; Giske, C.G.; Aghamohammad, S.; Shahcheraghi, F. Molecular epidemiology of NDM-1- and OXA-48-producing Klebsiella pneumoniae in an Iranian hospital: clonal dissemination of ST11 and ST893. J. Antimicrob. Chemother., 2018, 73(6), 1517-1524.
[http://dx.doi.org/10.1093/jac/dky081] [PMID: 29518198]
[6]
Japoni-Nejad, A.; Ghaznavi-Rad, E.; van Belkum, A. Characterization of plasmid-mediated AmpC and carbapenemases among Iranain nosocomial isolates of Klebsiella pneumoniae using phenotyping and genotyping methods. Osong Public Health Res. Perspect., 2014, 5(6), 333-338.
[http://dx.doi.org/10.1016/j.phrp.2014.09.003] [PMID: 25562041]
[7]
Miriagou, V.; Cornaglia, G.; Edelstein, M.; Galani, I.; Giske, C.G.; Gniadkowski, M. Acquired carbapenemases in Gram-negative bacterial pathogens: detection and surveillance issues. Eur. Soc. Clin. Microb. Infect. Dis., 2010, 16(2), 112-22.
[http://dx.doi.org/10.1111/j.1469-0691.2009.03116.x]
[8]
Bouchakour, M.; Zerouali, K.; Gros Claude, J.D.; Amarouch, H.; El Mdaghri, N.; Courvalin, P.; Timinouni, M. Plasmid-mediated quinolone resistance in expanded spectrum beta lactamase producing enterobacteriaceae in Morocco. J. Infect. Dev. Ctries., 2010, 4(12), 779-803.
[http://dx.doi.org/10.3855/jidc.796] [PMID: 21252459]
[9]
Salah, F.D.; Soubeiga, S.T.; Ouattara, A.K.; Sadji, A.Y.; Metuor-Dabire, A.; Obiri-Yeboah, D.; Banla-Kere, A.; Karou, S.; Simpore, J. Distribution of quinolone resistance gene (qnr) in ESBL-producing Escherichia coli and Klebsiella spp. in Lomé, Togo. Antimicrob. Resist. Infect. Control, 2019, 8(1), 104.
[http://dx.doi.org/10.1186/s13756-019-0552-0] [PMID: 31244995]
[10]
Leski, T.A.; Stockelman, M.G.; Bangura, U.; Chae, D.; Ansumana, R.; Stenger, D.A.; Vora, G.J.; Taitt, C.R. Prevalence of quinolone resistance in enterobacteriaceae from Sierra Leone and the detection of qnrB pseudogenes and modified LexA binding sites. Antimicrob. Agents Chemother., 2016, 60(11), 6920-6923.
[http://dx.doi.org/10.1128/AAC.01576-16] [PMID: 27572395]
[11]
Strahilevitz, J.; Jacoby, G.A.; Hooper, D.C.; Robicsek, A. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin. Microbiol. Rev., 2009, 22(4), 664-689.
[http://dx.doi.org/10.1128/CMR.00016-09] [PMID: 19822894]
[12]
Sanchez, D.G.; de Melo, F.M.; Savazzi, E.A.; Stehling, E.G. Detection of different β-lactamases encoding genes, including blaNDM, and plasmid-mediated quinolone resistance genes in different water sources from Brazil. Environ. Monit. Assess., 2018, 190(7), 407.
[http://dx.doi.org/10.1007/s10661-018-6801-5] [PMID: 29909525]
[13]
Résistances aux fluoroquinolones: la situation actuelle. Annales de Médecine Vétérinaire., 2013, (157), 15-26.
[14]
Paul, M.; Lador, A.; Grozinsky-Glasberg, S.; Leibovici, L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst. Rev., 2014, (1), CD003344.
[http://dx.doi.org/10.1002/14651858.CD003344.pub3] [PMID: 24395715]
[15]
Ramirez, M.S.; Tolmasky, M.E. Amikacin: uses, resistance, and prospects for inhibition. Molecules, 2017, 22(12), 2267.
[http://dx.doi.org/10.3390/molecules22122267] [PMID: 29257114]
[16]
Shams, E; Firoozeh, F; Moniri, R; Zibaei, M Prevalence of plasmid-mediated quinolone resistance genes among extended-spectrum β-Lactamase-producing Klebsiella pneumoniae human isolates in Iran. J. Pathog., 2015, (2015), 434391.
[17]
Eftekhar, F.; Naseh, Z. Extended-spectrum β-lactamase and carbapenemase production among burn and non-burn clinical isolates of Klebsiella pneumoniae. Iran. J. Microbiol., 2015, 7(3), 144-149.
[PMID: 26668701]
[18]
Ghafourian, S.; Bin Sekawi, Z.; Sadeghifard, N.; Mohebi, R.; Kumari Neela, V.; Maleki, A.; Hematian, A.; Rhabar, M.; Raftari, M.; Ranjbar, R. The prevalence of ESBLs producing Klebsiella pneumoniae isolates in some major hospitals, Iran. Open Microbiol. J., 2011, 5, 91-95.
[http://dx.doi.org/10.2174/1874285801105010091] [PMID: 21915229]
[19]
Hall, G.S. Bailey & Scott’s Diagnostic Microbiology, 13th ed; American Society for Clinical Pathology, 2013.
[20]
Wayne, P. Performance standards for antimicrobial susceptibility testing. 27th informational supplement, Clinical and Labratory Standard Institute (CLSI), 2017, M100-S26.
[21]
Kanamori, H.; Yano, H.; Hirakata, Y.; Hirotani, A.; Arai, K.; Endo, S.; Ichimura, S.; Ogawa, M.; Shimojima, M.; Aoyagi, T.; Hatta, M.; Yamada, M.; Gu, Y.; Tokuda, K.; Kunishima, H.; Kitagawa, M.; Kaku, M. Molecular characteristics of extended-spectrum beta-lactamases and qnr determinants in Enterobacter species from Japan. PLoS One, 2012, 7(6), e37967.
[http://dx.doi.org/10.1371/journal.pone.0037967] [PMID: 22719857]
[22]
Ghanavati, R.; Emaneini, M.; Kalantar-Neyestanaki, D.; Maraji, A.S.; Dalvand, M.; Beigverdi, R.; Jabalameli, F. Clonal relation and antimicrobial resistance pattern of extended-spectrum β-lactamase- and AmpC β-lactamase-producing Enterobacter spp. isolated from different clinical samples in Tehran, Iran. Rev. Soc. Bras. Med. Trop., 2018, 51(1), 88-93.
[http://dx.doi.org/10.1590/0037-8682-0227-2017] [PMID: 29513851]
[23]
Dallal, M.S.; Sabbaghi, A.; Aghamirzaeie, H.M.; Lari, A.R.; Eshraghian, M.R.; Mehrabad, J.F. Prevalence of AmpC and SHV β-lactamases in clinical isolates of Escherichia coli from Tehran Hospitals. Jundishapur J. Microbiol., 2013, 6(2), 176-180.
[24]
Feizabadi, M.M.; Mahamadi-Yeganeh, S.; Mirsalehian, A.; Mirafshar, S-M.; Mahboobi, M.; Nili, F.; Yadegarinia, D. Genetic characterization of ESBL producing strains of Klebsiella pneumoniae from Tehran hospitals. J. Infect. Dev. Ctries., 2010, 4(10), 609-615.
[http://dx.doi.org/10.3855/jidc.1059] [PMID: 21045352]
[25]
Zhang, Z.; Zhai, Y.; Guo, Y.; Li, D.; Wang, Z.; Wang, J.; Chen, Y.; Wang, Q.; Gao, Z. Characterization of unexpressed extended-spectrum beta-lactamase genes in antibiotic-sensitive Klebsiella pneumoniae isolates. Microb. Drug Resist., 2018, 24(6), 799-806.
[http://dx.doi.org/10.1089/mdr.2017.0018] [PMID: 29090981]
[26]
Yazdansetad, S.; Alkhudhairy, M.K.; Najafpour, R.; Farajtabrizi, E.; Al-Mosawi, R.M.; Saki, M.; Jafarzadeh, E.; Izadpour, F.; Ameri, A. Preliminary survey of extended-spectrum β-lactamases (ESBLs) in nosocomial uropathogen Klebsiella pneumoniae in north-central Iran. Heliyon, 2019, 5(9), e02349.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02349] [PMID: 31687535]
[27]
Maleki, N.; Tahanasab, Z.; Mobasherizadeh, S.; Rezaei, A.; Faghri, J. Prevalence of CTX-M and TEM β-lactamases in Klebsiella pneumoniae Isolates from Patients with Urinary Tract Infection, Al-Zahra Hospital, Isfahan, Iran. Adv. Biomed. Res., 2018, 7, 10.
[http://dx.doi.org/10.4103/abr.abr_17_17] [PMID: 29456981]
[28]
Mahdi Yahya Mohsen, S.; Hamzah, H.A.; Muhammad Imad Al-Deen, M.; Baharudin, R. Antimicrobial susceptibility of Klebsiella pneumoniae and Escherichia coli with extended-spectrum β-lactamase associated genes in Hospital Tengku Ampuan Afzan, Kuantan, Pahang. Malays. J. Med. Sci., 2016, 23(2), 14-20.
[PMID: 27547110]
[29]
Lee, M.Y.; Ko, K.S.; Kang, C.I.; Chung, D.R.; Peck, K.R.; Song, J.H. High prevalence of CTX-M-15-producing Klebsiella pneumoniae isolates in Asian countries: diverse clones and clonal dissemination. Int. J. Antimicrob. Agents, 2011, 38(2), 160-163.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.03.020] [PMID: 21605960]
[30]
Mirsalehian, A.; Akbari, N.F.; Peymani, A.; Kazemi, B.; Jabal, A.F.; Mirafshar , S. Prevalence of extended spectrum β-lactamase-producing Enterobacteriaceae by phenotypic and genotypic methods in intensive care units in Tehran, Iran. Daru J. Pharm. Sci., 2008, 16(3), 169-173.
[31]
Al-Agamy, M.H.; Shibl, A.M.; Tawfik, A.F. Prevalence and molecular characterization of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in Riyadh, Saudi Arabia. Ann. Saudi Med., 2009, 29(4), 253-257.
[http://dx.doi.org/10.4103/0256-4947.55306] [PMID: 19587523]
[32]
Al-Zarouni, M.; Senok, A.; Rashid, F.; Al-Jesmi, S.M.; Panigrahi, D. Prevalence and antimicrobial susceptibility pattern of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the United Arab Emirates. Medical principles and practice: international journal of the Kuwait University. Health Science Centre., 2008, 17(1), 32-36.
[33]
Azimi, L.; Nordmann, P.; Lari, A.R.; Bonnin, R.A. First report of OXA-48-producing Klebsiella pneumoniae strains in Iran. GMS Hyg. Infect. Control, 2014, 9(1), Doc07.
[PMID: 24653971]
[34]
Stewart, A.; Harris, P.; Henderson, A.; Paterson, D. Treatment of infections by OXA-48-producing Enterobacteriaceae. Antimicrob. Agents Chemother., 2018, 62(11), e01195-e18.
[http://dx.doi.org/10.1128/AAC.01195-18] [PMID: 30104282]
[35]
Pfeifer, Y.; Schlatterer, K.; Engelmann, E.; Schiller, R.A.; Frangenberg, H.R.; Stiewe, D.; Holfelder, M.; Witte, W.; Nordmann, P.; Poirel, L. Emergence of OXA-48-type carbapenemase-producing Enterobacteriaceae in German hospitals. Antimicrob. Agents Chemother., 2012, 56(4), 2125-2128.
[http://dx.doi.org/10.1128/AAC.05315-11] [PMID: 22290940]
[36]
Glupczynski, Y.; Huang, T-D.; Bouchahrouf, W.; Rezende de Castro, R.; Bauraing, C.; Gérard, M.; Verbruggen, A.M.; Deplano, A.; Denis, O.; Bogaerts, P. Rapid emergence and spread of OXA-48-producing carbapenem-resistant Enterobacteriaceae isolates in Belgian hospitals. Int. J. Antimicrob. Agents, 2012, 39(2), 168-172.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.10.005] [PMID: 22115539]
[37]
Bakthavatchalam, Y.D.; Anandan, S.; Veeraraghavan, B. Laboratory detection and clinical implication of oxacillinase-48 like carbapenemase: the hidden threat. J. Glob. Infect. Dis., 2016, 8(1), 41-50.
[http://dx.doi.org/10.4103/0974-777X.176149] [PMID: 27013843]
[38]
Lascols, C.; Peirano, G.; Hackel, M.; Laupland, K.B.; Pitout, J.D. Surveillance and molecular epidemiology of Klebsiella pneumoniae isolates that produce carbapenemases: first report of OXA-48-like enzymes in North America. Antimicrob. Agents Chemother., 2013, 57(1), 130-136.
[http://dx.doi.org/10.1128/AAC.01686-12] [PMID: 23070171]
[39]
Moghadampour, M.; Rezaei, A.; Faghri, J. The emergence of blaOXA-48 and blaNDM among ESBL-producing Klebsiella pneumoniae in clinical isolates of a tertiary hospital in Iran. Acta Microbiol. Immunol. Hung., 2018, 65(3), 335-344.
[http://dx.doi.org/10.1556/030.65.2018.034] [PMID: 30024268]
[40]
Seyedpour, S.M.; Eftekhar, F. Quinolone Susceptibility and Detection of qnr and aac(6′)-Ib-cr Genes in Community Isolates of Klebsiella pneumoniae. Jundishapur J. Microbiol., 2014, 7(7), e11136.
[http://dx.doi.org/10.5812/jjm.11136] [PMID: 25368793]
[41]
Wang, A.; Yang, Y.; Lu, Q.; Wang, Y.; Chen, Y.; Deng, L.; Ding, H.; Deng, Q.; Wang, L.; Shen, X. Occurrence of qnr-positive clinical isolates in Klebsiella pneumoniae producing ESBL or AmpC-type beta-lactamase from five pediatric hospitals in China. FEMS Microbiol. Lett., 2008, 283(1), 112-116.
[http://dx.doi.org/10.1111/j.1574-6968.2008.01163.x] [PMID: 18422623]
[42]
Kim, M.H.; Lee, H.J.; Park, K.S.; Suh, J.T. Molecular characteristics of extended spectrum beta-lactamases in Escherichia coli and Klebsiella pneumoniae and the prevalence of qnr in Extended spectrum beta-lactamase isolates in a tertiary care hospital in Korea. Yonsei Med. J., 2010, 51(5), 768-774.
[http://dx.doi.org/10.3349/ymj.2010.51.5.768] [PMID: 20635454]
[43]
Nasiri, G; Peymani, A; Farivar, TN; Hosseini, P Molecular epidemiology of aminoglycoside resistance in clinical isolates of Klebsiella pneumoniae collected from Qazvin and Tehran provinces, Iran. J. Mol. Epidemiol. Evolut. Genet. Infect. Dis., 2018, 64, 219-24.
[44]
Satter, S.; Mahbub, H.; Shamsuzzaman, S.M. Antibiotic Resistance Pattern and Prevalence of Aminoglycoside-Modifying Enzymes in Escherichia Coli and Klebsiella species Isolated from a Tertiary Care Hospital in Bangladesh. Mymensingh Med. J., 2018, 27(3), 561-566.
[PMID: 30141446]
[45]
Cirit, O.S.; Fernández-Martínez, M.; Yayla, B.; Martínez-Martínez, L. Aminoglycoside resistance determinants in multiresistant Escherichia coli and Klebsiella pneumoniae clinical isolates from Turkish and Syrian patients. Acta Microbiol. Immunol. Hung., 2019, 66(3), 327-335.
[http://dx.doi.org/10.1556/030.66.2019.005] [PMID: 30803254]