Sequence-based Identification of Arginine Amidation Sites in Proteins Using Deep Representations of Proteins and PseAAC

Page: [937 - 948] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Among all the major post-translational modifications, amidation seems to be a small change, where a peptide ends with an amide group (-NH 2), not a carboxyl group (-COOH). Thus, to study their physicochemical properties, identification of the amidation mechanism is very important. However, the in vitro, ex vivo and in vivo identification can be laborious, time-taking and costly. There is a dire need for an efficient and accurate computational model to help researchers and biologists identifying these sites, in an easy manner.

Objectives: Herein, we propose a novel predictor for the identification of arginine amide (R-Amide) sites in proteins, by integrating the Chou’s Pseudo Amino Acid Composition (PseAAC) with deep features. Methods: We use well-known DNNs for both the tasks of learning a feature representation of peptide sequences and performing classifications.

Results: Among different DNNs, CNN showed the highest scores in terms of accuracy, and all other computed measures outperformed all the previously reported predictors.

Conclusion: Based on these results, it is concluded that the proposed model can help identify arginine amidation in a very efficient and accurate manner, which can help scientists understand the mechanism of this modification in proteins.

Keywords: Amidation, arginine amide, DNNs, deep features, 5-steps rule, PseAAC.

Graphical Abstract

[1]
Arkhipenko S, Sabatini MT, Batsanov AS, et al. Mechanistic insights into boron-catalysed direct amidation reactions. Chem Sci (Camb) 2018; 9(4): 1058-72.
[http://dx.doi.org/10.1039/C7SC03595K] [PMID: 29675153]
[2]
Borah G, Borah P, Patel P. Cp*Co(III)-catalyzed ortho-amidation of azobenzenes with dioxazolones. Org Biomol Chem 2017; 15(18): 3854-9.
[http://dx.doi.org/10.1039/C7OB00540G] [PMID: 28421212]
[3]
Chen S, Feng B, Zheng X, Yin J, Yang S, You J. Iridium-Catalyzed Direct Regioselective C4-Amidation of Indoles under Mild Conditions. Org Lett 2017; 19(10): 2502-5.
[http://dx.doi.org/10.1021/acs.orglett.7b00730] [PMID: 28480709]
[4]
Cheung CW, Ploeger ML, Hu X. Direct amidation of esters with nitroarenes. Nat Commun 2017; 8: 14878.
[http://dx.doi.org/10.1038/ncomms14878] [PMID: 28345585]
[5]
Dorr BM, Fuerst DE. Enzymatic amidation for industrial applications. Curr Opin Chem Biol 2018; 43: 127-33.
[http://dx.doi.org/10.1016/j.cbpa.2018.01.008] [PMID: 29414531]
[6]
Keeble AH, Banerjee A, Ferla MP, Reddington SC, Anuar INAK, Howarth M. Evolving accelerated amidation by spytag/spycatcher to analyze membrane dynamics. Angew Chem Int Ed Engl 2017; 56(52): 16521-5.
[http://dx.doi.org/10.1002/anie.201707623] [PMID: 29024296]
[7]
Lanigan RM, Karaluka V, Sabatini MT, et al. Direct amidation of unprotected amino acids using B(OCH2CF3)3. Chem Commun (Camb) 2016; 52(57): 8846-9.
[http://dx.doi.org/10.1039/C6CC05147B] [PMID: 27346362]
[8]
Liang D, Yu W, Nguyen N, et al. Iodobenzene-catalyzed synthesis of phenanthridinones via oxidative C-H amidation. J Org Chem 2017; 82(7): 3589-96.
[http://dx.doi.org/10.1021/acs.joc.7b00106] [PMID: 28245353]
[9]
Lundberg H, Tinnis F, Zhang J, Algarra AG, Himo F, Adolfsson H. Mechanistic elucidation of zirconium-catalyzed direct amidation. J Am Chem Soc 2017; 139(6): 2286-95.
[http://dx.doi.org/10.1021/jacs.6b10973] [PMID: 28102675]
[10]
McPherson CG, Caldwell N, Jamieson C, Simpson I, Watson AJB. Amidation of unactivated ester derivatives mediated by trifluoroethanol. Org Biomol Chem 2017; 15(16): 3507-18.
[http://dx.doi.org/10.1039/C7OB00593H] [PMID: 28393949]
[11]
Mu D, Wang X, Chen G, He G. Iridium-Catalyzed ortho-C(sp2)-H amidation of benzaldehydes with organic azides. J Org Chem 2017; 82(8): 4497-503.
[http://dx.doi.org/10.1021/acs.joc.7b00531] [PMID: 28383264]
[12]
Mura M, Wang J, Zhou Y, et al. The effect of amidation on the behaviour of antimicrobial peptides. Eur Biophys J 2016; 45(3): 195-207.
[http://dx.doi.org/10.1007/s00249-015-1094-x] [PMID: 26745958]
[13]
Nageswara Rao S, Reddy NNK, Samanta S, Adimurthy S. I2-Catalyzed oxidative amidation of benzylamines and benzyl cyanides under mild conditions. J Org Chem 2017; 82(24): 13632-42.
[http://dx.doi.org/10.1021/acs.joc.7b02211] [PMID: 29205037]
[14]
Ortiz GX Jr, Hemric BN, Wang Q. Direct and selective 3-amidation of indoles using eectrophilic N-[(benzenesulfonyl)oxy]amides. Org Lett 2017; 19(6): 1314-7.
[http://dx.doi.org/10.1021/acs.orglett.7b00358] [PMID: 28281340]
[15]
Wang T, Zheng W, Wuyun Q, et al. PrAS: Prediction of amidation sites using multiple feature extraction. Comput Biol Chem 2017; 66: 57-62.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.11.004] [PMID: 27918921]
[16]
Yu LC, Gu JW, Zhang S, Zhang X. Visible-light-promoted tandem difluoroalkylation-amidation: access to difluorooxindoles from free anilines. J Org Chem 2017; 82(7): 3943-9.
[http://dx.doi.org/10.1021/acs.joc.7b00111] [PMID: 28296400]
[17]
Yu X, Yang S, Zhang Y, Guo M, Yamamoto Y, Bao M. Intermolecular amidation of quinoline N-oxides with arylsulfonamides under metal-free conditions. Org Lett 2017; 19(22): 6088-91.
[http://dx.doi.org/10.1021/acs.orglett.7b02922] [PMID: 29095628]
[18]
Rivera H Jr, Dhar S, La Clair JJ, Tsai SC, Burkart MD. An unusual intramolecular trans-amidation. Tetrahedron 2016; 72(25): 3605-8.
[http://dx.doi.org/10.1016/j.tet.2016.01.062] [PMID: 27346894]
[19]
Serrano E, Martin R. Nickel-catalyzed reductive amidation of unactivated alkyl bromides. Angew Chem Int Ed Engl 2016; 55(37): 11207-11.
[http://dx.doi.org/10.1002/anie.201605162] [PMID: 27357076]
[20]
Shi P, Wang L, Chen K, Wang J, Zhu J. Co(III)-catalyzed enaminone-directed C-H amidation for quinolone synthesis. Org Lett 2017; 19(9): 2418-21.
[http://dx.doi.org/10.1021/acs.orglett.7b00968] [PMID: 28425721]
[21]
Akbar S, Hayat M. iMethyl-STTNC: Identification of N6-methyladenosine sites by extending the idea of SAAC into Chou’s PseAAC to formulate RNA sequences. J Theor Biol 2018; 455: 205-11.
[http://dx.doi.org/10.1016/j.jtbi.2018.07.018] [PMID: 30031793]
[22]
Chen W, Ding H, Zhou X, Lin H, Chou K-C. iRNA(m6A)-PseDNC: Identifying N6-methyladenosine sites using pseudo dinucleotide composition. Anal Biochem 2018; 561-562: 59-65.
[http://dx.doi.org/10.1016/j.ab.2018.09.002] [PMID: 30201554]
[23]
Chen W, Feng P, Ding H, Lin H, Chou K-C. iRNA-Methyl: Identifying N(6)-methyladenosine sites using pseudo nucleotide composition. Anal Biochem 2015; 490: 26-33.
[http://dx.doi.org/10.1016/j.ab.2015.08.021] [PMID: 26314792]
[24]
Chen W, Feng P, Yang H, Ding H, Lin H, Chou K-C. iRNA-3typeA: Identifying Three Types of Modification at RNA’s Adenosine Sites. Mol Ther Nucleic Acids 2018; 11: 468-74.
[http://dx.doi.org/10.1016/j.omtn.2018.03.012] [PMID: 29858081]
[25]
Chen W, Tang H, Ye J, Lin H, Chou K-C. iRNA-PseU: Identifying RNA pseudouridine sites. Mol Ther Nucleic Acids 2016; 5e332
[26]
Feng P, Ding H, Yang H, Chen W, Lin H, Chou K-C. iRNA-PseColl: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC. Mol Ther Nucleic Acids 2017; 7: 155-63.
[http://dx.doi.org/10.1016/j.omtn.2017.03.006] [PMID: 28624191]
[27]
Feng P, Yang H, Ding H, Lin H, Chen W, Chou K-C. iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics 2018; 111(1): 96-102.
[PMID: 29360500]
[28]
Ghauri AW, Khan YD, Rasool N, Khan SA, Chou KC. pNitro-Tyr-PseAAC: Predict nitrotyrosine sites in proteins by incorporating five features into Chou’s general PseAAC. Curr Pharm Des 2018; 24(34): 4034-43.
[http://dx.doi.org/10.2174/1381612825666181127101039] [PMID: 30479209]
[29]
Jia C, Lin X, Wang Z. Prediction of protein S-nitrosylation sites based on adapted normal distribution bi-profile Bayes and Chou’s pseudo amino acid composition. Int J Mol Sci 2014; 15(6): 10410-23.
[http://dx.doi.org/10.3390/ijms150610410] [PMID: 24918295]
[30]
Jia J, Liu Z, Xiao X, Liu B, Chou K-C. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Anal Biochem 2016; 497: 48-56.
[http://dx.doi.org/10.1016/j.ab.2015.12.009] [PMID: 26723495]
[31]
Jia J, Liu Z, Xiao X, Liu B, Chou K-C. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J Theor Biol 2016; 394: 223-30.
[http://dx.doi.org/10.1016/j.jtbi.2016.01.020] [PMID: 26807806]
[32]
Jia J, Liu Z, Xiao X, Liu B, Chou K-C. iCar-PseCp: identify carbonylation sites in proteins by Monte Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget 2016; 7(23): 34558-70.
[http://dx.doi.org/10.18632/oncotarget.9148] [PMID: 27153555]
[33]
Jia J, Zhang L, Liu Z, Xiao X, Chou K-C. pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC. Bioinformatics 2016; 32(20): 3133-41.
[http://dx.doi.org/10.1093/bioinformatics/btw387] [PMID: 27354696]
[34]
Ju Z, Cao J-Z, Gu H. Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou׳s general PseAAC. J Theor Biol 2016; 397: 145-50.
[http://dx.doi.org/10.1016/j.jtbi.2016.02.020] [PMID: 26908349]
[35]
Ju Z, He J-J. Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou’s general PseAAC. J Mol Graph Model 2017; 77: 200-4.
[http://dx.doi.org/10.1016/j.jmgm.2017.08.020] [PMID: 28886434]
[36]
Ju Z, Wang S-Y. Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou’s general pseudo amino acid composition. Gene 2018; 664: 78-83.
[http://dx.doi.org/10.1016/j.gene.2018.04.055] [PMID: 29694908]
[37]
Khan YD, Rasool N, Hussain W, Khan SA, Chou K-C. iPhosT-PseAAC: Identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC. Anal Biochem 2018; 550: 109-16.
[http://dx.doi.org/10.1016/j.ab.2018.04.021] [PMID: 29704476]
[38]
Khan YD, Rasool N, Hussain W, Khan SA, Chou K-C. iPhosY-PseAAC: identify phosphotyrosine sites by incorporating sequence statistical moments into PseAAC. Mol Biol Rep 2018; 45(6): 2501-9.
[http://dx.doi.org/10.1007/s11033-018-4417-z] [PMID: 30311130]
[39]
Liu L-M, Xu Y, Chou K-C. iPGK-PseAAC: identify lysine phosphoglycerylation sites in proteins by incorporating four different tiers of amino acid pairwise coupling information into the general PseAAC. Med Chem 2017; 13(6): 552-9.
[http://dx.doi.org/10.2174/1573406413666170515120507] [PMID: 28521678]
[40]
Liu Z, Xiao X, Yu D-J, Jia J, Qiu W-R, Chou K-C. pRNAm-PC: Predicting N(6)-methyladenosine sites in RNA sequences via physical-chemical properties. Anal Biochem 2016; 497: 60-7.
[http://dx.doi.org/10.1016/j.ab.2015.12.017] [PMID: 26748145]
[41]
Qiu WR, Sun BQ, Xiao X, Xu D, Chou KC. iPhos-PseEvo: Identifying Human Phosphorylated Proteins by Incorporating Evolutionary Information into General PseAAC via Grey System Theory. Mol Inform 2017; 36(5-6)
[http://dx.doi.org/10.1002/minf.201600010] [PMID: 28488814]
[42]
Qiu W-R, Jiang S-Y, Sun B-Q, Xiao X, Cheng X, Chou K-C. iRNA-2methyl: Identify RNA 2′-O-methylation Sites by Incorporating Sequence-Coupled Effects into General PseKNC and Ensemble Classifier. Med Chem 2017; 13(8): 734-43.
[http://dx.doi.org/10.2174/1573406413666170623082245] [PMID: 28641529]
[43]
Qiu W-R, Jiang S-Y, Xu Z-C, Xiao X, Chou K-C. iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition. Oncotarget 2017; 8(25): 41178-88.
[http://dx.doi.org/10.18632/oncotarget.17104] [PMID: 28476023]
[44]
Qiu W-R, Sun B-Q, Xiao X, Xu Z-C, Chou K-C. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget 2016; 7(28): 44310-21.
[http://dx.doi.org/10.18632/oncotarget.10027] [PMID: 27322424]
[45]
Qiu W-R, Sun B-Q, Xiao X, Xu Z-C, Chou K-C. iPTM-mLys: identifying multiple lysine PTM sites and their different types. Bioinformatics 2016; 32(20): 3116-23.
[http://dx.doi.org/10.1093/bioinformatics/btw380] [PMID: 27334473]
[46]
Qiu W-R, Xiao X, Lin W-Z, Chou K-C. iMethyl-PseAAC: identification of protein methylation sites via a pseudo amino acid composition approach. BioMed Res Int 2014.
[47]
Qiu W-R, Xiao X, Lin W-Z, Chou K-C. iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a gray system model. J Biomol Struct Dyn 2015; 33(8): 1731-42.
[http://dx.doi.org/10.1080/07391102.2014.968875] [PMID: 25248923]
[48]
Qiu W-R, Xiao X, Xu Z-C, Chou K-C. iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier. Oncotarget 2016; 7(32): 51270-83.
[http://dx.doi.org/10.18632/oncotarget.9987] [PMID: 27323404]
[49]
Sabooh MF, Iqbal N, Khan M, Khan M, Maqbool HF. Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou’s PseKNC. J Theor Biol 2018; 452: 1-9.
[http://dx.doi.org/10.1016/j.jtbi.2018.04.037] [PMID: 29727634]
[50]
Xie H-L, Fu L, Nie X-D. Using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou’s PseAAC. Protein Eng Des Sel 2013; 26(11): 735-42.
[http://dx.doi.org/10.1093/protein/gzt042] [PMID: 24048266]
[51]
Xu Y, Chou K-C. Recent progress in predicting posttranslational modification sites in proteins. Curr Top Med Chem 2016; 16(6): 591-603.
[http://dx.doi.org/10.2174/1568026615666150819110421] [PMID: 26286211]
[52]
Xu Y, Ding J, Wu L-Y, Chou K-C. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS One 2013; 8(2)e55844
[http://dx.doi.org/10.1371/journal.pone.0055844] [PMID: 23409062]
[53]
Xu Y, Shao X-J, Wu L-Y, Deng N-Y, Chou K-C. iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins. PeerJ 2013.
[54]
Xu Y, Wang Z, Li C, Chou K-C. iPreny-PseAAC: identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC. Med Chem 2017; 13(6): 544-51.
[http://dx.doi.org/10.2174/1573406413666170419150052] [PMID: 28425870]
[55]
Xu Y, Wen X, Shao X-J, Deng N-Y, Chou K-C. iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition. Int J Mol Sci 2014; 15(5): 7594-610.
[http://dx.doi.org/10.3390/ijms15057594] [PMID: 24857907]
[56]
Xu Y, Wen X, Wen L-S, Wu L-Y, Deng N-Y, Chou K-C. iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One 2014; 9(8)e105018
[http://dx.doi.org/10.1371/journal.pone.0105018] [PMID: 25121969]
[57]
Zhang J, Zhao X, Sun P, Ma Z. PSNO: predicting cysteine S-nitrosylation sites by incorporating various sequence-derived features into the general form of Chou’s PseAAC. Int J Mol Sci 2014; 15(7): 11204-19.
[http://dx.doi.org/10.3390/ijms150711204] [PMID: 24968264]
[58]
Akhtar A, Amir A, Hussain W, Ghaffar A, Rasool N. In silico computations of selective phytochemicals as potential inhibitors against major biological targets of diabetes mellitus. Curr Comput Aided Drug Des 2019.
[http://dx.doi.org/10.2174/1573409915666190130164923]
[59]
Amjad H, Hussain W, Rasool N. Biosciences. Molecular simulation investigation of prolyl oligopeptidase from pyrobaculum calidifontis and in silico docking with substrates and Inhibitors 2018; 2(4): 185-94.
[60]
Arif N. Subhani, A.; Hussain, W.; Rasool, N., In Silico Inhibition of BACE-1 by Selective Phytochemicals as Novel Potential Inhibitors: Molecular Docking and DFT Studies. Curr Drug Discov Technol 2019.
[http://dx.doi.org/10.2174/1570163816666190214161825] [PMID: 30767744]
[61]
Awais M, Hussain W, Khan YD, Rasool N, Khan SA. Chou KCJIAtocb. bioinformatics, iPhosH-PseAAC: Identify phosphohistidine sites in proteins by blending statistical moments and position relative features according to the Chou's 5-step rule and general pseudo amino acid composition 2019.
[62]
Hussain W, Ali M, Sohail Afzalv M, Rasool N. Penta-1,4-Diene-3- One Oxime Derivatives Strongly Inhibit the Replicase Domain of Tobacco Mosaic Virus: Elucidation Through Molecular Docking and Density Functional Theory Mechanistic Computations. J Antivir Antiretrovir 2018; 10(3): 028-0034.
[http://dx.doi.org/10.4172/1948-5964.1000177]
[63]
Hussain W, Khan YD, Rasool N, Khan SA, Chou K-C. SPalmitoylC-PseAAC: A sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-palmitoylation sites in proteins. Anal Biochem 2019; 568: 14-23.
[http://dx.doi.org/10.1016/j.ab.2018.12.019] [PMID: 30593778]
[64]
Hussain W, Khan YD, Rasool N, Khan SA, Chou K-C. SPrenylC-PseAAC: A sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins. J Theor Biol 2019; 468: 1-11.
[http://dx.doi.org/10.1016/j.jtbi.2019.02.007] [PMID: 30768975]
[65]
Hussain W, Qaddir I, Mahmood S, Rasool N. In silico targeting of non-structural 4B protein from dengue virus 4 with spiropyrazolopyridone: study of molecular dynamics simulation, ADMET and virtual screening. Virusdisease 2018; 29(2): 147-56.
[http://dx.doi.org/10.1007/s13337-018-0446-4] [PMID: 29911147]
[66]
Khan YD, Jamil M, Hussain W, Rasool N, Khan SA, Chou K-C. pSSbond-PseAAC: Prediction of disulfide bonding sites by integration of PseAAC and statistical moments. J Theor Biol 2018; 463: 47-55.
[PMID: 30550863]
[67]
Qaddir I, Rasool N, Hussain W, Mahmood S. Computer-aided analysis of phytochemicals as potential dengue virus inhibitors based on molecular docking, ADMET and DFT studies. J Vector Borne Dis 2017; 54(3): 255-62.
[http://dx.doi.org/10.4103/0972-9062.217617] [PMID: 29097641]
[68]
Rasool N, Ashraf A, Waseem M, Hussain W, Mahmood S. Computational exploration of antiviral activity of phytochemicals against NS2B/NS3 proteases from dengue virus. Turkish Journal of Biochemistry
[69]
Rasool N, Iftikhar S, Amir A, Hussain W. Structural and quantum mechanical computations to elucidate the altered binding mechanism of metal and drug with pyrazinamidase from Mycobacterium tuberculosis due to mutagenicity. J Mol Graph Model 2018; 80: 126-31.
[http://dx.doi.org/10.1016/j.jmgm.2017.12.011] [PMID: 29331879]
[70]
Akmal MA, Rasool N, Khan YD. Prediction of N-linked glycosylation sites using position relative features and statistical moments. PLoS One 2017; 12(8)e0181966
[http://dx.doi.org/10.1371/journal.pone.0181966] [PMID: 28797096]
[71]
Rasool N, Husssain W. Probing the Pharmacological Parameters, Molecular Docking and Quantum Computations of Plant Derived Compounds Exhibiting Strong Inhibitory Potential Against NS5 from Zika Virus. Braz Arch Biol Technol 2019.
[72]
Rasool N, Jalal A, Amjad A, Hussain W. Probing the Pharmacological Parameters, Molecular Docking and Quantum Computations of Plant Derived Compounds Exhibiting Strong Inhibitory Potential Against NS5 from Zika Virus. Braz Arch Biol Technol 2018; 61(0)
[http://dx.doi.org/10.1590/1678-4324-2018180004]
[73]
Zhao S, Yu H, Gong X. Predicting protein amidation sites by orchestrating amino acid sequence features. J Phys Conf Ser 2017; 887.
[http://dx.doi.org/10.1088/1742-6596/887/1/012052]
[74]
Goodfellow I, Bengio Y, Courville A. Deep learning. MIT press 2016.
[75]
Chou K-C. Using subsite coupling to predict signal peptides. Protein Eng 2001; 14(2): 75-9.
[http://dx.doi.org/10.1093/protein/14.2.75] [PMID: 11297664]
[76]
Chou K-C. Some remarks on protein attribute prediction and pseudo amino acid composition. J Theor Biol 2011; 273(1): 236-47.
[http://dx.doi.org/10.1016/j.jtbi.2010.12.024] [PMID: 21168420]
[77]
Cai L, Huang T, Su J, et al. Implications of newly identified brain eQTL genes and their interactors in Schizophrenia. Mol Ther Nucleic Acids 2018; 12: 433-42.
[http://dx.doi.org/10.1016/j.omtn.2018.05.026] [PMID: 30195780]
[78]
Cheng X, Xiao X, Chou K-C. pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics 2017.
[PMID: 28818512]
[79]
Cheng X, Xiao X, Chou K-C. pLoc-mPlant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general PseAAC. Mol Biosyst 2017; 13(9): 1722-7.
[http://dx.doi.org/10.1039/C7MB00267J] [PMID: 28702580]
[80]
Cheng X, Xiao X, Chou K-C. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Gene 2017; 628: 315-21.
[http://dx.doi.org/10.1016/j.gene.2017.07.036] [PMID: 28728979]
[81]
Cheng X, Xiao X, Chou K-C. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics 2018; 34(9): 1448-56.
[http://dx.doi.org/10.1093/bioinformatics/btx711] [PMID: 29106451]
[82]
Cheng X, Xiao X, Chou K-C. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics 2017; 110(4): 231-9.
[http://dx.doi.org/10.1016/j.ygeno.2017.10.002] [PMID: 28989035]
[83]
Cheng X, Zhao S-G, Lin W-Z, Xiao X, Chou K-C. pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics 2017; 33(22): 3524-31.
[http://dx.doi.org/10.1093/bioinformatics/btx476] [PMID: 29036535]
[84]
Jia J, Li X, Qiu W, Xiao X, Chou K-C. iPPI-PseAAC(CGR): Identify protein-protein interactions by incorporating chaos game representation into PseAAC. J Theor Biol 2019; 460: 195-203.
[http://dx.doi.org/10.1016/j.jtbi.2018.10.021] [PMID: 30312687]
[85]
Li F, Li C, Marquez-Lago TT, et al. Quokka: a comprehensive tool for rapid and accurate prediction of kinase family-specific phosphorylation sites in the human proteome. Bioinformatics 2018; 34(24): 4223-31.
[http://dx.doi.org/10.1093/bioinformatics/bty522] [PMID: 29947803]
[86]
Song J, Li F, Takemoto K, et al. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework. J Theor Biol 2018; 443: 125-37.
[http://dx.doi.org/10.1016/j.jtbi.2018.01.023] [PMID: 29408627]
[87]
Song J, Wang Y, Li F, et al. iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites. Brief Bioinform 2018; 20(2): 638-58.
[PMID: 29897410]
[88]
Wang J, Li J, Yang B, et al. Bastion3: a two-layer ensemble predictor of type III secreted effectors. Bioinformatics 2018; 35(12): 2017-28.
[PMID: 30388198]
[89]
Xiao X, Cheng X, Su S, Mao Q, Chou K-C. pLoc-mGpos: incorporate key gene ontology information into general PseAAC for predicting subcellular localization of Gram-positive bacterial proteins. Nat Sci 2017; 9(09): 330.
[http://dx.doi.org/10.4236/ns.2017.99032]
[90]
Xiao X, Xu Z-C, Qiu W-R, Wang P, Ge H-T, Chou K-C. iPSW (2L)-PseKNC: a two-layer predictor for identifying promoters and their strength by hybrid features via pseudo K-tuple nucleotide composition. Genomics 2018; 111(6): 1785-93.
[PMID: 30529532]
[91]
Zhang Y, Xie R, Wang J, et al. Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework. Brief Bioinform 2018; 5.
[http://dx.doi.org/10.1093/bib/bby079] [PMID: 30351377]
[92]
Bergstra J, Bengio Y. Random search for hyper-parameter optimization. JMLR 2012; p. 305.
[93]
Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw 1994; 5(2): 157-66.
[http://dx.doi.org/10.1109/72.279181] [PMID: 18267787]
[94]
Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. nature 1986; 323(6088): 533.
[95]
Cho K, Van Merriënboer B, Bahdanau D, Bengio Y. On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:14091259 2014.
[96]
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997; 9(8): 1735-80.
[http://dx.doi.org/10.1162/neco.1997.9.8.1735] [PMID: 9377276]
[97]
LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 1998; 86(11): 2278-324.
[http://dx.doi.org/10.1109/5.726791]
[98]
Karpathy A. Connecting images and natural language. Stanford University Press 2016.