Catalytic Transfer Hydrogenation of Biomass-derived Levulinates to γ- valerolactone Using Alcohols as H-donors

Page: [304 - 313] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

γ-Valerolactone (GVL) is a kind of significant platform molecules in the modern industry, which can be directly produced from biomass-derivatives, such as sugar, levulinic acid (LA) and ethyl levulinate (EL). In general, GVL could be produced from LA using gas hydrogen as H-donor with heterogeneous or homogeneous catalysts. But this strategy always has the danger of operation and requirement of unique reactors due to explosive hydrogen as well as the acidity of reactant. Over the past decade, researchers in this field have established new processes and strategies to meet the above problems through the CTH process by using alcohol as H-donor and EL as the substrate over different kinds of catalysts. In this review, we collect and discuss the literature on the production of GVL from EL, and applications of LA, EL, and GVL with particular typical mechanisms. The catalyst preparation methods in the mentioned reaction systems are also concerned.

Keywords: Biomass esters, liquid H-donor, ethyl levulinate, γ-valerolactone, catalytic transfer hydrogenation (CTH), pentanoic acid.

Graphical Abstract

[1]
Alonso, D.M.; Wettstein, S.G.; Dumesic, J.A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem., 2013, 15, 584-595.
[http://dx.doi.org/10.1039/c3gc37065h]
[2]
Mascal, M.; Nikitin, E.B. High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl) furfural, levulinic acid, and levulinic esters via 5-(chloromethyl) furfural. Green Chem., 2010, 12, 370-373.
[http://dx.doi.org/10.1039/B918922J]
[3]
Yan, K.; Yang, Y.; Chai, J.; Lu, Y. Catalytic reactions of gamma-valerolactone: A platform to fuels and value-added chemicals. Appl. Catal. B, 2015, 179, 292-304.
[http://dx.doi.org/10.1016/j.apcatb.2015.04.030]
[4]
Li, H.; Wu, H.; Zhang, H.; Su, Y.; Yang, S.; Hensen, E.J.M. A facile direct route to N-(un) substituted lactams by cycloamination of oxocarboxylic acids without external hydrogen. ChemSusChem, 2019, 12, 3778-3784.
[http://dx.doi.org/10.1002/cssc.201901780] [PMID: 31278839]
[5]
Novita, F.J.; Lee, H.Y.; Lee, M. Energy-efficient design of an ethyl levulinate reactive distillation process via a thermally coupled distillation with external heat integration arrangement. Ind. Eng. Chem. Res., 2017, 56, 7037-7048.
[http://dx.doi.org/10.1021/acs.iecr.7b00667]
[6]
Chen, Z.; Zhao, J.; Cabrera, C.R.; Chen, Z. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction; Small Methods, 2018, p. 1800368.
[7]
Windom, B.C.; Lovestead, T.M.; Mascal, M.; Nikitin, E.B.; Bruno, T.J. Advanced distillation curve analysis on ethyl levulinate as a diesel fuel oxygenate and a hybrid biodiesel fuel. Energy Fuels, 2011, 25, 1878-1890.
[http://dx.doi.org/10.1021/ef200239x]
[8]
Ouyang, W.; Zhao, D.; Wang, Y.; Balu, A.M.; Len, C.; Luque, R. Continuous flow conversion of biomass-derived methyl levulinate into γ-valerolactone using functional metal organic frameworks. ACS Sustain. Chem.& Eng., 2018, 6, 6746-6752.
[http://dx.doi.org/10.1021/acssuschemeng.8b00549]
[9]
Xu, Y.; Long, J.; Zhao, W.; Li, H.; Yang, S. Efficient transfer hydrogenation of nitro compounds to amines enabled by mesoporous N-stabilized Co-Zn/C. Front Chem., 2019, 7, 590.
[http://dx.doi.org/10.3389/fchem.2019.00590] [PMID: 31508411]
[10]
Omoruyi, U.; Page, S.; Hallett, J.; Miller, P.W. Homogeneous catalyzed reactions of levulinic acid: to γ-valerolactone and beyond. ChemSusChem, 2016, 9, 2037-2047.
[http://dx.doi.org/10.1002/cssc.201600517] [PMID: 27464831]
[11]
Lange, J.P.; Price, R.; Ayoub, P.M.; Louis, J.; Petrus, L.; Clarke, L.; Gosselink, H. Valeric biofuels: a platform of cellulosic transportation fuels. Angew. Chem. Int. Ed. Engl., 2010, 49, 4479-4483.
[http://dx.doi.org/10.1002/anie.201000655] [PMID: 20446282]
[12]
Li, H.; Zhao, W.; Saravanamurugan, S.; Dai, W.; He, J.; Meier, S.; Yang, S.; Riisager, A. Control of selectivity in hydrosilane-promoted heterogeneous palladium-catalysed reduction of furfural and aromatic carboxides. Commun. Chem., 2018, 1, 32.
[http://dx.doi.org/10.1038/s42004-018-0033-z]
[13]
Huang, Y.B.; Yang, T.; Cai, B.; Chang, X.; Pan, H. Highly efficient metal salt catalyst for the esterification of biomass derived levulinic acid under microwave irradiation. RSC Advances, 2016, 6, 2106-2111.
[http://dx.doi.org/10.1039/C5RA24305J]
[14]
Tang, X.; Zeng, X.; Li, Z.; Hu, L.; Sun, Y.; Liu, S.; Lei, T.; Lin, L. Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renew. Sustain. Energy Rev., 2014, 40, 608-620.
[http://dx.doi.org/10.1016/j.rser.2014.07.209]
[15]
Zhang, J.; Wu, S.; Li, B.; Zhang, H. Advances in the catalytic production of valuable levulinic acid derivatives. ChemCatChem, 2012, 4, 1230-1237.
[http://dx.doi.org/10.1002/cctc.201200113]
[16]
Li, H.; Smith, R.L. Solvents take control. Nat. Catal., 2018, 1, 176.
[http://dx.doi.org/10.1038/s41929-018-0040-6]
[17]
Geboers, J.; Wang, X.; De Carvalho, A.B.; Rinaldi, R. Densification of biorefinery schemes by H-transfer with Raney Ni and 2-propanol: A case study of a potential avenue for valorization of alkyl levulinates to alkyl γ-hydroxypentanoates and γ-valerolactone. J. Mol. Catal. Chem., 2014, 388, 106-115.
[http://dx.doi.org/10.1016/j.molcata.2013.11.031]
[18]
Yu, Z.; Xu, F.; Li, Y.; Konno, H.; Li, H.; Yang, S. Tetraethylammonium fluoride-mediated a green hydrogen transfer process for selective reduction of biomass-derived aldehydes. Curr. Green Chem., 2019, 6, 127-134.
[http://dx.doi.org/10.2174/2213346106666190830115519]
[19]
He, J.; Li, H.; Saravanamurugan, S.; Yang, S. Catalytic upgrading of biomass-derived sugars with acidic nanoporous materials: structural role in carbon-chain length variation. ChemSusChem, 2019, 12, 347-378.
[http://dx.doi.org/10.1002/cssc.201802113] [PMID: 30407741]
[20]
Leal Silva, J.F.; Grekin, R.; Mariano, A.P.; Maciel Filho, R. Making levulinic acid and ethyl levulinate economically viable: a worldwide technoeconomic and environmental assessment of possible routes. Energ. Technol., 2018, 6, 613-639.
[http://dx.doi.org/10.1002/ente.201700594]
[21]
Liu, Y.; Zhu, L.; Tang, J.; Liu, M.; Cheng, R.; Hu, C. One-pot, one-step synthesis of 2,5-diformylfuran from carbohydrates over Mo-containing Keggin heteropolyacids. ChemSusChem, 2014, 7, 3541-3547.
[http://dx.doi.org/10.1002/cssc.201402468] [PMID: 25351364]
[22]
Wu, H.; Liu, Y.; Li, H.; Yang, S. Rapid and efficient conversion of bio-based sugar to 5-hydroxymethylfurfural using amino-acid derived catalysts. Energy Source Part A, 2018, 40, 2632-2639.
[http://dx.doi.org/10.1080/15567036.2018.1505982]
[23]
Tang, X.; Wei, J.; Ding, N.; Sun, Y.; Zeng, X.; Hu, L.; Liu, S.; Lei, T.; Lin, L. Chemoselective hydrogenation of biomass derived 5-hydroxymethylfurfural to diols: Key intermediates for sustainable chemicals, materials and fuels. Renew. Sustain. Energy Rev., 2017, 77, 287-296.
[http://dx.doi.org/10.1016/j.rser.2017.04.013]
[24]
Xiao, Z.; Zhou, H.; Hao, J.; Hong, H.; Song, Y.; He, R.; Zhi, K.; Liu, Q. A novel and highly efficient Zr-containing catalyst based on humic acids for the conversion of biomass-derived ethyl levulinate into gamma-valerolactone. Fuel, 2017, 193, 322-330.
[http://dx.doi.org/10.1016/j.fuel.2016.12.072]
[25]
Ahmad, E.; Alam, M.I.; Pant, K.K.; Haider, M.A. Catalytic and mechanistic insights into the production of ethyl levulinate from biorenewable feedstocks. Green Chem., 2016, 18, 4804-4823.
[http://dx.doi.org/10.1039/C6GC01523A]
[26]
Kong, X.; Zhu, Y.; Zheng, H.; Zhu, Y.; Fang, Z. Inclusion of Zn into metallic Ni enables selective and effective synthesis of 2, 5-dimethylfuran from bioderived 5-hydroxymethylfurfural. ACS Sustain. Chem.& Eng., 2017, 5, 11280-11289.
[http://dx.doi.org/10.1021/acssuschemeng.7b01813]
[27]
Li, F.; France, L.J.; Cai, Z.; Li, Y.; Liu, S.; Lou, H.; Long, J.; Li, X. Catalytic transfer hydrogenation of butyl levulinate to γ-valerolactone over zirconium phosphates with adjustable Lewis and Brønsted acid sites. Appl. Catal. B, 2017, 214, 67-77.
[http://dx.doi.org/10.1016/j.apcatb.2017.05.013]
[28]
Tiong, Y.W.; Yap, C.L.; Gan, S.; Yap, W.S.P. Conversion of biomass and its derivatives to levulinic acid and levulinate esters via ionic liquids. Ind. Eng. Chem. Res., 2018, 57, 4749-4766.
[http://dx.doi.org/10.1021/acs.iecr.8b00273]
[29]
Zhao, W.; Wu, W.; Li, H.; Fang, C.; Yang, T.; Wang, Z. He, Chao.; Yang, S. Quantitative synthesis of 2, 5-bis (hydroxymethyl) furan from biomass-derived 5-hydroxymethylfurfural and sugars over reusable solid catalysts at low temperatures. Fuel, 2018, 217, 365-369.
[http://dx.doi.org/10.1016/j.fuel.2017.12.069]
[30]
Du, X.L.; Bi, Q.Y.; Liu, Y.M.; Cao, Y.; Fan, K.N. Conversion of biomass-derived levulinate and formate esters into γ-valerolactone over supported gold catalysts. ChemSusChem, 2011, 4, 1838-1843.
[http://dx.doi.org/10.1002/cssc.201100483] [PMID: 22105964]
[31]
Peng, L.; Lin, L.; Li, H.; Yang, Q. Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts. Appl. Energy, 2011, 88, 4590-4596.
[http://dx.doi.org/10.1016/j.apenergy.2011.05.049]
[32]
Havasi, D.; Mizsey, P.; Mika, L.T. Vapo-liquid equilibrium study of the gamma-valerolactone-water binary system. J. Chem. Eng. Data, 2016, 61, 1502-1508.
[http://dx.doi.org/10.1021/acs.jced.5b00849]
[33]
De Bruycker, R.; Carstensen, H.H.; Simmie, J.M.; Van Geem, K.M.; Marin, G.B. Experimental and computational study of the initial decomposition of gamma-valerolactone. Proc. Combust. Inst., 2015, 35, 515-523.
[http://dx.doi.org/10.1016/j.proci.2014.04.001]
[34]
Yun, G.N.; Takagaki, A.; Kikuchi, R.; Oyama, S.T. Hydrodeoxygenation of gamma-valerolactone on transition metal phosphide catalysts. Catal. Sci. Technol., 2017, 7, 281-292.
[http://dx.doi.org/10.1039/C6CY02252A]
[35]
Li, H.; He, J.; Riisager, A.; Saravanamurugan, S.; Song, B.; Yang, S. Acid-base bifunctional zirconium N-alkyltriphosphate nanohybrid for hydrogen transfer of biomass-derived carboxides. ACS Catal., 2016, 6, 7722-7727.
[http://dx.doi.org/10.1021/acscatal.6b02431]
[36]
Fang, W.; Sixta, H. Advanced biorefinery based on the fractionation of biomass in γ-valerolactone and water. ChemSusChem, 2015, 8(1), 73-76.
[http://dx.doi.org/10.1002/cssc.201402821] [PMID: 25370304]
[37]
Li, H.; Wang, C.; Xu, Y.; Yu, Z.; Saravanamurugan, S.; Wu, Z.; Yang, S.; Luque, R. Heterogeneous (de)chlorination-enabled control of reactivity in liquid-phase synthesis of furanic biofuel from cellulosic feedstock. Green Chem., 2020, 3, 2020.
[http://dx.doi.org/10.1039/C9GC04092G]
[38]
Wettstein, S.G.; Bond, J.Q.; Alonso, D.M.; Pham, H.N.; Datye, A.K.; Dumesic, J.A. RuSn bimetallic catalysts for selective hydrogenation of levulinic acid to γ-valerolactone. Appl. Catal. B, 2012, 117, 321-329.
[http://dx.doi.org/10.1016/j.apcatb.2012.01.033]
[39]
Li, H.; Zhao, W.; Dai, W.; Long, J.; Watanabe, M.; Meier, S.; Saravanamurugan, S.; Yang, S.; Riisager, A. Noble metal-free upgrading of multi-unsaturated biomass derivatives at room temperature: Silyl species enable reactivity. Green Chem., 2018, 20, 5327-5335.
[http://dx.doi.org/10.1039/C8GC02934B]
[40]
Du, X.L.; He, L.; Zhao, S.; Liu, Y.M.; Cao, Y.; He, H.Y.; Fan, K.N. Hydrogen-independent reductive transformation of carbohydrate biomass into γ-valerolactone and pyrrolidone derivatives with supported gold catalysts. Angew. Chem. Int. Ed. Engl., 2011, 50, 7815-7819.
[http://dx.doi.org/10.1002/anie.201100102] [PMID: 21732502]
[41]
Pasquale, G.; Vázquez, P.; Romanelli, G.; Baronetti, G. Catalytic upgrading of levulinic acid to ethyl levulinate using reusable silica-included Wells-Dawson heteropolyacid as catalyst. Catal. Commun., 2012, 18, 115-120.
[http://dx.doi.org/10.1016/j.catcom.2011.12.004]
[42]
Enumula, S.S.; Koppadi, K.S.; Gurram, V.R.B.; Burri, D.R.; Kamaraju, S.R.R. Conversion of furfuryl alcohol to alkyl levulinate fuel additives over Al2O3/SBA-15 catalyst. Sustain. Energ. Fuels, 2017, 1, 644-651.
[http://dx.doi.org/10.1039/C6SE00103C]
[43]
He, J.; Li, H.; Riisager, A.; Yang, S. Catalytic transfer hydrogenation of furfural to furfuryl alcohol with recyclable Al-Zr@Fe mixed oxides. ChemCatChem, 2017, 10, 430-438.
[http://dx.doi.org/10.1002/cctc.201701266]
[44]
Yan, L.; Yao, Q.; Fu, Y. Conversion of levulinic acid and alkyl levulinates into biofuels and high-value chemicals. Green Chem., 2017, 19, 5527-5547.
[http://dx.doi.org/10.1039/C7GC02503C]
[45]
Zhao, W.; Yang, T.; Li, H.; Wu, W.; Wang, Z.; Fang, C.; Saravanamurugan, S.; Yang, S. Highly recyclable fluoride for enhanced cascade hydrosilylation-cyclization of levulinates to γ-valerolactone at low temperatures. ACS Sustain. Chem.& Eng., 2017, 5, 9640-9644.
[http://dx.doi.org/10.1021/acssuschemeng.7b02756]
[46]
Liu, X.; Li, H.; Zhang, H.; Pan, H.; Huang, S.; Yang, K.; Yang, S. Efficient conversion of furfuryl alcohol to ethyl levulinate with sulfonic acid-functionalized MIL-101 (Cr). RSC Advances, 2016, 6, 90232-90238.
[http://dx.doi.org/10.1039/C6RA19116A]
[47]
He, J.; Yang, S.; Riisager, A. Magnetic nickel ferrite nanoparticles as highly durable catalysts for catalytic transfer hydrogenation of bio-based aldehydes. Catal. Sci. Technol., 2018, 8, 790-797.
[http://dx.doi.org/10.1039/C7CY02197F]
[48]
Li, Y.; Wu, W.; Li, H.; Zhao, W.; Yang, S. Sustainable and rapid production of biofuel γ-valerolactone from biomass-derived levulinate enabled by a fluoride-ionic liquid; Energ; Source Part A, 2019.
[http://dx.doi.org/10.1080/15567036.2019.1632984]
[49]
Li, C.; Xu, G.; Zhai, Y.; Liu, X.; Ma, Y.; Zhang, Y. Hydrogenation of biomass-derived ethyl levulinate into γ-valerolactone by activated carbon supported bimetallic Ni and Fe catalysts. Fuel, 2017, 203, 23-31.
[http://dx.doi.org/10.1016/j.fuel.2017.04.082]
[50]
Long, J.; Zhao, W.; Xu, Y.; Wu, W.; Fang, C.; Li, H.; Yang, S. Low-temperature catalytic hydrogenation of bio-based furfural and relevant aldehydes using cesium carbonate and hydrosiloxane. RSC Advances, 2019, 9, 3063-3071.
[http://dx.doi.org/10.1039/C8RA08616H]
[51]
Tang, X.; Li, Z.; Zeng, X.; Jiang, Y.; Liu, S.; Lei, T.; Sun, Y.; Lin, L. In situ catalytic hydrogenation of biomass-derived methyl levulinate to γ-valerolactone in methanol. ChemSusChem, 2015, 8, 1601-1607.
[http://dx.doi.org/10.1002/cssc.201403392] [PMID: 25873556]
[52]
Bond, J.Q.; Alonso, D.M.; Wang, D.; West, R.M.; Dumesic, J.A. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science, 2010, 327, 1110-1114.
[http://dx.doi.org/10.1126/science.1184362] [PMID: 20185721]
[53]
Yan, K.; Liao, J.; Wu, X.; Xie, X. A noble-metal free Cu-catalyst derived from hydrotalcite for highly efficient hydrogenation of biomass-derived furfural and levulinic acid. RSC Advances, 2013, 3, 3853-3856.
[http://dx.doi.org/10.1039/c3ra22158j]
[54]
Chia, M.; Dumesic, J.A. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts. Chem. Commun. (Camb.), 2011, 47, 12233-12235.
[http://dx.doi.org/10.1039/c1cc14748j] [PMID: 22005944]
[55]
Li, H.; Fang, Z.; He, J.; Yang, S. Orderly layered Zr-benzylphosphonate nanohybrids for efficient acid-base-mediated bifunctional/cascade catalysis. ChemSusChem, 2017, 10, 681-686.
[http://dx.doi.org/10.1002/cssc.201601570] [PMID: 27911042]
[56]
Luque, R. Catalytic biomass processing: prospects in future biorefineries. Curr. Green Chem., 2015, 2, 90-95.
[http://dx.doi.org/10.2174/2213346101666141017231115]
[57]
Song, J.; Zhou, B.; Zhou, H.; Wu, L.; Meng, Q.; Liu, Z.; Han, B. Porous zirconium-phytic acid hybrid: a highly efficient catalyst for Meerwein-Ponndorf-Verley reductions. Angew. Chem. Int. Ed. Engl., 2015, 54, 9399-9403.
[http://dx.doi.org/10.1002/anie.201504001] [PMID: 26177726]
[58]
Neves, P.; Antunes, M.M.; Russo, P.A.; Abrantes, J.P.; Lima, S.; Fernandes, A.; Pillinger, M.; Rocha, S.M.; Ribeiro, M.F.; Valente, A.A. Production of biomass-derived furanic ethers and levulinate esters using heterogeneous acid catalysts. Green Chem., 2013, 15, 3367-3376.
[http://dx.doi.org/10.1039/c3gc41908h]
[59]
Li, H.; Riisager, A.; Saravanamurugan, S.; Pandey, A.; Sangwan, R.S.; Yang, S.; Luque, R. Carbon-increasing catalytic strategies for upgrading biomass into energy-intensive fuels and chemicals. ACS Catal., 2017, 8, 148-187.
[http://dx.doi.org/10.1021/acscatal.7b02577]
[60]
Gürbüz, E.I.; Alonso, D.M.; Bond, J.Q.; Dumesic, J.A. Reactive extraction of levulinate esters and conversion to γ-valerolactone for production of liquid fuels. ChemSusChem, 2011, 4, 357-361.
[http://dx.doi.org/10.1002/cssc.201000396] [PMID: 21394926]
[61]
Unlu, D.; Ilgen, O.; Hilmioglu, N.D. Reactive separation system for effective upgrade of levulinic acid into ethyl levulinate. Chem. Eng. Res. Des., 2017, 118, 248-258.
[http://dx.doi.org/10.1016/j.cherd.2016.12.009]
[62]
Li, H.; Zhang, Q.; Bhadury, P.S.; Yang, S. Furan-type compounds from carbohydrates via heterogeneous catalysis. Curr. Org. Chem., 2014, 18, 547-597.
[http://dx.doi.org/10.2174/13852728113176660138]
[63]
Yan, K.; Jarvis, C.; Gu, J.; Yan, Y. Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels. Renew. Sustain. Energy Rev., 2015, 51, 986-997.
[http://dx.doi.org/10.1016/j.rser.2015.07.021]
[64]
Galletti, A.M.R.; Antonetti, C.; De Luise, V.; Martinelli, M. A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid. Green Chem., 2012, 14, 688-694.
[http://dx.doi.org/10.1039/c2gc15872h]
[65]
Zhang, Z. Synthesis of γ-Valerolactone from Carbohydrates and its Applications. ChemSusChem, 2016, 9, 156-171.
[http://dx.doi.org/10.1002/cssc.201501089] [PMID: 26733161]
[66]
Démolis, A.; Essayem, N.; Rataboul, F. Synthesis and applications of alkyl levulinates. ACS Sustain. Chem.& Eng., 2014, 2, 1338-1352.
[http://dx.doi.org/10.1021/sc500082n]
[67]
Li, H.; Yang, T.; Fang, Z. Biomass-derived mesoporous Hf-containing hybrid for efficient Meerwein-Ponndorf-Verley reduction at low temperatures. Appl. Catal. B, 2018, 227, 79-89.
[http://dx.doi.org/10.1016/j.apcatb.2018.01.017]
[68]
Christensen, E.; Williams, A.; Paul, S.; Burton, S.; McCormick, R.L. Properties and performance of levulinate esters as diesel blend components. Energy Fuels, 2011, 25, 5422-5428.
[http://dx.doi.org/10.1021/ef201229j]
[69]
Li, H.; Zhao, W.; Riisager, A.; Saravanamurugan, S.; Wang, Z.; Fang, Z.; Yang, S. A Pd-Catalyzed in situ domino process for mild and quantitative production of 2, 5-dimethylfuran directly from carbohydrates. Green Chem., 2017, 19, 2101-2106.
[http://dx.doi.org/10.1039/C7GC00580F]
[70]
Kim, J.; Han, J. Simulation study of a strategy to produce gamma-valerolactone from ethyl levulinate. Energ., 2018, 163, 986-991.
[http://dx.doi.org/10.1016/j.energy.2018.08.170]
[71]
Fegyverneki, D.; Orha, L.; Láng, G.; Horváth, I.T. Gamma-valerolactone-based solvents. Tetrahedron, 2010, 66, 1078-1081.
[http://dx.doi.org/10.1016/j.tet.2009.11.013]
[72]
Wettstein, S.G.; Alonso, D.M.; Chong, Y.; Dumesic, J.A. Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems. Energy Environ. Sci., 2012, 5, 8199-8203.
[http://dx.doi.org/10.1039/c2ee22111j]
[73]
Galletti, A.M.R.; Antonetti, C.; Ribechini, E.; Colombini, M.P.; Di Nasso, N.N.; Bonari, E. From giant reed to levulinic acid and gamma-valerolactone: a high yield catalytic route to valeric biofuels. Appl. Energy, 2013, 102, 157-162.
[http://dx.doi.org/10.1016/j.apenergy.2012.05.061]
[74]
Tukacs, J.M.; Fridrich, B.; Dibó, G.; Székely, E.; Mika, L.T. Direct asymmetric reduction of levulinic acid to gamma-valerolactone: synthesis of a chiral platform molecule. Green Chem., 2015, 17, 5189-5195.
[http://dx.doi.org/10.1039/C5GC01099C]
[75]
Fábos, V.; Lui, M.Y.; Mui, Y.F.; Wong, Y.Y.; Mika, L.T.; Qi, L.; Cséfalvay, E.; Kovács, V.; Szűcs, T.; Horváth, I.T. Use of gamma-valerolactone as an illuminating liquid and lighter fluid. ACS Sustain. Chem.& Eng., 2015, 3, 1899-1904.
[http://dx.doi.org/10.1021/acssuschemeng.5b00465]
[76]
Li, H.; Fang, Z.; Smith, R.L., Jr; Yang, S. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Pror. Energy Combust. Sci., 2016, 55, 98-194.
[http://dx.doi.org/10.1016/j.pecs.2016.04.004]
[77]
Wong, C.Y.Y.; Choi, A.W.T.; Lui, M.Y.; Fridrich, B.; Horváth, A.K.; Mika, L.T.; Horváth, I.T. Stability of gamma-valerolactone under neutral, acidic, and basic conditions. Struct. Chem., 2017, 28, 423-429.
[http://dx.doi.org/10.1007/s11224-016-0887-6]
[78]
Zakzeski, J.; Jongerius, A.L.; Bruijnincx, P.C.; Weckhuysen, B.M. Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen. ChemSusChem, 2012, 5, 1602-1609.
[http://dx.doi.org/10.1002/cssc.201100699] [PMID: 22740175]
[79]
Huber, G.W.; Cortright, R.D.; Dumesic, J.A. Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. Angew. Chem. Int. Ed. Engl., 2004, 43, 1549-1551.
[http://dx.doi.org/10.1002/anie.200353050] [PMID: 15022230]
[80]
Li, X.; Guan, B.Y.; Gao, S.; Lou, X.W.D. A general dual-templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction. Energy Environ. Sci., 2019, 12, 648-655.
[http://dx.doi.org/10.1039/C8EE02779J]
[81]
Wu, W.; Li, Y.; Li, H.; Zhao, W.; Yang, S. Acid-base bifunctional hf nanohybrids enable high selectivity in the catalytic conversion of ethyl levulinate to γ-valerolactone. Catalysts, 2018, 8, 264.
[http://dx.doi.org/10.3390/catal8070264]
[82]
Long, J.; Zhao, W.; Xu, Y.; Li, H.; Yang, S. Carbonate-catalyzed room-temperature selective reduction of biomass-derived 5-hydroxymethylfurfural into 2, 5-bis (hydroxymethyl) furan. Catalysts, 2018, 8, 633.
[http://dx.doi.org/10.3390/catal8120633]
[83]
Peng, L.; Lin, L.; Zhang, J.; Shi, J.; Liu, S. Solid acid catalyzed glucose conversion to ethyl levulinate. Appl. Catal. A Gen., 2011, 397, 259-265.
[http://dx.doi.org/10.1016/j.apcata.2011.03.008]
[84]
Joshi, H.; Moser, B.R.; Toler, J.; Smith, W.F.; Walker, T. Ethyl levulinate: A potential bio-based diluent for biodiesel which improves cold flow properties. Biomass Bioenergy, 2011, 35, 3262-3266.
[http://dx.doi.org/10.1016/j.biombioe.2011.04.020]
[85]
Fernandes, D.R.; Rocha, A.S.; Mai, E.F.; Mota, C.J.; Da Silva, V.T. Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Appl. Catal. A Gen., 2012, 425, 199-204.
[http://dx.doi.org/10.1016/j.apcata.2012.03.020]
[86]
Brand, S.; Susanti, R.F.; Kim, S.K.; Lee, H.S.; Kim, J.; Sang, B.I. Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction: influence of physical process parameters. Energ., 2013, 59, 173-182.
[http://dx.doi.org/10.1016/j.energy.2013.06.049]
[87]
Besse, X.; Schuurman, Y.; Guilhaume, N. Hydrothermal conversion of linoleic acid and ethanol for biofuel production. Appl. Catal. A Gen., 2016, 524, 139-148.
[http://dx.doi.org/10.1016/j.apcata.2016.06.030]
[88]
Do, T.X.; Prajitno, H.; Lim, Y.I.; Kim, J. Process modeling and economic analysis for bio-heavy-oil production from sewage sludge using supercritical ethanol and methanol. J. Supercrit. Fluids, 2019, 150, 137-146.
[http://dx.doi.org/10.1016/j.supflu.2019.05.001]
[89]
Prajitno, H.; Insyani, R.; Park, J.; Ryu, C.; Kim, J. Non-catalytic upgrading of fast pyrolysis bio-oil in supercritical ethanol and combustion behavior of the upgraded oil. Appl. Energy, 2016, 172, 12-22.
[http://dx.doi.org/10.1016/j.apenergy.2016.03.093]
[90]
Isa, K.M.; Abdullah, T.A.T.; Ali, U.F.M. Hydrogen donor solvents in liquefaction of biomass: A review. Renew. Sustain. Energy Rev., 2018, 81, 1259-1268.
[http://dx.doi.org/10.1016/j.rser.2017.04.006]
[91]
Tang, X.; Hu, L.; Sun, Y.; Zhao, G.; Hao, W.; Lin, L. Conversion of biomass-derived ethyl levulinate into γ-valerolactone via hydrogen transfer from supercritical ethanol over a ZrO2 catalyst. RSC Advances, 2013, 3, 10277-10284.
[http://dx.doi.org/10.1039/c3ra41288a]
[92]
Li, H.; Fang, Z.; Yang, S. Direct conversion of sugars and ethyl levulinate into γ-valerolactone with superparamagnetic acid-base bifunctional ZrFeOx nanocatalysts. ACS Sustain. Chem.& Eng., 2015, 4, 236-246.
[http://dx.doi.org/10.1021/acssuschemeng.5b01480]
[93]
Hu, J.; Zhang, S.; Xiao, R.; Jiang, X.; Wang, Y.; Sun, Y.; Lu, P. Catalytic transfer hydrogenolysis of lignin into monophenols over platinum-rhenium supported on titanium dioxide using isopropanol as in situ hydrogen source. Bioresour. Technol., 2019, 279, 228-233.
[http://dx.doi.org/10.1016/j.biortech.2019.01.132] [PMID: 30735932]
[94]
Philippov, A.A.; Chibiryaev, A.M.; Martyanov, O.N. Base-free transfer hydrogenation of menthone by sub-and supercritical alcohols. J. Supercrit. Fluids, 2019, 145, 162-168.
[http://dx.doi.org/10.1016/j.supflu.2018.12.011]
[95]
Szőllősi, G.; Kolcsár, V.J. Highly enantioselective transfer hydrogenation of prochiral ketones using Ru (II)-chitosan catalyst in aqueous media. ChemCatChem, 2019, 11, 820-830.
[http://dx.doi.org/10.1002/cctc.201801602]
[96]
Bai, B.; Jin, H.; Zhu, S.; Wu, P.; Fan, C.; Sun, J. Experimental investigation on in-situ hydrogenation induced gasification characteristics of acrylonitrile butadiene styrene (ABS) microplastics in supercritical water. Fuel Process. Technol., 2019, 192, 170-178.
[http://dx.doi.org/10.1016/j.fuproc.2019.04.020]
[97]
Kuwahara, Y.; Kaburagi, W.; Fujitani, T. Catalytic conversion of levulinic acid and its esters to γ-valerolactone over silica-supported zirconia catalysts. Bull. Chem. Soc. Jpn., 2014, 87, 1252-1254.
[http://dx.doi.org/10.1246/bcsj.20140205]
[98]
Tang, X.; Chen, H.; Hu, L.; Hao, W.; Sun, Y.; Zeng, X.; Lin, L.; Liu, S. Conversion of biomass to γ-valerolactone by catalytic transfer hydrogenation of ethyl levulinate over metal hydroxides. Appl. Catal. B, 2014, 147, 827-834.
[http://dx.doi.org/10.1016/j.apcatb.2013.10.021]
[99]
Song, J.; Wu, L.; Zhou, B.; Zhou, H.; Fan, H.; Yang, Y.; Meng, Q.; Han, B. A new porous Zr-containing catalyst with a phenate group: An efficient catalyst for the catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone. Green Chem., 2015, 17, 1626-1632.
[http://dx.doi.org/10.1039/C4GC02104E]
[100]
Li, H.; Fang, Z.; Yang, S. Direct catalytic transformation of biomass derivatives into biofuel component γ-valerolactone with magnetic nickel-zirconium nanoparticles. ChemPlusChem, 2016, 81, 135-142.
[http://dx.doi.org/10.1002/cplu.201500492]
[101]
He, J.; Li, H.; Liu, Y.; Zhao, W.; Yang, T.; Xue, W.; Yang, S. Catalytic transfer hydrogenation of ethyl levulinate into γ-valerolactone over mesoporous Zr/B mixed oxides. J. Ind. Eng. Chem., 2016, 43, 133-141.
[http://dx.doi.org/10.1016/j.jiec.2016.07.059]
[102]
He, J.; Li, H.; Lu, Y.M.; Liu, Y.X.; Wu, Z.B.; Hu, D.Y.; Yang, S. Cascade catalytic transfer hydrogenation-cyclization of ethyl levulinate to γ-valerolactone with Al-Zr mixed oxides. Appl. Catal. A Gen., 2016, 510, 11-19.
[http://dx.doi.org/10.1016/j.apcata.2015.10.049]
[103]
Kuwahara, Y.; Kaburagi, W.; Fujitani, T. Catalytic transfer hydrogenation of levulinate esters to γ-valerolactone over supported ruthenium hydroxide catalysts. RSC Advances, 2014, 4, 45848-45855.
[http://dx.doi.org/10.1039/C4RA08074B]
[104]
Amarasekara, A.S.; Hasan, M.A. Pd/C catalyzed conversion of levulinic acid to γ-valerolactone using alcohol as a hydrogen donor under microwave conditions. Catal. Commun., 2015, 60, 5-7.
[http://dx.doi.org/10.1016/j.catcom.2014.11.009]
[105]
Dai, N.; Shang, R.; Fu, M.; Fu, Y. Transfer hydrogenation of ethyl levulinate to γ-valerolactone catalyzed by iron complexes. Chin. J. Chem., 2015, 33, 405-408.
[http://dx.doi.org/10.1002/cjoc.201500035]
[106]
Xie, Y.; Li, F.; Wang, J.; Wang, R.; Wang, H.; Liu, X.; Xia, Y. Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over a novel porous Zirconium trimetaphosphate. Mol. Catal., 2017, 442, 107-114.
[http://dx.doi.org/10.1016/j.mcat.2017.09.011]
[107]
Rojas-Buzo, S.; García-García, P.; Corma, A. Catalytic trasfer hydrogenation of biomass‐derived carbonyls over Hafnium‐based metal-organic frameworks. ChemSusChem, 2018, 11, 432-438.
[http://dx.doi.org/10.1002/cssc.201701708] [PMID: 29139603]
[108]
Guo, H.; Hiraga, Y.; Qi, X.; Smith, R.L. Jr Hydrogen gas-free processes for single-step preparation of transition-metal bifunctional catalysts and one-pot γ-valerolactone synthesis in supercritical CO2-ionic liquid systems. J. Supercrit. Fluids, 2019, 147, 263-270.
[http://dx.doi.org/10.1016/j.supflu.2018.11.010]
[109]
Dutta, S.; Iris, K.M.; Tsang, D.C.; Ng, Y.H.; Ok, Y.S.; Sherwood, J.; Clark, J.H. Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: A critical review. Chem. Eng. J., 2019, 372, 992-1006.
[http://dx.doi.org/10.1016/j.cej.2019.04.199]
[110]
Shafaghat, H.; Tsang, Y.F.; Jeon, J.K.; Kim, J.M.; Kim, Y.; Kim, S.; Park, Y.K. In-situ hydrogenation of bio-oil/bio-oil phenolic compounds with secondary alcohols over a synthesized mesoporous Ni/CeO2 catalyst. Chem. Eng. J., 2019, 382122912
[http://dx.doi.org/10.1016/j.cej.2019.122912]]
[111]
Tabanelli, T.; Paone, E.; Blair Vasquez, P.; Pietropaolo, R.; Cavani, F.; Mauriello, F. Transfer hydrogenation of methyl and ethyl levulinate promoted by a ZrO2 catalyst: a comparison of batch vs continuous gas-flow conditions. ACS Sustain. Chem.& Eng., 2019, 7, 9937-9947.
[http://dx.doi.org/10.1021/acssuschemeng.9b00778]
[112]
Cai, B.; Zhou, X.C.; Miao, Y.C.; Luo, J.Y.; Pan, H.; Huang, Y.B. Enhanced catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over a robust Cu-Ni bimetallic catalyst. ACS Sustain. Chem.& Eng., 2016, 5, 1322-1331.
[http://dx.doi.org/10.1021/acssuschemeng.6b01677]