Natural Products as a Paradigm for the Treatment of Coxsackievirus - induced Myocarditis

Page: [607 - 616] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Coxsackievirus B3 (CVB3), a member of the Picornaviridae family, is considered to be one of the most important infectious agents to cause virus-induced myocarditis. Despite improvements in studying viral pathology, structure and molecular biology, as well as diagnosis of this disease, there is still no virus-specific drug in clinical use. Structural and nonstructural proteins produced during the coxsackievirus life cycle have been identified as potential targets for blocking viral replication at the step of attachment, entry, uncoating, RNA and protein synthesis by synthetic or natural compounds. Moreover, WIN (for Winthrop) compounds and application of nucleic-acid based strategies were shown to target viral capsid, entry and viral proteases, but have not reached to the clinical trials as a successful antiviral agent. There is an urgent need for diverse molecular libraries for phenotype-selective and high-throughput screening.

Keywords: Natural Products, Coxsackievirus, Myocarditis, Picornaviridae, Viral pathology, Antiviral agent.

Graphical Abstract

[1]
Khetsuriani, N.; Lamonte-Fowlkes, A.; Oberst, S.; Pallansch, M.A. Centers for disease control and prevention. enterovirus surveillance--United States, 1970-2005. MMWR Surveill. Summ., 2006, 55(8), 1-20.
[PMID: 16971890]
[2]
Lipshultz, S.E.; Sleeper, L.A.; Towbin, J.A.; Lowe, A.M.; Orav, E.J.; Cox, G.F.; Lurie, P.R.; McCoy, K.L.; McDonald, M.A.; Messere, J.E.; Colan, S.D. The incidence of pediatric cardiomyopathy in two regions of the United States. N. Engl. J. Med., 2003, 348(17), 1647-1655.
[http://dx.doi.org/10.1056/NEJMoa021715] [PMID: 12711739]
[3]
Liu, Z.; Yuan, J.; Yanagawa, B.; Qiu, D.; McManus, B.M.; Yang, D. Coxsackievirus-induced myocarditis: new trends in treatment. Expert Rev. Anti Infect. Ther., 2005, 3(4), 641-650.
[http://dx.doi.org/10.1586/14787210.3.4.641] [PMID: 16107202]
[4]
Decheng, Y. Nucleic acid-based strategies for the treatment of coxsackievirus-induced myocarditis In: Myocarditis; IntechOpen: London,, 2011.
[5]
Patwardhan, B. Ethnopharmacology and drug discovery. J. Ethnopharmacol., 2005, 100(1-2), 50-52.
[http://dx.doi.org/10.1016/j.jep.2005.06.006] [PMID: 16023811]
[6]
Cordell, G.A.; Colvard, M.D. Some thoughts on the future of ethnopharmacology. J. Ethnopharmacol., 2005, 100(1-2), 5-14.
[http://dx.doi.org/10.1016/j.jep.2005.05.027] [PMID: 16009517]
[7]
Evans, D.J.; Almond, J.W. Cell receptors for picornaviruses as determinants of cell tropism and pathogenesis. Trends Microbiol., 1998, 6(5), 198-202.
[http://dx.doi.org/10.1016/S0966-842X(98)01263-3] [PMID: 9614344]
[8]
Makarov, V.A.; Riabova, O.B.; Granik, V.G.; Wutzler, P.; Schmidtke, M. Novel [(biphenyloxy) propyl]isoxazole derivatives for inhibition of human rhinovirus 2 and coxsackievirus B3 replication. J. Antimicrob. Chemother., 2005, 55(4), 483-488.
[http://dx.doi.org/10.1093/jac/dki055]
[9]
Fohlman, J.; Pauksen, K.; Hyypiä, T.; Eggertsen, G.; Ehrnst, A.; Ilbäck, N.G.; Friman, G. Antiviral treatment with WIN 54 954 reduces mortality in murine coxsackievirus B3 myocarditis. Circulation, 1996, 94(9), 2254-2259.
[http://dx.doi.org/10.1161/01.CIR.94.9.2254] [PMID: 8901680]
[10]
See, D.M.; Tilles, J.G. Efficacy of a polyvalent inactivated-virus vaccine in protecting mice from infection with clinical strains of group B coxsackieviruses. Scand. J. Infect. Dis., 1994, 26(6), 739-747.
[http://dx.doi.org/10.3109/00365549409008644] [PMID: 7747099]
[11]
Fohlman, J.; Pauksen, K.; Morein, B.; Bjare, U.; Ilbäck, N.G.; Friman, G. High yield production of an inactivated coxsackie B3 adjuvant vaccine with protective effect against experimental myocarditis. Scand. J. Infect. Dis. Suppl., 1993, 88, 103-108.
[PMID: 8390713]
[12]
Dan, M.; Chantler, J.K. A genetically engineered attenuated coxsackievirus B3 strain protects mice against lethal infection. J. Virol., 2005, 79(14), 9285-9295.
[http://dx.doi.org/10.1128/JVI.79.14.9285-9295.2005] [PMID: 15994822]
[13]
Henke, A.; Wagner, E.; Whitton, J.L.; Zell, R.; Stelzner, A. Protection of mice against lethal coxsackievirus B3 infection by using DNA immunization. J. Virol., 1998, 72(10), 8327-8331.
[http://dx.doi.org/10.1128/JVI.72.10.8327-8331.1998] [PMID: 9733878]
[14]
Hunziker, I.P.; Harkins, S.; Feuer, R.; Cornell, C.T.; Whitton, J.L. Generation and analysis of an RNA vaccine that protects against coxsackievirus B3 challenge. Virology, 2004, 330(1), 196-208.
[http://dx.doi.org/10.1016/j.virol.2004.09.035] [PMID: 15527846]
[15]
Hafenstein, S.; Bowman, V.D.; Chipman, P.R.; Bator Kelly, C.M.; Lin, F.; Medof, M.E.; Rossmann, M.G. Interaction of decay-accelerating factor with coxsackievirus B3. J. Virol., 2007, 81(23), 12927-12935.
[http://dx.doi.org/10.1128/JVI.00931-07] [PMID: 17804498]
[16]
Bergelson, J.M.; Mohanty, J.G.; Crowell, R.L.; St John, N.F.; Lublin, D.M.; Finberg, R.W. Coxsackievirus B3 adapted to growth in RD cells binds to decay-accelerating factor (CD55). J. Virol., 1995, 69(3), 1903-1906.
[http://dx.doi.org/10.1128/JVI.69.3.1903-1906.1995] [PMID: 7531780]
[17]
Shafren, D.R.; Bates, R.C.; Agrez, M.V.; Herd, R.L.; Burns, G.F.; Barry, R.D. Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment. J. Virol., 1995, 69(6), 3873-3877.
[http://dx.doi.org/10.1128/JVI.69.6.3873-3877.1995] [PMID: 7538177]
[18]
Andries, K.; Dewindt, B.; Snoeks, J.; Willebrords, R.; van Eemeren, K.; Stokbroekx, R.; Janssen, P.A. In vitro activity of pirodavir (R 77975), a substituted phenoxy-pyridazinamine with broad-spectrum antipicornaviral activity. Antimicrob. Agents Chemother., 1992, 36(1), 100-107.
[http://dx.doi.org/10.1128/AAC.36.1.100] [PMID: 1317142]
[19]
Rozhon, E.; Cox, S.; Buontempo, P.; O’Connell, J.; Slater, W.; De Martino, J.; Schwartz, J.; Miller, G.; Arnold, E.; Zhang, A. SCH 38057: a picornavirus capsid-binding molecule with antiviral activity after the initial stage of viral uncoating. Antiviral Res., 1993, 21(1), 15-35.
[http://dx.doi.org/10.1016/0166-3542(93)90064-P] [PMID: 8391247]
[20]
De Palma, A.M.; Vliegen, I.; De Clercq, E.; Neyts, J. Selective inhibitors of picornavirus replication. Med. Res. Rev., 2008, 28(6), 823-884.
[http://dx.doi.org/10.1002/med.20125] [PMID: 18381747]
[21]
Shih, S.R.; Chen, S.J.; Hakimelahi, G.H.; Liu, H.J.; Tseng, C.T.; Shia, K.S. Selective human enterovirus and rhinovirus inhibitors: An overview of capsid-binding and protease-inhibiting molecules. Med. Res. Rev., 2004, 24(4), 449-474.
[http://dx.doi.org/10.1002/med.10067] [PMID: 15170592]
[22]
Diana, G.D.; Cutcliffe, D.; Volkots, D.L.; Mallamo, J.P.; Bailey, T.R.; Vescio, N.; Oglesby, R.C.; Nitz, T.J.; Wetzel, J.; Giranda, V.; Pevear, D.C.; Dutko, F.J. Antipicornavirus activity of tetrazole analogues related to disoxaril. J. Med. Chem., 1993, 36(22), 3240-3250.
[http://dx.doi.org/10.1021/jm00074a004] [PMID: 8230114]
[23]
Diana, G.D.; Volkots, D.L.; Nitz, T.J.; Bailey, T.R.; Long, M.A.; Vescio, N.; Aldous, S.; Pevear, D.C.; Dutko, F.J. Oxadiazoles as ester bioisosteric replacements in compounds related to disoxaril. Antirhinovirus activity. J. Med. Chem., 1994, 37(15), 2421-2436.
[http://dx.doi.org/10.1021/jm00041a022] [PMID: 8057290]
[24]
Prasad, S.C.; Roy, I. Nucleic acid based therapeutic molecules. CRIPS, 2008, 9, 49-55.
[http://dx.doi.org/10.1021/jf1033202] [PMID: 20964424]
[25]
Yang, D.; Wilson, J.E.; Anderson, D.R.; Bohunek, L.; Cordeiro, C.; Kandolf, R.; McManus, B.M. In vitro mutational and inhibitory analysis of the cis-acting translational elements within the 5′ untranslated region of coxsackievirus B3: potential targets for antiviral action of antisense oligomers. Virology, 1997, 228(1), 63-73.
[http://dx.doi.org/10.1006/viro.1996.8366] [PMID: 9024810]
[26]
Wang, A.; Cheung, P.K.; Zhang, H.; Carthy, C.M.; Bohunek, L.; Wilson, J.E.; McManus, B.M.; Yang, D. Specific inhibition of coxsackievirus B3 translation and replication by phosphorothioate antisense oligodeoxynucleotides. Antimicrob. Agents Chemother., 2001, 45(4), 1043-1052.
[http://dx.doi.org/10.1128/AAC.45.4.1043-1052.2001] [PMID: 11257014]
[27]
Yuan, J.; Cheung, P.K.; Zhang, H.; Chau, D.; Yanagawa, B.; Cheung, C.; Luo, H.; Wang, Y.; Suarez, A.; McManus, B.M.; Yang, D. A phosphorothioate antisense oligodeoxynucleotide specifically inhibits coxsackievirus B3 replication in cardiomyocytes and mouse hearts. Lab. Invest., 2004, 84(6), 703-714.
[http://dx.doi.org/10.1038/labinvest.3700083] [PMID: 15094712]
[28]
Cong, Z.; Wan, M.; Wu, X.; Wang, L.; Hu, X.; Yang, F.; Bao, M.; Zhang, X.; Chen, J.; Wang, L.; Yu, Y. A CpG oligodeoxynucleotide inducing anti-coxsackie B3 virus activity in human peripheral blood mononuclear cells. FEMS Immunol. Med. Microbiol., 2007, 51(1), 26-34.
[http://dx.doi.org/10.1111/j.1574-695X.2007.00266.x] [PMID: 17608709]
[29]
Rajput, R.; Khanna, M.; Kumar, P.; Kumar, B.; Sharma, S.; Gupta, N.; Saxena, L. siRNA targeting the nonstructural gene (NS1) transcript inhibits influenza A virus replication in experimental mice. Nucleic Acid Ther., 2012, 22(6), 414-422.
[http://dx.doi.org/10.1089/nat.2012.0359] [PMID: 23062009]
[30]
Kumar, P.; Kumar, B.; Rajput, R.; Saxena, L.; Banerjea, A.C.; Khanna, M. Cross-protective effect of antisense oligonucleotide developed against the common 3′ NCR of influenza A virus genome. Mol. Biotechnol., 2013, 55(3), 203-211.
[http://dx.doi.org/10.1007/s12033-013-9670-8] [PMID: 23729285]
[31]
Merl, S.; Wessely, R. Anti-coxsackieviral efficacy of RNA interference is highly dependent on genomic target selection and emergence of escape mutants. Oligonucleotides, 2007, 17(1), 44-53.
[http://dx.doi.org/10.1089/oli.2007.0057] [PMID: 17461762]
[32]
Racchi, G.; Klingel, K.; Kandolf, R.; Grassi, G. Targeting of protease 2A genome by single and multiple siRNAs as a strategy to impair CVB3 life cycle in permissive HeLa cells. Methods Find. Exp. Clin. Pharmacol., 2009, 31(2), 63-70.
[http://dx.doi.org/10.1358/mf.2009.31.2.1354129]
[33]
Zhang, H.M.; Su, Y.; Guo, S.; Yuan, J.; Lim, T.; Liu, J.; Guo, P.; Yang, D. Targeted delivery of anti-coxsackievirus siRNAs using ligand-conjugated packaging RNAs. Antiviral Res., 2009, 83(3), 307-316.
[http://dx.doi.org/10.1016/j.antiviral.2009.07.005] [PMID: 19616030]
[34]
Ye, X.; Liu, Z.; Hemida, M.G.; Yang, D. Targeted delivery of mutant tolerant anti-coxsackievirus artificial microRNAs using folate conjugated bacteriophage Phi29 pRNA. PLoS One, 2011, 6(6)e21215
[http://dx.doi.org/10.1371/journal.pone.0021215] [PMID: 21698212]
[35]
Werk, D.; Pinkert, S.; Heim, A.; Zeichhardt, H.; Grunert, H.P.; Poller, W.; Erdmann, V.A.; Fechner, H.; Kurreck, J. Combination of soluble coxsackievirus-adenovirus receptor and anti-coxsackievirus siRNAs exerts synergistic antiviral activity against coxsackievirus B3. Antiviral Res., 2009, 83(3), 298-306.
[http://dx.doi.org/10.1016/j.antiviral.2009.07.002] [PMID: 19591879]
[36]
Yuan, J.; Cheung, P.K.; Zhang, H.M.; Chau, D.; Yang, D. Inhibition of coxsackievirus B3 replication by small interfering RNAs requires perfect sequence match in the central region of the viral positive strand. J. Virol., 2005, 79(4), 2151-2159.
[http://dx.doi.org/10.1128/JVI.79.4.2151-2159.2005] [PMID: 15681418]
[37]
Merl, S.; Michaelis, C.; Jaschke, B.; Vorpahl, M.; Seidl, S.; Wessely, R. Targeting 2A protease by RNA interference attenuates coxsackieviral cytopathogenicity and promotes survival in highly susceptible mice. Circulation, 2005, 111(13), 1583-1592.
[http://dx.doi.org/10.1161/01.CIR.0000160360.02040.AB] [PMID: 15795330]
[38]
Ahn, J.; Jun, E.S.; Lee, H.S.; Yoon, S.Y.; Kim, D.; Joo, C.H.; Kim, Y.K.; Lee, H. A small interfering RNA targeting coxsackievirus B3 protects permissive HeLa cells from viral challenge. J. Virol., 2005, 79(13), 8620-8624.
[http://dx.doi.org/10.1128/JVI.79.13.8620-8624.2005] [PMID: 15956603]
[39]
Gautam, A. Progress in targeted delivery of siRNA to combat Coxsackievirus. Protein Cell, 2011, 2(11), 855-857.
[http://dx.doi.org/10.1007/s13238-011-1124-0] [PMID: 22180083]
[40]
Schubert, S.; Grunert, H.P.; Zeichhardt, H.; Werk, D.; Erdmann, V.A.; Kurreck, J. Maintaining inhibition: siRNA double expression vectors against coxsackieviral RNAs. J. Mol. Biol., 2005, 346(2), 457-465.
[http://dx.doi.org/10.1016/j.jmb.2004.11.074] [PMID: 15670596]
[41]
Schubert, S.; Rothe, D.; Werk, D.; Grunert, H.P.; Zeichhardt, H.; Erdmann, V.A.; Kurreck, J. Strand-specific silencing of a picornavirus by RNA interference: evidence for the superiority of plus-strand specific siRNAs. Antiviral Res., 2007, 73(3), 197-205.
[http://dx.doi.org/10.1016/j.antiviral.2006.10.005] [PMID: 17112603]
[42]
Werk, D.; Schubert, S.; Lindig, V.; Grunert, H.P.; Zeichhardt, H.; Erdmann, V.A.; Kurreck, J. Developing an effective RNA interference strategy against a plus-strand RNA virus: silencing of coxsackievirus B3 and its cognate coxsackievirus-adenovirus receptor. Biol. Chem., 2005, 386(9), 857-863.
[http://dx.doi.org/10.1515/BC.2005.100] [PMID: 16164410]
[43]
Zuo, J.; Quinn, K.K.; Kye, S.; Cooper, P.; Damoiseaux, R.; Krogstad, P. Fluoxetine is a potent inhibitor of coxsackievirus replication. Antimicrob. Agents Chemother., 2012, 56(9), 4838-4844.
[http://dx.doi.org/10.1128/AAC.00983-12] [PMID: 22751539]
[44]
Maghsoudi, N.; Tafreshi, N.K.; Khodagholi, F.; Zakeri, Z.; Esfandiarei, M.; Hadi-Alijanvand, H.; Sabbaghian, M.; Maghsoudi, A.H.; Sajadi, M.; Zohri, M.; Moosavi, M.; Zeinoddini, M. Targeting enteroviral 2A protease by a 16-mer synthetic peptide: inhibition of 2Apro-induced apoptosis in a stable Tet-on HeLa cell line. Virology, 2010, 399(1), 39-45.
[http://dx.doi.org/10.1016/j.virol.2009.12.017] [PMID: 20096913]
[45]
Dragovich, P.S.; Prins, T.J.; Zhou, R.; Webber, S.E.; Marakovits, J.T.; Fuhrman, S.A.; Patick, A.K.; Matthews, D.A.; Lee, C.A.; Ford, C.E.; Burke, B.J.; Rejto, P.A.; Hendrickson, T.F.; Tuntland, T.; Brown, E.L.; Meador, J.W., III; Ferre, R.A.; Harr, J.E.; Kosa, M.B.; Worland, S.T. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 4. Incorporation of P1 lactam moieties as L-glutamine replacements. J. Med. Chem., 1999, 42(7), 1213-1224.
[http://dx.doi.org/10.1021/jm9805384] [PMID: 10197965]
[46]
Matthews, D.A.; Dragovich, P.S.; Webber, S.E.; Fuhrman, S.A.; Patick, A.K.; Zalman, L.S.; Hendrickson, T.F.; Love, R.A.; Prins, T.J.; Marakovits, J.T.; Zhou, R.; Tikhe, J.; Ford, C.E.; Meador, J.W.; Ferre, R.A.; Brown, E.L.; Binford, S.L.; Brothers, M.A.; DeLisle, D.M.; Worland, S.T. Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. Proc. Natl. Acad. Sci. USA, 1999, 96(20), 11000-11007.
[http://dx.doi.org/10.1073/pnas.96.20.11000] [PMID: 10500114]
[47]
Patick, A.K.; Binford, S.L.; Brothers, M.A.; Jackson, R.L.; Ford, C.E.; Diem, M.D.; Maldonado, F.; Dragovich, P.S.; Zhou, R.; Prins, T.J.; Fuhrman, S.A.; Meador, J.W.; Zalman, L.S.; Matthews, D.A.; Worland, S.T. In vitro antiviral activity of AG7088, a potent inhibitor of human rhinovirus 3C protease. Antimicrob. Agents Chemother., 1999, 43(10), 2444-2450.
[http://dx.doi.org/10.1128/AAC.43.10.2444] [PMID: 10508022]
[48]
Wanga, Q.M.; Chen, S.H. Human rhinovirus 3C protease as a potential target for the development of antiviral agents. Curr. Protein Pept. Sci., 2007, 8(1), 19-27.
[http://dx.doi.org/10.2174/138920307779941523] [PMID: 17305557]
[49]
Ramajayam, R.; Tan, K.P.; Liu, H.G.; Liang, P.H. Synthesis and evaluation of pyrazolone compounds as SARS-coronavirus 3C-like protease inhibitors. Bioorg. Med. Chem., 2010, 18(22), 7849-7854.
[http://dx.doi.org/10.1016/j.bmc.2010.09.050] [PMID: 20947359]
[50]
Kuo, C.J.; Liu, H.G.; Lo, Y.K.; Seong, C.M.; Lee, K.I.; Jung, Y.S.; Liang, P.H. Individual and common inhibitors of coronavirus and picornavirus main proteases. FEBS Lett., 2009, 583(3), 549-555.
[http://dx.doi.org/10.1016/j.febslet.2008.12.059] [PMID: 19166843]
[51]
Ford Siltz, L.A.; Viktorova, E.G.; Zhang, B.; Kouiavskaia, D.; Dragunsky, E.; Chumakov, K.; Isaacs, L.; Belov, G.A. New small-molecule inhibitors effectively blocking picornavirus replication. J. Virol., 2014, 88(19), 11091-11107.
[http://dx.doi.org/10.1128/JVI.01877-14] [PMID: 25008939]
[52]
Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery. Nat. Prod. Rep., 2000, 17(3), 215-234.
[http://dx.doi.org/10.1039/a902202c] [PMID: 10888010]
[53]
Newman, D.J.; Cragg, G.M.; Holbeck, S.; Sausville, E.A. Natural products and derivatives as leads to cell cycle pathway targets in cancer chemotherapy. Curr. Cancer Drug Targets, 2002, 2(4), 279-308.
[http://dx.doi.org/10.2174/1568009023333791] [PMID: 12470208]
[54]
Bérdy, J. Bioactive microbial metabolites. J. Antibiot. (Tokyo), 2005, 58(1), 1-26.
[http://dx.doi.org/10.1038/ja.2005.1] [PMID: 15813176]
[55]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[56]
Hayashi, T.; Hayashi, K.; Maeda, M.; Kojima, I. Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J. Nat. Prod., 1996, 59(1), 83-87.
[http://dx.doi.org/10.1021/np960017o] [PMID: 8984158]
[57]
Choi, H.J.; Song, J.H.; Lim, C.H.; Baek, S.H.; Kwon, D.H. Antiviral activity of raoulic acid from Raoulia australis against Picornaviruses. J. Med. Food, 2010, 13(2), 326-328.
[http://dx.doi.org/10.1089/jmf.2009.1149] [PMID: 20412019]
[58]
Tait, S.; Salvati, A.L.; Desideri, N.; Fiore, L. Antiviral activity of substituted homoisoflavonoids on enteroviruses. Antiviral Res., 2006, 72(3), 252-255.
[http://dx.doi.org/10.1016/j.antiviral.2006.07.003] [PMID: 16934879]
[59]
Zhang, Y.; Zhu, H.; Huang, C.; Cui, X.; Gao, Y.; Huang, Y.; Gong, W.; Zhao, Y.; Guo, S. Astragaloside IV exerts antiviral effects against coxsackievirus B3 by upregulating interferon-gamma. J. Cardiovasc. Pharmacol., 2006, 47(2), 190-195.
[60]
Wang, Y.F.; Wang, X.Y.; Ren, Z.; Qian, C.W.; Li, Y.C.; Kaio, K.; Wang, Q.D.; Zhang, Y.; Zheng, L.Y.; Jiang, J.H.; Yang, C.R.; Liu, Q.; Zhang, Y.J.; Wang, Y.F. Phyllaemblicin B inhibits Coxsackie virus B3 induced apoptosis and myocarditis. Antiviral Res., 2009, 84(2), 150-158.
[61]
Zhao, Z.; Wang, W.; Wang, F.; Zhao, K.; Han, Y.; Xu, W.; Tang, L. Effects of Astragaloside IV on heart failure in rats. Chin. Med., 2009, 4, 6.
[http://dx.doi.org/10.1186/1749-8546-4-6] [PMID: 19338675]
[62]
Ye, G.; Tang, Y.H.; Xia, G.X.; Sun, Z.L.; Li, Z.X.; Huang, C.G. Characterization of anti-Coxsackie virus B3 constituents of Radix Astragali by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Biomed. Chromatogr., 2010, 24(11), 1147-1151.
[http://dx.doi.org/10.1002/bmc.1400] [PMID: 20120039]
[63]
Xu, X.; Xie, H.; Wang, Y.; Wei, X. A-type proanthocyanidins from lychee seeds and their antioxidant and antiviral activities. J. Agric. Food Chem., 2010, 58(22), 11667-11672.
[http://dx.doi.org/10.1021/jf1033202] [PMID: 20964424]
[64]
Badam, L.; Bedekar, S.S.; Sonawane, K.B.; Joshi, S.P. In vitro antiviral activity of bael (Aegle marmelos Corr) upon human coxsackieviruses B1-B6. J. Commun. Dis., 2002, 34(2), 88-99.
[PMID: 14768825]
[65]
Liu, Q.; Wang, Y.F.; Chen, R.J.; Zhang, M.Y.; Wang, Y.F.; Yang, C.R.; Zhang, Y.J. Anti-coxsackie virus B3 norsesquiterpenoids from the roots of Phyllanthus emblica. J. Nat. Prod., 2009, 72(5), 969-972.
[http://dx.doi.org/10.1021/np800792d] [PMID: 19374435]
[66]
Gebre-Mariam, T.; Neubert, R.; Schmidt, P.C.; Wutzler, P.; Schmidtke, M. Antiviral activities of some Ethiopian medicinal plants used for the treatment of dermatological disorders. J. Ethnopharmacol., 2006, 104(1-2), 182-187.
[http://dx.doi.org/10.1016/j.jep.2005.08.071] [PMID: 16233967]
[67]
Zhang, Y.; Zhu, H.; Ye, G.; Huang, C.; Yang, Y.; Chen, R.; Yu, Y.; Cui, X. Antiviral effects of sophoridine against coxsackievirus B3 and its pharmacokinetics in rats. Life Sci., 2006, 78(17), 1998-2005.
[http://dx.doi.org/10.1016/j.lfs.2005.09.034] [PMID: 16309710]
[68]
Rouse, B.T.; Sehrawat, S. Immunity and immunopathology to viruses: what decides the outcome? Nat. Rev. Immunol., 2010, 10(7), 514-526.
[http://dx.doi.org/10.1038/nri2802] [PMID: 20577268]
[69]
Wing, K.; Sakaguchi, S. Regulatory T cells exert checks and balances on self-tolerance and autoimmunity. Nat. Immunol., 2010, 11(1), 7-13.
[http://dx.doi.org/10.1038/ni.1818] [PMID: 20016504]
[70]
Cao, Y.; Xu, W.; Xiong, S. Adoptive transfer of regulatory T cells protects against Coxsackievirus B3-induced cardiac fibrosis. PLoS One, 2013, 8(9)e74955
[http://dx.doi.org/10.1371/journal.pone.0074955] [PMID: 24023968]
[71]
Xie, Y.; Li, M.; Wang, X.; Zhang, X.; Peng, T.; Yang, Y.; Zou, Y.; Ge, J.; Chen, H.; Chen, R. In vivo delivery of adenoviral vector containing interleukin-17 receptor a reduces cardiac remodeling and improves myocardial function in viral myocarditis leading to dilated cardiomyopathy. PLoS One, 2013, 8(8)e72158
[http://dx.doi.org/10.1371/journal.pone.0072158] [PMID: 23977238]
[72]
Fousteri, G.; Dave, A.; Morin, B.; Omid, S.; Croft, M.; von Herrath, M.G. Nasal cardiac myosin peptide treatment and OX40 blockade protect mice from acute and chronic virally-induced myocarditis. J. Autoimmun., 2011, 36(3-4), 210-220.
[http://dx.doi.org/10.1016/j.jaut.2011.01.006] [PMID: 21333491]
[73]
Papageorgiou, A.P.; Swinnen, M.; Vanhoutte, D.; VandenDriessche, T.; Chuah, M.; Lindner, D.; Verhesen, W.; de Vries, B.; D’hooge, J.; Lutgens, E.; Westermann, D.; Carmeliet, P.; Heymans, S. Thrombospondin-2 prevents cardiac injury and dysfunction in viral myocarditis through the activation of regulatory T-cells. Cardiovasc. Res., 2012, 94(1), 115-124.
[http://dx.doi.org/10.1093/cvr/cvs077] [PMID: 22308237]
[74]
Gui, J.; Yue, Y.; Chen, R.; Xu, W.; Xiong, S. A20 (TNFAIP3) alleviates CVB3-induced myocarditis via inhibiting NF-κB signaling. PLoS One, 2012, 7(9) e46515
[http://dx.doi.org/10.1371/journal.pone.0046515] [PMID: 23029542]
[75]
Shen, Y.; Zhang, F.Q.; Wei, X. Truncated monocyte chemoattractant protein-1 can alleviate cardiac injury in mice with viral myocarditis via infiltration of mononuclear cells. Microbiol. Immunol., 2014, 58(3), 195-201.
[http://dx.doi.org/10.1111/1348-0421.12130] [PMID: 24401088]
[76]
Wu, C.Y.; Feng, Y.; Qian, G.C.; Wu, J.H.; Luo, J.; Wang, Y.; Chen, G.J.; Guo, X.K.; Wang, Z.J. α-Galactosylceramide protects mice from lethal Coxsackievirus B3 infection and subsequent myocarditis. Clin. Exp. Immunol., 2010, 162(1), 178-187.
[http://dx.doi.org/10.1111/j.1365-2249.2010.04233.x] [PMID: 20726989]
[77]
Song, J.H.; Ahn, J.H.; Kim, S.R.; Cho, S.; Hong, E.H.; Kwon, B.E.; Kim, D.E.; Choi, M.; Choi, H.J.; Cha, Y.; Chang, S.Y.; Ko, H.J. Manassantin B shows antiviral activity against coxsackievirus B3 infection by activation of the STING/TBK-1/IRF3 signalling pathway. Sci. Rep., 2019, 9(1), 9413.
[http://dx.doi.org/10.1038/s41598-019-45868-8] [PMID: 31253850]
[78]
Armstrong, J.W. A review of high-throughput screening approaches for drug discovery. Am. Biotechnol. Lab., 1999, 17, 26-28.
[79]
George, J.; Teear, M.L.; Norey, C.G.; Burns, D.D. Evaluation of an imaging platform during the development of a FRET protease assay. J. Biomol. Screen., 2003, 8(1), 72-80.
[http://dx.doi.org/10.1177/1087057102239778] [PMID: 12855000]
[80]
Hwang, Y.C.; Chen, W.; Yates, M.V. Use of fluorescence resonance energy transfer for rapid detection of enteroviral infection in vivo. Appl. Environ. Microbiol., 2006, 72(5), 3710-3715.
[http://dx.doi.org/10.1128/AEM.72.5.3710-3715.2006] [PMID: 16672521]
[81]
Hsu, Y.Y.; Liu, Y.N.; Wang, W.; Kao, F.J.; Kung, S.H. In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair. Biochem. Biophys. Res. Commun., 2007, 353(4), 939-945.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.145] [PMID: 17207462]
[82]
Cantera, J.L.; Chen, W.; Yates, M.V. A fluorescence resonance energy transfer-based fluorometer assay for screening anti-coxsackievirus B3 compounds. J. Virol. Methods, 2011, 171(1), 176-182.
[http://dx.doi.org/10.1016/j.jviromet.2010.10.021] [PMID: 21029747]
[83]
Cordingley, M.G.; Callahan, P.L.; Sardana, V.V.; Garsky, V.M.; Colonno, R.J. Substrate requirements of human rhinovirus 3C protease for peptide cleavage in vitro. J. Biol. Chem., 1990, 265(16), 9062-9065.
[PMID: 2160953]
[84]
Zang, R.; Li, D.; Tang, I.-C.; Wang, J.-F. Yang, S.-T. Cell-based assays in high-throughput screening for drug discovery. Int. J. Biotech. Wellness Ind., 2012, 1(1), 31-51.
[http://dx.doi.org/1.10.6000/1927-3037.2012.01.01.02.]
[85]
Schmidtke, M.; Schnittler, U.; Jahn, B.; Dahse, H.; Stelzner, A. A rapid assay for evaluation of antiviral activity against coxsackie virus B3, influenza virus A, and herpes simplex virus type 1. J. Virol. Methods, 2001, 95(1-2), 133-143.
[http://dx.doi.org/10.1016/S0166-0934(01)00305-6] [PMID: 11377720]
[86]
Wang, H.; Ding, Y.; Zhou, J.; Sun, X.; Wang, S. The in vitro and in vivo antiviral effects of salidroside from Rhodiola rosea L. against coxsackievirus B3. Phytomedicine, 2009, 16(2-3), 146-155.
[87]
Muratov, E.N.; Varlamova, E.V.; Artemenko, A.G.; Khristova, T.; Kuz’min, V.E.; Makarov, V.A.; Riabova, O.B.; Wutzler, P.; Schmidtke, M. QSAR analysis of [(biphenyloxy)propyl]isoxazoles: agents against coxsackievirus B3. Future Med. Chem., 2011, 3(1), 15-27.
[http://dx.doi.org/10.4155/fmc.10.278] [PMID: 21428823]
[88]
Lin, X.; Zhou, X.; Wang, F.; Liu, K.; Yang, B.; Yang, X.; Peng, Y.; Liu, J.; Ren, Z.; Liu, Y. A new cytotoxic sesquiterpene quinone produced by Penicillium sp. F00120 isolated from a deep sea sediment sample. Mar. Drugs, 2012, 10(1), 106-115.
[http://dx.doi.org/10.3390/md10010106] [PMID: 22363223]
[89]
Zhu, H.; Zhang, Y.; Ye, G.; Li, Z.; Zhou, P.; Huang, C. In vivo and in vitro antiviral activities of calycosin-7-O-beta-D-glucopyranoside against coxsackie virus B3. Biol. Pharm. Bull., 2009, 32(1), 68-73.
[http://dx.doi.org/10.1248/bpb.32.68] [PMID: 19122283]
[90]
Zhu, Q.C.; Wang, Y.; Liu, Y.P.; Zhang, R.Q.; Li, X.; Su, W.H.; Long, F.; Luo, X.D.; Peng, T. Inhibition of enterovirus 71 replication by chrysosplenetin and penduletin. Eur. J. Pharm. Sci., 2011, 44(3), 392-398.
[http://dx.doi.org/10.1016/j.ejps.2011.08.030] [PMID: 21914477]
[91]
Song, X.; Liu, Z.; Wang, H.; Xin, Y.; Wang, X.; Chen, J.; Shi, Y.; Zhang, C.; Hui, R. QiHong prevents death in coxsackievirus B3 induced murine myocarditis through inhibition of virus attachment and penetration. Exp. Biol. Med. (Maywood), 2007, 232(11), 1441-1448.
[http://dx.doi.org/10.3181/0704-RM-110] [PMID: 18040068]
[92]
Pang, J.; Guo, J.P.; Jin, M.; Chen, Z.Q.; Wang, X.W.; Li, J.W. Antiviral effects of aqueous extract from Spatholobus suberectus Dunn. against coxsackievirus B3 in mice. Chin. J. Integr. Med., 2011, 17(10), 764-769.
[http://dx.doi.org/10.1007/s11655-011-0642-1] [PMID: 21717161]