The Catalytic Activity of TiO2 Toward a Multicomponent Reaction Depends on its Morphology, Mechanoactivation and Presence of Visible Light

Page: [37 - 42] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Aims: Test the hypothesis that the catalytic activity of TiO2 nanoparticles towards a liquidphase or mechanoactivated multicomponent reaction can be tuned by visible light and the shape of nanoparticles.

Background: Catalytic multicomponent reactions have been proven to be excellent synthetic approaches to a series of biologically relevant compounds including 2-amino-4H-benzo[b]pyrans. However, the potential photocatalytic activity and structural diversity of nanostructured catalysts remained underutilized in the design of new catalytic systems.

Objective: Harness the photocatalytic potential and diverse morphology of TiO2 particles as catalysts for the liquid phase and mechanoactivated multicomponent organic reactions.

Methods: The multicomponent reactions have been performed under catalytic, photocatalytic, liquid phase, and mechanoactivated conditions. The catalysts were characterized by XRD and TEM. The organic reactions products were isolated and characterized by NMR and mass spectroscopy.

Results: Catalytic activity of TiO2 nanoparticles towards multicomponent synthesis of 2-amino-4Hbenzo[ b]pyrans is increased by visible light. The nanorod-shaped TiO2 nanoparticles have shown substantially higher catalytic activity towards mechanoactivated multicomponent synthesis of 2- amino-4H-benzo[b]pyrans than their spherically-shaped counterparts.

Conclusion: An efficient methodology for the synthesis of 2-amino-4H-benzo[b]pyrans under ambient light condition has been developed using TiO2 nanorods (high aspect ratio anatase nanocrystals) as photocatalyst. This simple method furnished the corresponding terahydrobenzopyrans in high yields via three component reaction of aldehyde, malononitrile, and dimidone under solvent free reaction conditions at room temperature. The reaction takes 8-10 min at room temperature under ambient light condition and the catalyst can be reused multiple times. Utilization of light and the nanorod morphology of the catalyst through mechanoactivation has been applied for the -first time to the synthetic technique of multicomponent reactions. The synthetic procedures for 2-amino-4Hbenzo[ b]pyrans have been improved.

Keywords: Visible light, TiO2 nanorods, one-pot multicomponent reaction, solvent free synthesis, 2-amino-4Hbenzo[ b]pyrans, reusable catalyst.

Graphical Abstract

[1]
Majek, M.; Jacobi, A. von Wangelin. Angew. Ambient‐Light‐Mediated Copper‐Catalyzed C-C and C-N Bond Formation. Chem. Int. Ed., 2013, 52(23), 5919-5921.
[http://dx.doi.org/10.1002/anie.201301843]
[2]
Sereda, G.; Rajpara, V. Photoactivated and photopassivated benzylic oxidation catalyzed by pristine and oxidized carbons. Catal. Commun., 2011, 12, 669-672.
[http://dx.doi.org/10.1016/j.catcom.2010.12.027]
[3]
a)Zhao, G.; Yang, C.; Guo, L.; Sun, H.; Chena, C.; Xia, W. Visible light-induced oxidative coupling reaction: easy access to Mannich-type products. Chem. Commun. , 2012, 48, 2337-2339.
b)Rueping, M.; Vila, C. Visible Light Photoredox-Catalyzed Multicomponent Reactions. Org. Lett., 2013, 15(9), 2092-2095.
[PMID: 23586924]
[4]
Maitani, M.M.; Tanaka, K.; Mochizuki, D.; Wada, Y. Enhancement of photoexcited charge transfer by 001 facet-dominating TiO2 nanoparticles. J. Phys. Chem. Lett., 2011, 2, 2655-2659.
[http://dx.doi.org/10.1021/jz2011622]
[5]
Kibombo, H.S.; Peng, R.; Ranjit, S.R.; Koodali, T. Versatility of heterogeneous photocatalysis: synthetic methodologies epitomizing the role of silica support in TiO2 based mixed oxides. Catal. Sci. Technol., 2012, 2, 1737-1740.
[http://dx.doi.org/10.1039/c2cy20247f]
[6]
Vila, C.; Rueping, M. Visible-light mediated heterogeneous C–H functionalization: oxidative multi-component reactions using a recyclable titanium dioxide (TiO2) catalyst. Green Chem., 2013, 15, 2056-2059.
[http://dx.doi.org/10.1039/c3gc40587g]
[7]
Hoffmann, N. Photocatalysis with TiO2 applied to organic synthesis. Aust. J. Chem., 2015, 68, 1621-1639.
[http://dx.doi.org/10.1071/CH15322]
[8]
Manley, D.W.; Walton, J.C. Preparative semiconductor photoredox catalysis: An emerging theme in organic synthesis. Beilstein J. Org. Chem., 2015, 11, 1570-1582.
[http://dx.doi.org/10.3762/bjoc.11.173] [PMID: 26664577]
[9]
Shiraishi, Y; Hirai, T . Selective organic transformations on titanium oxide-based photocatalysts. J. Photochem. Photobiol. C Photochemistry Reviews,, 2008, 9, 157-1582.
[10]
Kisch, H. Semiconductor photocatalysis for organic synthesis. Adv. Photochem., 2001, 26, 93-143.
[11]
Mirjalilia, B.F.; Bamonirib, A.; Akbari, Z.; Taghavinia, N. Nano-TiO2: An eco-friendly and re-usable catalyst for the synthesis of 14-Aryl or alkyl-14H-dibenzo[a,j]xanthenes. J. Iran. Chem. Soc., 2011, 8, 129-134.
[http://dx.doi.org/10.1007/BF03254289.]
[12]
Mirjalili, B.F.; Akbari, Z. Nano-TiO2: an eco-friendly and re-usable catalyst for the one-pot synthesis of β-Acetamido ketones. Naturforsch, 2009, 64B, 347-350.
[http://dx.doi.org/10.1515/znb-2009-0318]
[13]
Zaman Kassaee, M.; Masrouri, H.; Movahedi, F.; Mohammadi, R. TiO2 as a reusable catalyst for the one pot synthesis of 3,4 dihydropyrimidin 2(1H) ones under solvent free conditions. Helv. Chim. Acta, 2010, 93, 261-264.
[http://dx.doi.org/10.1002/hlca.200900197]
[14]
Rana, S.; Brown, M.; Dutta, A.; Bhaumik, A.; Mukhopadhyay, C. Site-selective multicomponent synthesis of densely substituted 2-oxo dihydropyrroles catalyzed by clean, reusable, and heterogeneous TiO2 nanopowder. Tetrahedron Lett., 2013, 54, 1371-1379.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.109]
[15]
Yu, H.; Zhu, Y.; Liu, C.; Yang, Z.; Lu, X.; Feng, X. Preparation of novel mesoporous SO42−/TiO2 solid acid catalyst and its catalytic activity for esterification. Chin. J. Catal., 2009, 30, 265-271.
[16]
Guo, S.B.; Wang, S.X.; Li, J.T.D,L Proline Catalyzed one pot synthesis of pyrans and pyrano[2,3‐c]pyrazole derivatives by a grinding method under solvent‐free conditions. Synth. Commun., 2007, 37, 2111-2120.
[http://dx.doi.org/10.1080/00397910701396906]
[17]
Abulkalam Azath, I.; Puthiaraj, P.; Pitchumani, K. One-Pot multicomponent solvent-free synthesis of 2-amino-4H-benzo[b]pyrans catalyzed by per-6-amino-β-cyclodextrin. ACS Sustain. Chem. Eng., 2013, 1, 174-179.
[http://dx.doi.org/10.1021/sc3000866.]
[18]
Banerjee, S.; Horn, A.H.; Khatri, H.; Sereda, G. A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst. Tetrahedron Lett., 2011, 52, 1878-1881.
[http://dx.doi.org/10.1016/j.tetlet.2011.02.031]
[19]
Zhu, J.; Bienayme, H. Multicomponent Reactions; Wiley- VCH: Weinheim, 2005.
[http://dx.doi.org/10.1002/3527605118]
[20]
Shaabani, A.; Ghadari, R.; Sarvary, A.; Rezayan, A.H. Synthesis of highly functionalized bis(4H-chromene) and 4H-benzo[g]chromene derivatives via an isocyanide-based pseudo-five-component reaction. J. Org. Chem., 2009, 74(11), 4372-4374.
[http://dx.doi.org/10.1021/jo9005427] [PMID: 19397302]
[21]
Skommer, J.; Wlodkowic, D.; Mvttc, M.; Eray, M.; Pelkonen, J. HA14-1, a small molecule Bcl-2 antagonist, induces apoptosis and modulates action of selected anticancer drugs in follicular lymphoma B cells. Leuk. Res., 2006, 30, 322-331.
[22]
Foye, W.O. Principi di Chemico Farmaceutica. Piccin: Padova, 1991, I, 416.
[23]
Gao, S.; Tsai, C.H.; Tseng, C.; Yao, C.F. Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4H-chromene and N-arylquinoline derivatives in aqueous media. Tetrahedron, 2008, 64, 9143-9149.
[http://dx.doi.org/10.1016/j.tet.2008.06.061]
[24]
Bhosale, R.S.; Magar, C.V.; Solanke, K.S.; Mane, S.B.; Choudhary, S.S.; Pawar, R.P. Molecular iodine: An efficient catalyst for the synthesis of tetrahydrobenzo[b]pyrans. Synth. Commun., 2007, 37, 4353-4357.
[http://dx.doi.org/10.1080/00397910701578578]
[25]
Bhattacharyya, P.; Pradhan, K.; Paul, S.; Das, A.R. Nano crystalline ZnO catalyzed one pot multicomponent reaction for an easy access of fully decorated 4H-pyran scaffolds and its rearrangement to 2-pyridone nucleus in aqueous media. Tetrahedron Lett., 2012, 53, 4687-4691.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.086]
[26]
Kalbasi, R.J.; Mosaddegh, N. Synthesis and characterization of poly(4-vinylpyridine)/MCM-48 catalyst for one-pot synthesis of substituted 4H-chromenes. Catal. Commun., 2011, 12, 1231-1237.
[http://dx.doi.org/10.1016/j.catcom.2011.04.004]
[27]
Xu, J.C.; Li, W.M.; Zheng, H.; Lai, Y.F.; Zhang, P.F. One-pot synthesis of tetrahydrochromene derivatives catalyzed by lipase. Tetrahedron, 2011, 67, 9582-9587.
[http://dx.doi.org/10.1016/j.tet.2011.09.137]
[28]
Zhi, H.; Lü, C.; Zhang, Q.; Luo, J. A new PEG-1000-based dicationic ionic liquid exhibiting temperature-dependent phase behavior with toluene and its application in one-pot synthesis of benzopyrans. Chem. Commun. (Camb.), 2009, (20), 2878-2880.
[http://dx.doi.org/10.1039/b822481a] [PMID: 19436896]
[29]
Wang, L.M.; Shao, J.H.; Tian, H.; Wang, Y.H.; Liu, B. Rare earth perfluorooctanoate [RE(PFO)3] catalyzed one-pot synthesis of benzopyran derivatives. J. Fluor. Chem., 2006, 127, 97-100.
[http://dx.doi.org/10.1016/j.jfluchem.2005.10.004]
[30]
Penjg, Y.; Song, G. Amino-functionalized ionic liquid as catalytically active solvent for microwave-assisted synthesis of 4H-pyrans. Catal. Commun., 2007, 8, 111-114.
[http://dx.doi.org/10.1016/j.catcom.2006.05.031]
[31]
Joo, J.; Kwon, S.G.; Yu, T.; Cho, M.; Lee, J.; Yoon, J.; Hyeon, T. Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli. J. Phys. Chem. B, 2005, 109(32), 15297-15302.
[http://dx.doi.org/10.1021/jp052458z] [PMID: 16852938]
[32]
Sayilkan, F.; Asilturk, M.; Sener, S.; Erdemoglu, S.; Erdemoglu, M.; Sayilkan, H. Hydrothermal synthesis, characterization and photocatalytic activity of nanosized TiO2 based catalysts for rhodamine B degradation. Turk. J. Chem., 2007, 31, 211-221.
[33]
Wagner, P.J.; Zepp, R.G.; Liu, K.C.; Thomas, M.; Lee, T.J.; Turro, N.J. Competing photocyclization and photoenolization of phenyl. alpha.-diketones. J. Am. Chem. Soc., 1976, 98, 8125-8134.
[http://dx.doi.org/10.1021/ja00441a042]
[34]
Bihani, M.; Bora, PP.; Bez, G. Synthesis of polyfunctionalized 4H-pyrans. J. Chem. 2013 Article ID, 785930, 1-7.
[35]
Kazachek, M.V.; Vovna, V. Modeling of the electronic absorption spectra and photoionization of scandium and titanium tris(acetylacetonates) by the DV-XαMethod. Russ. J. Coord. Chem., 2001, 27, 105-111.
[http://dx.doi.org/10.1023/A:1009575232219]