Construction of a Neuro-Immune-Cognitive Pathway-Phenotype Underpinning the Phenome of Deficit Schizophrenia

Page: [747 - 758] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: In schizophrenia, pathway-genotypes may be constructed by combining interrelated immune biomarkers with changes in specific neurocognitive functions that represent aberrations in brain neuronal circuits. These constructs provide an insight on the phenome of schizophrenia and show how pathway-phenotypes mediate the effects of genome X environmentome interactions on the symptomatology/phenomenology of schizophrenia. Nevertheless, there is a lack of knowledge how to construct pathway-phenotypes using Partial Least Squares (PLS) path modeling and Soft Independent Modeling of Class Analogy (SIMCA).

Aims: This paper aims to provide a step-by-step utilization guide for the construction of pathwayphenotypes that reflect aberrations in the neuroimmune - brain circuit axis (NIBCA) in deficit schizophrenia.

Methods and Results: This NIBCA index is constructed using immune biomarkers (CCL-2, CCL-11, IL-1β, sIL-1RA, TNF-α, sTNFR1, sTNFR2) and neurocognitive tests (Brief Assessment of Cognition in Schizophrenia) predicting overall severity of schizophrenia (OSOS) in 120 deficit SCZ and 54 healthy participants. Using SmartPLS path analysis, a latent vector is extracted from those biomarkers and cognitive tests, which shows good construct reliability (Cronbach alpha and composite reliability) and replicability and which is reflectively measured through its NIBCA manifestations. This NIBCA pathwayphenotype explains 75.0% of the variance in PHEMN (psychotic, hostility, excitation, mannerism and negative) symptoms. Using SIMCA, we constructed a NIBCA pathway-class that defines deficit schizophrenia as a qualitatively distinct nosological entity, which allows patients with deficit schizophrenia to be authenticated as belonging to the deficit schizophrenia class.

Conclusion: In conclusion, our nomothetic approach to develop a nomological network combining neuro-immune and neurocognitive phenome markers to predict OSOS and cross-validate a diagnostic class generated replicable models reflecting the key phenome of the illness, which may mediate the effects of genome X environmentome interactions on the final outcome phenome features, namely symptomatology and phenomenology.

Keywords: Deficit schizophrenia, Machine learning, Cytokines, Cognition, Inflammation, Neuro-immune.

Graphical Abstract

[1]
Sirivichayakul, S.; Kanchanatawan, B.; Thika, S.; Carvalho, A.F.; Maes, M. A new schizophrenia model: immune activation is associated with induction of different neurotoxic products which together determine memory impairments and schizophrenia symptom dimensions. CNS Neurol. Disord. Drug Targets, 2019, 18(2), 124-140.
[http://dx.doi.org/10.2174/1871527317666181119115532] [PMID: 30451122]
[2]
Sirivichayakul, S.; Kanchanatawan, B.; Thika, S.; Carvalho, A.F.; Maes, M. Eotaxin, an endogenous cognitive deteriorating chemokine (ecdc), is a major contributor to cognitive decline in normal people and to executive, memory, and sustained attention deficits, formal thought disorders, and psychopathology in schizophrenia patients. Neurotox. Res., 2019, 35(1), 122-138.
[http://dx.doi.org/10.1007/s12640-018-9937-8] [PMID: 30056534]
[3]
Al-Hakeim, H.K.; Al-Mulla, A.F.; Maes, M. The neuro-immune fingerprint of major neuro-cognitive psychosis or deficit schizophrenia: a supervised machine learning study. Preprint , 2019, 2019050285.
[http://dx.doi.org/10.20944/preprints201905.0285.v1]
[4]
Maes, M.; Kanchanatawan, B.; Sirivichayakul, S.; Carvalho, A.F. In schizophrenia, deficits in natural igm isotype antibodies including those directed to malondialdehyde and azelaic acid strongly predict negative symptoms, neurocognitive impairments, and the deficit syndrome. Mol. Neurobiol., 2019, 56(7), 5122-5135.
[http://dx.doi.org/10.1007/s12035-018-1437-6] [PMID: 30484113]
[5]
Maes, M.; Kanchanatawan, B.; Sirivichayakul, S.; Carvalho, A.F. In schizophrenia, increased plasma igm/iga responses to gut commensal bacteria are associated with negative symptoms, neurocognitive impairments, and the deficit phenotype. Neurotox. Res., 2019, 35(3), 684-698.
[http://dx.doi.org/10.1007/s12640-018-9987-y] [PMID: 30552634]
[6]
Maes, M.; Sirivichayakul, S.; Kanchanatawan, B.; Carvalho, A.F. In schizophrenia, psychomotor retardation is associated with executive and memory impairments, negative and psychotic symptoms, neurotoxic immune products and lower natural IgM to malondialdehyde. Preprints, 2019, 2019010108
[http://dx.doi.org/10.20944/preprints201901.0108.v1]
[7]
Maes, M.; Sirivichayakul, S.; Kanchanatawan, B.; Vodjani, A. Breakdown of the paracellular tight and adherens junctions in the gut and blood brain barrier and damage to the vascular barrier in patients with deficit schizophrenia. Neurotox. Res., 2019, 36(2), 306-322.
[http://dx.doi.org/10.1007/s12640-019-00054-6] [PMID: 31077000]
[8]
Roomruangwong, C.; Noto, C.; Kanchanatawan, B.; Anderson, G.; Kubera, M.; Carvalho, A.F.; Maes, M. The role of aberrations in the immune-inflammatory response system (IRS) and the compensatory immune-regulatory reflex system (CIRS) in different phenotypes of schizophrenia: the IRS-CIRS theory of schizophrenia. Mol. Neurobiol., 2020, 57(2), 778-797.
[http://dx.doi.org/10.1007/s12035-019-01737-z] [PMID: 31473906]
[9]
Orellana, G.; Alvarado, L.; Muñoz-Neira, C.; Ávila, R.; Méndez, M.F.; Slachevsky, A. Psychosis-related matricide associated with a lesion of the ventromedial prefrontal cortex. J. Am. Acad. Psychiatry Law, 2013, 41(3), 401-406.
[PMID: 24051593]
[10]
Orellana, G.; Slachevsky, A. Executive functioning in schizophrenia. Front. Psychiatry, 2013, 4, 35.
[http://dx.doi.org/10.3389/fpsyt.2013.00035] [PMID: 23805107]
[11]
Swan, M. In: Next-generation personal genomic studies: extending social intelligence genomics to cognitive performance genomics in quantified creativity and thinking fast and slow, Proceedings of the 2013 AAAI Spring Symposium, Stanford, Clifornia, USA, March 27, 2013.
[12]
Anderson, G.; Maes, M. Schizophrenia: linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 42, 5-19.
[13]
Davis, J.; Moylan, S.; Harvey, B.H.; Maes, M.; Berk, M. Neuroprogression in schizophrenia: Pathways underpinning clinical staging and therapeutic corollaries. Aust. N. Z. J. Psychiatry, 2014, 48(6), 512-529.
[http://dx.doi.org/10.1177/0004867414533012] [PMID: 24803587]
[14]
Davis, J.; Eyre, H.; Jacka, F.N.; Dodd, S.; Dean, O.; McEwen, S.; Debnath, M.; McGrath, J.; Maes, M.; Amminger, P.; McGorry, P.D.; Pantelis, C.; Berk, M. A review of vulnerability and risks for schizophrenia: Beyond the two hit hypothesis. Neurosci. Biobehav. Rev., 2016, 65, 185-194.
[http://dx.doi.org/10.1016/j.neubiorev.2016.03.017] [PMID: 27073049]
[15]
Maes, M.; Moraes, J.B.; Congio, A.; Bonifacio, K.L.; Barbosa, D.S.; Vargas, H.O.; Michelin, A.P.; Carvalho, A.F.; Nunes, S.O.V. Development of a novel staging model for affective disorders using partial least squares bootstrapping: effects of lipid-associated antioxidant defenses and neuro-oxidative stress. Mol. Neurobiol., 2019, 56(9), 6626-6644.
[http://dx.doi.org/10.1007/s12035-019-1552-z] [PMID: 30911933]
[16]
Maes, M.; Schotte, C.; Maes, L.; Cosyns, P. Clinical subtypes of unipolar depression: Part II. Quantitative and qualitative clinical differences between the vital and nonvital depression groups. Psychiatry Res., 1990, 34(1), 43-57.
[http://dx.doi.org/10.1016/0165-1781(90)90057-C] [PMID: 2267263]
[17]
Maes, M.; Twisk, F.N.; Johnson, C. Myalgic Encephalomyelitis (ME), Chronic Fatigue Syndrome (CFS), and Chronic Fatigue (CF) are distinguished accurately: results of supervised learning techniques applied on clinical and inflammatory data. Psychiatry Res., 2012, 200(2-3), 754-760.
[http://dx.doi.org/10.1016/j.psychres.2012.03.031] [PMID: 22521895]
[18]
Kanchanatawan, B.; Sriswasdi, S.; Thika, S.; Sirivichayakul, S.; Carvalho, A.F.; Geffard, M.; Kubera, M.; Maes, M. Deficit schizophrenia is a discrete diagnostic category defined by neuro-immune and neurocognitive features: results of supervised machine learning. Metab. Brain Dis., 2018, 33(4), 1053-1067.
[http://dx.doi.org/10.1007/s11011-018-0208-4] [PMID: 29527624]
[19]
Kanchanatawan, B.; Sriswasdi, S.; Thika, S.; Stoyanov, D.; Sirivichayakul, S.; Carvalho, A.F.; Geffard, M.; Maes, M. Towards a new classification of stable phase schizophrenia into major and simple neuro-cognitive psychosis: Results of unsupervised machine learning analysis. J. Eval. Clin. Pract., 2018, 24(4), 879-891.
[http://dx.doi.org/10.1111/jep.12945] [PMID: 29790237]
[20]
Al-Hakeim, H.K.; Al-Fadhel, S.Z.; Al-Dujaili, A.H.; Carvalho, A.; Sriswasdi, S.; Maes, M. Development of a novel neuro-immune and opioid-associated fingerprint with a cross-validated ability to identify and authenticate unknown patients with major depression: far beyond differentiation, discrimination, and classification. Mol. Neurobiol., 2019, 56(11), 7822-7835. Epub ahead of print
[http://dx.doi.org/10.1007/s12035-019-01647-0] [PMID: 31124079]
[21]
Maes, M.; Vandervorst, C.; Suy, E.; Minner, B.; Raus, J. A multivariate study of simultaneous escape from suppression by dexamethasone of urinary free cortisol, plasma cortisol, adrenocorticotropic hormone and beta-endorphin in melancholic patients. Acta Psychiatr. Scand., 1991, 83(6), 480-491.
[http://dx.doi.org/10.1111/j.1600-0447.1991.tb05580.x] [PMID: 1652880]
[22]
Keefe, R.S.E.; Goldberg, T.E.; Harvey, P.D.; Gold, J.M.; Poe, M.P.; Coughenour, L. The Brief Assessment of Cognition in Schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophr. Res., 2004, 68(2-3), 283-297.
[http://dx.doi.org/10.1016/j.schres.2003.09.011] [PMID: 15099610]
[23]
Kirkpatrick, B.; Buchanan, R.W.; McKenney, P.D.; Alphs, L.D.; Carpenter, W.T., Jr The Schedule for the Deficit syndrome: an instrument for research in schizophrenia. Psychiatry Res., 1989, 30(2), 119-123.
[http://dx.doi.org/10.1016/0165-1781(89)90153-4] [PMID: 2616682]
[24]
Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull., 1987, 13(2), 261-276.
[http://dx.doi.org/10.1093/schbul/13.2.261] [PMID: 3616518]
[25]
Andreasen, N.C. The Scale for the Assessment of Negative Symptoms (SANS): conceptual and theoretical foundations. Br. J. Psychiatry Suppl., 1989, (7), 49-58.
[http://dx.doi.org/10.1192/S0007125000291496] [PMID: 2695141]
[26]
Overall, J.E.; Gorham, D.R. The brief psychiatric rating scale. Psychol. Rep., 1962, 10, 799-812.
[http://dx.doi.org/10.2466/pr0.1962.10.3.799]
[27]
Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry, 1960, 23, 56-62.
[http://dx.doi.org/10.1136/jnnp.23.1.56] [PMID: 14399272]
[28]
Maes, M.; Carvalho, A.F. The Compensatory Immune-Regulatory Reflex System (CIRS) in Depression and Bipolar Disorder. Mol. Neurobiol., 2018, 55(12), 8885-8903.
[http://dx.doi.org/10.1007/s12035-018-1016-x] [PMID: 29611101]
[29]
CAMO. The Unscrambler Appendices: Method References 2019, Available from www.camo.com/helpdocs/The_Unscrambler_ Method_References.pdf (Accessed on March 19, 2019)
[30]
Ringle, C.M.; Wende, S.; Becker, J-M. SmartPLS 3. Bönningstedt: SmartPLS, Available from http://www.smartpls.com (Accessed on 2015)
[31]
Matsumoto, A.K.; Maes, M.; Maes, A.; Michelin, A.P.; de Oliveira Semeão, L.; de Lima Pedrão, J.V. In Schizophrenia, PON1 Q192R genotypes and/or lowered paraoxonase 1 (PON1) enzymatic activity are significantly associated with the deficit syndrome, negative symptoms, formal thought disorders, psychomotor retardation, excitation and increased IGA levels to gram-negative microbiota. Preprints, 2019, 2019090095
[http://dx.doi.org/10.20944/preprints201909.0095.v1]
[32]
Stoyanov, D. The reification of diagnosis in psychiatry. Neurotox. Res., 2020, 37, 772-774.
[http://dx.doi.org/10.1007/s12640-019-00139-2]