Advances in Immuno-PET for the Detection of Cancer and Assessment of Response to Therapy

Page: [647 - 672] Pages: 26

  • * (Excluding Mailing and Handling)

Abstract

Background: Monoclonal antibodies (mAbs) against tumor-associated antigens have been shown to target tumors with specificity and selectivity; therefore, it was hypothesized that cancer could be treated with mAbs without side effects. In the early 1980s, clinical studies demonstrated that tumors could be visualized using radiolabeled mAbs. However, with the introduction of positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG), antibody-based imaging became less important because of its limited diagnostic accuracy. During the last two decades, a revival of imaging with radiolabeled mAbs has taken place, specifically PET with longer half-life isotopes. Development of immune checkpoints as targets for immunotherapy has opened opportunities for the development of a wide variety of antibodies, such as anti-CTLA-4, anti-PD-L1, and anti-PD1. Thus, imaging with these antibodies radiolabeled with 89Zr or another long–half-life PET isotope, known as immuno-PET, has become mainstream.

Objective: This study aimed to review the rapid development of immuno-PET for the detection of cancer and assessment of therapeutic response combining surgery, radiation, chemotherapy, and/or immunotherapy. This review includes reports on the radiolabeling, imaging and clinical utility of 89Zr-, 64Cu- and 124I-labeled mAbs.

Results: More than 120 research and review articles on immuno-PET were reviewed.

Conclusion: Many mAbs have been developed and used for the treatment of cancer; however, a limited number of antibodies have been radiolabeled for immuno-PET. While much progress has been made with the therapeutic applications of mAbs, immuno-PET for diagnosis and treatment assessment needs more research. Improved chelating agents and extensive imaging studies are needed to refine immuno-PET for the diagnosis of cancers and assessment of response to therapy.

Keywords: PET, immune system, immuno-PET, CTLA-4, PD-L1, PD-1.

[1]
Boerman, O.C.; Oyen, W.J.G. Immuno-PET of cancer: a revival of antibody imaging. J. Nucl. Med., 2011, 52(8), 1171-1172.
[http://dx.doi.org/10.2967/jnumed.111.089771] [PMID: 21764784]
[2]
Mach, J.P.; Carrel, S.; Merenda, C.; Sordat, B.; Cerottini, J.C. In vivo localisation of radiolabelled antibodies to carcinoembryonic antigen in human colon carcinoma grafted into nude mice. Nature, 1974, 248(5450), 704-706.
[http://dx.doi.org/10.1038/248704a0] [PMID: 4833275]
[3]
Goldenberg, D.M.; DeLand, F.; Kim, E.; Bennett, S.; Primus, F.J.; van Nagell, J.R., Jr; Estes, N.; DeSimone, P.; Rayburn, P. Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning. N. Engl. J. Med., 1978, 298(25), 1384-1386.
[http://dx.doi.org/10.1056/NEJM197806222982503] [PMID: 349387]
[4]
Larson, S.M.; Brown, J.P.; Wright, P.W.; Carrasquillo, J.A.; Hellström, I.; Hellström, K.E. Imaging of melanoma with L-131-labeled monoclonal antibodies. J. Nucl. Med., 1983, 24(2), 123-129.
[PMID: 6822875]
[5]
Fritzberg, A.R.; Abrams, P.G.; Beaumier, P.L.; Kasina, S.; Morgan, A.C.; Rao, T.N.; Reno, J.M.; Sanderson, J.A.; Srinivasan, A.; Wilbur, D.S.; Vanderheyden, J-L. Specific and stable labeling of antibodies with technetium-99m with a diamide dithiolate chelating agent. Proc. Natl. Acad. Sci. USA, 1988, 85(11), 4025-4029.
[http://dx.doi.org/10.1073/pnas.85.11.4025] [PMID: 3375252]
[6]
Najafi, A.; Alauddin, M.M.; Siegel, M.E.; Epstein, A.L. Synthesis and preliminary evaluation of a new chelate N2S4 for use in labeling proteins with metallic radionuclides. Int. J. Rad. Appl. Instrum. B, 1991, 18(2), 179-185.
[http://dx.doi.org/10.1016/0883-2897(91)90076-W] [PMID: 2026493]
[7]
Alauddin, M.M.; Najafi, A.; Sosa, A.; Epstein, A.L.; Siegel, M.E. Evaluation of 99mTc-labeled N2S4 coupled B72.3 and Lym-1 antibodies as tumor imaging agents in tumor-bearing nude mice 1991, 331 -337.
[8]
Najafi, A.; Alauddin, M.M.; Sosa, A.; Ma, G.Q.; Chen, D.C.P.; Epstein, A.L.; Siegel, M.E. The evaluation of 186Re-labeled antibodies using N2S4 chelate in vitro and in vivo using tumor-bearing nude mice. Int. J. Rad. Appl. Instrum. B, 1992, 19(2), 205-212.
[http://dx.doi.org/10.1016/0883-2897(92)90009-N] [PMID: 1601674]
[9]
Yonekura, Y.; Benua, R.S.; Brill, P.; Som, P.; Yeh, S.D.; Kemeny, N.E.; Fowler, J.S.; MacGregor, R.R.; Stamm, R. Christman, D.R.; Wolf, A.P. Increased accumulation of 2-deoxy-2-18F-fluoro-D-glucose in liver metastasis from colon carcinoma. J. Nucl. Med., 1982, 23, 1133-1137.
[PMID: 6982967]
[10]
Di Chiro, G. Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Invest. Radiol., 1987, 22(5), 360-371.
[http://dx.doi.org/10.1097/00004424-198705000-00002] [PMID: 3496318]
[11]
Okada, J.; Yoshikawa, K.; Imazeki, K.; Minoshima, S.; Uno, K.; Itami, J.; Kuyama, J.; Maruno, H.; Arimizu, N. The use of FDG-PET in the detection and management of malignant lymphoma: correlation of uptake with prognosis. J. Nucl. Med., 1991, 32(4), 686-691.
[PMID: 2013808]
[12]
Weber, W.A.; Gatsonis, C.A.; Mozley, P.D.; Hanna, L.G.; Shields, A.F.; Aberle, D.R.; Govindan, R.; Torigian, D.A.; Karp, J.S.; Yu, J.Q.; Subramaniam, R.M.; Halvorsen, R.A.; Siegel, B.A. Repeatability of 18F-FDG PET/CT in advanced non–small cell lung cancer: Prospective assessment in 2 multicenter trials. J. Nucl. Med., 2015, 56(8), 1137-1143.
[http://dx.doi.org/10.2967/jnumed.114.147728] [PMID: 25908829]
[13]
Hofman, M.S.; Hicks, R.J. How we read oncologic FDG PET/CT. Cancer Imaging, 2016, 16(1), 35.
[http://dx.doi.org/10.1186/s40644-016-0091-3] [PMID: 27756360]
[14]
Rosenbaum, S.J.; Lind, T.; Antoch, G.; Bockisch, A. False-positive FDG PET uptake--the role of PET/CT. Eur. Radiol., 2006, 16(5), 1054-1065.
[http://dx.doi.org/10.1007/s00330-005-0088-y] [PMID: 16365730]
[15]
Verel, I.; Visser, G.W.M.; van Dongen, G.A. The promise of immuno-PET in radioimmunotherapy. J. Nucl. Med., 2005, 46(Suppl. 1), 164S-171S.
[PMID: 15653665]
[16]
van Dongen, G.A.M.S.; Visser, G.W.M.; Lub-de Hooge, M.N.; de Vries, E.G.; Perk, L.R. Immuno-PET: a navigator in monoclonal antibody development and applications. Oncologist, 2007, 12(12), 1379-1389.
[http://dx.doi.org/10.1634/theoncologist.12-12-1379] [PMID: 18165614]
[17]
van Dongen, G.A.M.S.; Poot, A.J.; Vugts, D.J. PET imaging with radiolabeled antibodies and tyrosine kinase inhibitors: immuno-PET and TKI-PET. Tumour Biol., 2012, 33(3), 607-615.
[http://dx.doi.org/10.1007/s13277-012-0316-4] [PMID: 22270450]
[18]
Van Dongen, G.A.M.S.; Huisman, M.C.; Boellaard, R.; Harry Hendrikse, N.; Windhorst, A.D.; Visser, G.W.; Molthoff, C.F.; Vugts, D.J. 89Zr-immuno-PET for imaging of long circulating drugs and disease targets: why, how and when to be applied? Q. J. Nucl. Med. Mol. Imaging, 2015, 59(1), 18-38.
[PMID: 25517081]
[19]
Fischer, G.; Seibold, U.; Schirrmacher, R.; Wängler, B.; Wängler, C. (89)Zr, a radiometal nuclide with high potential for molecular imaging with PET: chemistry, applications and remaining challenges. Molecules, 2013, 18(6), 6469-6490.
[http://dx.doi.org/10.3390/molecules18066469] [PMID: 23736785]
[20]
Jauw, Y.W.S. Menke-van der Houven van Oordt, C.W.; Hoekstra, O.S.; Hendrikse, N.H.; Vugts, D.J.; Zijlstra, J.M.; Huisman, M.C.; van Dongen, G.A. Immuno-positron emission tomography with Zirconium-89-labeled monoclonal antibodies in oncology: What can we learn from initial clinical trials? Front. Pharmacol., 2016, 7, 131.
[http://dx.doi.org/10.3389/fphar.2016.00131] [PMID: 27252651]
[21]
Bailly, C.; Cléry, P-F.; Faivre-Chauvet, A.; Bourgeois, M.; Guérard, F.; Haddad, F.; Barbet, J.; Chérel, M.; Kraeber-Bodéré, F.; Carlier, T.; Bodet-Milin, C. Immuno-PET for clinical theranostic approaches. Int. J. Mol. Sci., 2016, 18(1), 57-69.
[http://dx.doi.org/10.3390/ijms18010057] [PMID: 28036044]
[22]
Bhatt, N.B.; Pandya, D.N.; Wadas, T.J. Recent advances in zirconium-89 chelator development. Molecules, 2018, 23(3), 638-662.
[http://dx.doi.org/10.3390/molecules23030638] [PMID: 29534538]
[23]
Carmon, K.S.; Azhdarinia, A. Application of immuno-PET in antibody–drug conjugate development. Mol. Imaging, 2018, 171536012118801223
[http://dx.doi.org/10.1177/1536012118801223] [PMID: 30370812]
[24]
Damle, N.K.; Klussman, K.; Leytze, G.; Myrdal, S.; Aruffo, A.; Ledbetter, J.L.; Linsley, P.S. Costimulation of T lymphocytes with integrin ligands inter-cellular adhesion molecule-1 or vascular cell adhesion mole-cule-1 induces functional expression of CTLA-4, a second receptor for B7. J. lmmunol. 1994, 152(6), 2686-2697.
[PMID: 7511623]
[25]
Krummel, M.F.; Allison, J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med., 1995, 182(2), 459-465.
[http://dx.doi.org/10.1084/jem.182.2.459] [PMID: 7543139]
[26]
Snyder, A.; Makarov, V.; Merghoub, T.; Yuan, J.; Zaretsky, J.M.; Desrichard, A.; Walsh, L.A.; Postow, M.A.; Wong, P.; Ho, T.S.; Hollmann, T.J.; Bruggeman, C.; Kannan, K.; Li, Y.; Elipenahli, C.; Liu, C.; Harbison, C.T.; Wang, L.; Ribas, A.; Wolchok, J.D.; Chan, T.A. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med., 2014, 371(23), 2189-2199.
[http://dx.doi.org/10.1056/NEJMoa1406498] [PMID: 25409260]
[27]
Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol., 2008, 26, 677-704.
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090331] [PMID: 18173375]
[28]
Brahmer, J.R.; Drake, C.G.; Wollner, I.; Powderly, J.D.; Picus, J.; Sharfman, W.H.; Stankevich, E.; Pons, A.; Salay, T.M.; McMiller, T.L.; Gilson, M.M.; Wang, C.; Selby, M.; Taube, J.M.; Anders, R.; Chen, L.; Korman, A.J.; Pardoll, D.M.; Lowy, I.; Topalian, S.L. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol., 2010, 28(19), 3167-3175.
[http://dx.doi.org/10.1200/JCO.2009.26.7609] [PMID: 20516446]
[29]
Dong, H.; Zhu, G.; Tamada, K.; Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med., 1999, 5(12), 1365-1369.
[http://dx.doi.org/10.1038/70932] [PMID: 10581077]
[30]
Chen, L.; Han, X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J. Clin. Invest., 2015, 125(9), 3384-3391.
[http://dx.doi.org/10.1172/JCI80011] [PMID: 26325035]
[31]
Fu, R.; Carroll, L.; Yahioglu, G.; Aboagye, E.O.; Miller, P.W. Antibody fragment and affibody immunoPET imaging agents: radiolabelling strategies and applications. ChemMedChem, 2018, 13(23), 2466-2478.
[http://dx.doi.org/10.1002/cmdc.201800624] [PMID: 30246488]
[32]
Buckwalter, K.A.; Rydberg, J.; Kopecky, K.K.; Crow, K.; Yang, E.L. Musculoskeletal imaging with multislice CT. AJR Am. J. Roentgenol., 2001, 176(4), 979-986.
[http://dx.doi.org/10.2214/ajr.176.4.1760979] [PMID: 11264094]
[33]
Zonarland, H.M.; Coerkamp, E.G. van de Vijver, van Voorthuisen, A.E. Diagnosis of breast cancer: contribution of US as an adjuvant to mammography. Radiology, 1999, 213, 413-422.
[http://dx.doi.org/10.1148/radiology.213.2.r99nv05413] [PMID: 10551221]
[34]
Leach, M.O.; Boggis, C.R.; Dixon, A.K.; Easton, D.F.; Eeles, R.A.; Evans, D.G.; Gilbert, F.J.; Griebsch, I.; Hoff, R.J.; Kessar, P.; Lakhani, S.R.; Moss, S.M.; Nerurkar, A.; Padhani, A.R.; Pointon, L.J.; Thompson, D.; Warren, R.M. Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS). Lancet, 2005, 365(9473), 1769-1778.
[http://dx.doi.org/10.1016/S0140-6736(05)66481-1] [PMID: 15910949]
[35]
Krüger, S.; Buck, A.K.; Mottaghy, F.M.; Hasenkamp, E.; Pauls, S.; Schumann, C.; Wibmer, T.; Merk, T.; Hombach, V.; Reske, S.N. Detection of bone metastases in patients with lung cancer: 99mTc-MDP planar bone scintigraphy, 18F-fluoride PET or 18F-FDG PET/CT. Eur. J. Nucl. Med. Mol. Imaging, 2009, 36(11), 1807-1812.
[http://dx.doi.org/10.1007/s00259-009-1181-2] [PMID: 19504092]
[36]
Mullan, B.P.; O’Connor, M.K.; Hung, J.C. Single photon emission computed tomography. Neuroimaging Clin. N. Am., 1995, 5(4), 647-673.
[PMID: 8564288]
[37]
Nishii, R.; Volgin, A.Y.; Mawlawi, O.; Mukhopadhyay, U.; Pal, A.; Bornmann, W.; Gelovani, J.G.; Alauddin, M.M. Evaluation of 2′-deoxy-2′-[18F]fluoro-5-methyl-1-β-L: -arabinofuranosyluracil ([18F]-L: -FMAU) as a PET imaging agent for cellular proliferation: comparison with [18F]-D: -FMAU and [18F]FLT. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(5), 990-998.
[http://dx.doi.org/10.1007/s00259-007-0649-1] [PMID: 18057932]
[38]
Alauddin, M.M.; Shahinian, A.; Park, R.; Tohme, M.; Fissekis, J.D.; Conti, P.S. In vivo evaluation of 2′-deoxy-2′-[(18)F]fluoro-5-iodo-1-β-D-arabinofuranosyluracil ([18F]FIAU) and 2′-deoxy-2′-[18F]fluoro-5-ethyl-1-β-D-arabinofuranosyluracil ([18F]FEAU) as markers for suicide gene expression. Eur. J. Nucl. Med. Mol. Imaging, 2007, 34(6), 822-829.
[http://dx.doi.org/10.1007/s00259-006-0305-1] [PMID: 17206416]
[39]
Yu, S. Review of 18F-FDG synthesis and quality control. Biomed Imaging Interv J, 2006, 2(4)e57
[http://dx.doi.org/10.2349/biij.2.4.e57] [PMID: 21614337]
[40]
Almuhaideb, A.; Papathanasiou, N.; Bomanji, J. 18F-FDG PET/CT imaging in oncology. Ann. Saudi Med., 2011, 31(1), 3-13.
[http://dx.doi.org/10.4103/0256-4947.75771] [PMID: 21245592]
[41]
Smith, C.I.E.; Holmdahl, R.; Kämpe, O.; Kärre, K. Nobel prize in physiology or medicine, 2018. Available at: www.nobelprize.org(Accessed Date: August, 2019)
[42]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[43]
Patel, S.P.; Kurzrock, R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther., 2015, 14(4), 847-856.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0983] [PMID: 25695955]
[44]
Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science, 2018, 359(6382), 1350-1355.
[http://dx.doi.org/10.1126/science.aar4060] [PMID: 29567705]
[45]
McLaughlin, J.; Han, G.; Schalper, K.A.; Carvajal-Hausdorf, D.; Pelekanou, V.; Rehman, J.; Velcheti, V.; Herbst, R.; LoRusso, P.; Rimm, D.L. Quantitative assessment of the heterogeneity of PD-L1 expression in non-small cell lung cancer (NSCLC). JAMA Oncol., 2016, 2(1), 46-54.
[http://dx.doi.org/10.1001/jamaoncol.2015.3638] [PMID: 26562159]
[46]
Topalian, S.L.; Sznol, M.; McDermott, D.F.; Kluger, H.M.; Carvajal, R.D.; Sharfman, W.H.; Brahmer, J.R.; Lawrence, D.P.; Atkins, M.B.; Powderly, J.D.; Leming, P.D.; Lipson, E.J.; Puzanov, I.; Smith, D.C.; Taube, J.M.; Wigginton, J.M.; Kollia, G.D.; Gupta, A.; Pardoll, D.M.; Sosman, J.A.; Hodi, F.S.; Xu, H.; Korman, A.J.; Jure-Kunkel, M. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J. Clin. Oncol., 2014, 32(10), 1020-1030.
[http://dx.doi.org/10.1200/JCO.2013.53.0105] [PMID: 24590637]
[47]
Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.M.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; Pitot, H.C.; Hamid, O.; Bhatia, S.; Martins, R.; Eaton, K.; Chen, S.; Salay, T.M.; Alaparthy, S.; Grosso, J.F.; Korman, A.J.; Parker, S.M.; Agrawal, S.; Goldberg, S.M.; Pardoll, D.M.; Gupta, A.; Wigginton, J.M. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med., 2012, 366(26), 2455-2465.
[http://dx.doi.org/10.1056/NEJMoa1200694] [PMID: 22658128]
[48]
Larson, S.M.; Pentlow, K.S.; Volkow, N.D.; Wolf, A.P.; Finn, R.D.; Lambrecht, R.M.; Graham, M.C.; Di Resta, G.; Bendriem, B.; Daghighian, F.; Yeh, S.D.J.; Wang, G-J.; Cheung, N-K.V. PET scanning of iodine-124-3F9 as an approach to tumor dosimetry during treatment planning for radioimmunotherapy in a child with neuroblastoma. J. Nucl. Med., 1992, 33(11), 2020-2023.
[PMID: 1432165]
[49]
Meijs, W.E.; Haisma, H.J.; Klok, R.P.; van Gog, F.B.; Kievit, E.; Pinedo, H.M.; Herscheid, J.D.M. Zirconium-labeled monoclonal antibodies and their distribution in tumor-bearing nude mice. J. Nucl. Med., 1997, 38(1), 112-118.
[PMID: 8998164]
[50]
Divgi, C.R.; Pandit-Taskar, N.; Jungbluth, A.A.; Reuter, V.E.; Gönen, M.; Ruan, S.; Pierre, C.; Nagel, A.; Pryma, D.A.; Humm, J.; Larson, S.M.; Old, L.J.; Russo, P. Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol., 2007, 8(4), 304-310.
[http://dx.doi.org/10.1016/S1470-2045(07)70044-X] [PMID: 17395103]
[51]
Matzku, S.; Kirchgessner, H.; Nissen, M. Iodination of monoclonal IgG antibodies at a sub-stoichiometric level: immunoreactivity changes related to the site of iodine incorporation. Int. J. Rad. Appl. Instrum. B, 1987, 14(5), 451-457.
[http://dx.doi.org/10.1016/0883-2897(87)90109-7] [PMID: 3117738]
[52]
Mather, S.J.; Ward, B.G. High efficiency iodination of monoclonal antibodies for radiotherapy. J. Nucl. Med., 1987, 28(6), 1034-1036.
[PMID: 3585493]
[53]
Harlow, E.; Lane, D. Labeling antibodies with iodine; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, USA, 1999.
[54]
Collingridge, D.R.; Carroll, V.A.; Glaser, M.; Aboagye, E.O.; Osman, S.; Hutchinson, O.C.; Barthel, H.; Luthra, S.K.; Brady, F.; Bicknell, R.; Price, P.; Harris, A.L. The development of [(124)I]iodinated-VG76e: a novel tracer for imaging vascular endothelial growth factor in vivo using positron emission tomography. Cancer Res., 2002, 62(20), 5912-5919.
[PMID: 12384557]
[55]
Tijink, B.M.; Perk, L.R.; Budde, M.; Stigter-van Walsum, M.; Visser, G.W.M.; Kloet, R.W.; Dinkelborg, L.M.; Leemans, C.R.; Neri, D.; van Dongen, G.A.M.S. (124)I-L19-SIP for immuno-PET imaging of tumour vasculature and guidance of (131)I-L19-SIP radioimmunotherapy. Eur. J. Nucl. Med. Mol. Imaging, 2009, 36(8), 1235-1244.
[http://dx.doi.org/10.1007/s00259-009-1096-y] [PMID: 19259661]
[56]
Carrasquillo, J.A.; Pandit-Taskar, N.; O’Donoghue, J.A.; Humm, J.L.; Zanzonico, P.; Smith-Jones, P.M.; Divgi, C.R.; Pryma, D.A.; Ruan, S.; Kemeny, N.E.; Fong, Y.; Wong, D.; Jaggi, J.S.; Scheinberg, D.A.; Gonen, M.; Panageas, K.S.; Ritter, G.; Jungbluth, A.A.; Old, L.J.; Larson, S.M. (124)I-huA33 antibody PET of colorectal cancer. J. Nucl. Med., 2011, 52(8), 1173-1180.
[http://dx.doi.org/10.2967/jnumed.110.086165] [PMID: 21764796]
[57]
O’Donoghue, J.A.; Smith-Jones, P.M.; Humm, J.L.; Ruan, S.; Pryma, D.A.; Jungbluth, A.A.; Divgi, C.R.; Carrasquillo, J.A.; Pandit-Taskar, N.; Fong, Y.; Strong, V.E.; Kemeny, N.E.; Old, L.J.; Larson, S.M. 124I-huA33 antibody uptake is driven by A33 antigen concentration in tissues from colorectal cancer patients imaged by immuno-PET. J. Nucl. Med., 2011, 52(12), 1878-1885.
[http://dx.doi.org/10.2967/jnumed.111.095596] [PMID: 22068895]
[58]
Chacko, A.M.; Li, C.; Nayak, M.; Mikitsh, J.L.; Hu, J.; Hou, C.; Grasso, L.; Nicolaides, N.C.; Muzykantov, V.R.; Divgi, C.R.; Coukos, G. Development of 124I immuno-PET targeting tumor vascular TEM1/endosialin. J. Nucl. Med., 2014, 55(3), 500-507.
[http://dx.doi.org/10.2967/jnumed.113.121905] [PMID: 24525208]
[59]
Divgi, C.R.; O’Donoghue, J.A.; Welt, S.; O’Neel, J.; Finn, R.; Motzer, R.J.; Jungbluth, A.; Hoffman, E.; Ritter, G.; Larson, S.M.; Old, L.J. Phase I clinical trial with fractionated radioimmunotherapy using 131I-labeled chimeric G250 in metastatic renal cancer. J. Nucl. Med., 2004, 45(8), 1412-1421.
[PMID: 15299069]
[60]
Brouwers, A.H.; Buijs, W.C.; Mulders, P.F.; de Mulder, P.H.; van den Broek, W.J.; Mala, C.; Oosterwijk, E.; Boerman, O.C.; Corstens, F.H.; Oyen, W.J. Radioimmunotherapy with [131I]cG250 in patients with metastasized renal cell cancer: dosimetric analysis and immunologic response. Clin. Cancer Res., 2005, 11(19 Pt 2), 7178s-7186s.
[http://dx.doi.org/10.1158/1078-0432.CCR-1004-0010] [PMID: 16203819]
[61]
Divgi, C.R.; Uzzo, R.G.; Gatsonis, C.; Bartz, R.; Treutner, S.; Yu, J.Q.; Chen, D.; Carrasquillo, J.A.; Larson, S.; Bevan, P.; Russo, P. Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT trial. J. Clin. Oncol., 2013, 31(2), 187-194.
[http://dx.doi.org/10.1200/JCO.2011.41.2445] [PMID: 23213092]
[62]
Stillebroer, A.B.; Franssen, G.M.; Mulders, P.F.A.; Oyen, W.J.G.; van Dongen, G.A.M.S.; Laverman, P.; Oosterwijk, E.; Boerman, O.C. ImmunoPET imaging of renal cell carcinoma with (124)I- and (89)Zr-labeled anti-CAIX monoclonal antibody cG250 in mice. Cancer Biother. Radiopharm., 2013, 28(7), 510-515.
[http://dx.doi.org/10.1089/cbr.2013.1487] [PMID: 23697926]
[63]
Verel, I.; Visser, G.W.M.; Boellaard, R.; Stigter-van Walsum, M.; Snow, G.B.; van Dongen, G.A.M.S. 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J. Nucl. Med., 2003, 44(8), 1271-1281.
[PMID: 12902418]
[64]
Vosjan, M.J.W.D.; Perk, L.R.; Visser, G.W.M.; Budde, M.; Jurek, P.; Kiefer, G.E.; van Dongen, G.A.M.S. Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nat. Protoc., 2010, 5(4), 739-743.
[http://dx.doi.org/10.1038/nprot.2010.13] [PMID: 20360768]
[65]
Perk, L.R.; Vosjan, M.J.W.D.; Visser, G.W.M.; Budde, M.; Jurek, P.; Kiefer, G.E.; van Dongen, G.A. p-Isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium-89 for immuno-PET imaging. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(2), 250-259.
[http://dx.doi.org/10.1007/s00259-009-1263-1] [PMID: 19763566]
[66]
Verel, I.; Visser, G.W.M.; Boellaard, R.; Boerman, O.C.; van Eerd, J.; Snow, G.B.; Lammertsma, A.A.; van Dongen, G.A.M.S. Quantitative 89Zr immuno-PET for in vivo scouting of 90Y-labeled monoclonal antibodies in xenograft-bearing nude mice. J. Nucl. Med., 2003, 44(10), 1663-1670.
[PMID: 14530484]
[67]
Perk, L.R.; Stigter-van Walsum, M.; Visser, G.W.M.; Kloet, R.W.; Vosjan, M.J.; Leemans, C.R.; Giaccone, G.; Albano, R.; Comoglio, P.M.; van Dongen, G.A.M.S. Quantitative PET imaging of Met-expressing human cancer xenografts with 89Zr-labelled monoclonal antibody DN30. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(10), 1857-1867.
[http://dx.doi.org/10.1007/s00259-008-0774-5] [PMID: 18491091]
[68]
Brouwers, A.; Verel, I.; Van Eerd, J.; Visser, G.; Steffens, M.; Oosterwijk, E.; Corstens, F.; Oyen, W.; Van Dongen, G.; Boerman, O. PET radioimmunoscintigraphy of renal cell cancer using 89Zr-labeled cG250 monoclonal antibody in nude rats. Cancer Biother. Radiopharm., 2004, 19(2), 155-163.
[http://dx.doi.org/10.1089/108497804323071922] [PMID: 15186595]
[69]
Perk, L.R.; Visser, G.W.M.; Vosjan, M.J.W.D.; Stigter-van Walsum, M.; Tijink, B.M.; Leemans, C.R.; van Dongen, G.A.M.S. (89)Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals (90)Y and (177)Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J. Nucl. Med., 2005, 46(11), 1898-1906.
[PMID: 16269605]
[70]
Perk, L.R.; Visser, O.J.; Stigter-van Walsum, M.; Vosjan, M.J.W.D.; Visser, G.W.M.; Zijlstra, J.M.; Huijgens, P.C.; van Dongen, G.A.M.S. Preparation and evaluation of (89)Zr-Zevalin for monitoring of (90)Y-Zevalin biodistribution with positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging, 2006, 33(11), 1337-1345.
[http://dx.doi.org/10.1007/s00259-006-0160-0] [PMID: 16832633]
[71]
Natarajan, A.; Gambhir, S.S. Radiation dosimetry study of [89Zr]rituximab tracer for clinical translation of B cell NHL imaging using positron emission tomography. Mol. Imaging Biol., 2015, 17(4), 539-547.
[http://dx.doi.org/10.1007/s11307-014-0810-8] [PMID: 25500766]
[72]
Nagengast, W.B.; de Vries, E.G.; Hospers, G.A.; Mulder, N.H.; de Jong, J.R.; Hollema, H.; Brouwers, A.H.; van Dongen, G.A.; Perk, L.R.; Lub-de Hooge, M.N. In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J. Nucl. Med., 2007, 48(8), 1313-1319.
[http://dx.doi.org/10.2967/jnumed.107.041301] [PMID: 17631557]
[73]
Dijkers, E.C.; Oude Munnink, T.H.; Kosterink, J.G.; Brouwers, A.H.; Jager, P.L.; de Jong, J.R.; van Dongen, G.A.; Schröder, C.P.; Lub-de Hooge, M.N.; de Vries, E.G. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin. Pharmacol. Ther., 2010, 87(5), 586-592.
[http://dx.doi.org/10.1038/clpt.2010.12] [PMID: 20357763]
[74]
de Bree, R.; Roos, J.C.; Quak, J.J.; den Hollander, W.; Snow, G.B.; van Dongen, G.A.M.S. Radioimmunoscintigraphy and biodistribution of technetium-99m-labeled monoclonal antibody U36 in patients with head and neck cancer. Clin. Cancer Res., 1995, 1(6), 591-598.
[PMID: 9816020]
[75]
Börjesson, P.K.E.; Jauw, Y.W.S.; Boellaard, R.; de Bree, R.; Comans, E.F.I.; Roos, J.C.; Castelijns, J.A.; Vosjan, M.J.W.D.; Kummer, J.A.; Leemans, C.R.; Lammertsma, A.A.; van Dongen, G.A.M.S. Performance of immuno-positron emission tomography with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Clin. Cancer Res., 2006, 12(7 Pt 1), 2133-2140.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2137] [PMID: 16609026]
[76]
Cheal, S.M.; Punzalan, B.; Doran, M.G.; Evans, M.J.; Osborne, J.R.; Lewis, J.S.; Zanzonico, P.; Larson, S.M. Pairwise comparison of 89Zr- and 124I-labeled cG250 based on positron emission tomography imaging and nonlinear immunokinetic modeling: in vivo carbonic anhydrase IX receptor binding and internalization in mouse xenografts of clear-cell renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(5), 985-994.
[http://dx.doi.org/10.1007/s00259-013-2679-1] [PMID: 24604591]
[77]
Hekman, M.C.H.; Rijpkema, M.; Aarntzen, E.H.; Mulder, S.F.; Langenhuijsen, J.F.; Oosterwijk, E.; Boerman, O.C.; Oyen, W.J.G.; Mulders, P.F.A. Positron emission tomography/computed tomography with 89Zr-girentuximab can aid in diagnostic dilemmas of clear cell renal cell carcinoma suspicion. Eur. Urol., 2018, 74(3), 257-260.
[http://dx.doi.org/10.1016/j.eururo.2018.04.026] [PMID: 29730017]
[78]
Mendelsohn, J.; Baselga, J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J. Clin. Oncol., 2003, 21(14), 2787-2799.
[http://dx.doi.org/10.1200/JCO.2003.01.504] [PMID: 12860957]
[79]
Saltz, L.B.; Meropol, N.J.; Loehrer, P.J., Sr; Needle, M.N.; Kopit, J.; Mayer, R.J. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J. Clin. Oncol., 2004, 22(7), 1201-1208.
[http://dx.doi.org/10.1200/JCO.2004.10.182] [PMID: 14993230]
[80]
Witzig, T.E.; Gordon, L.I.; Cabanillas, F.; Czuczman, M.S.; Emmanouilides, C.; Joyce, R.; Pohlman, B.L.; Bartlett, N.L.; Wiseman, G.A.; Padre, N.; Grillo-López, A.J.; Multani, P.; White, C.A. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J. Clin. Oncol., 2002, 20(10), 2453-2463.
[http://dx.doi.org/10.1200/JCO.2002.11.076] [PMID: 12011122]
[81]
Nagengast, W.B.; de Korte, M.A.; Oude Munnink, T.H.; Timmer-Bosscha, H.; den Dunnen, W.F.; Hollema, H.; de Jong, J.R.; Jensen, M.R.; Quadt, C.; Garcia-Echeverria, C.; van Dongen, G.A.M.S.; Lub-de Hooge, M.N.; Schröder, C.P.; de Vries, E.G.E. 89Zr-bevacizumab PET of early antiangiogenic tumor response to treatment with HSP90 inhibitor NVP-AUY922. J. Nucl. Med., 2010, 51(5), 761-767.
[http://dx.doi.org/10.2967/jnumed.109.071043] [PMID: 20395337]
[82]
Bahce, I.; Huisman, M.C.; Verwer, E.E.; Ooijevaar, R.; Boutkourt, F.; Vugts, D.J.; van Dongen, G.A.M.S.; Boellaard, R.; Smit, E.F. Pilot study of (89)Zr-bevacizumab positron emission tomography in patients with advanced non-small cell lung cancer. EJNMMI Res., 2014, 4(1), 35.
[http://dx.doi.org/10.1186/s13550-014-0035-5] [PMID: 26055936]
[83]
Bahce, I.; Yaqub, M.; Smit, E.F.; Lammertsma, A.A.; van Dongen, G.A.M.S.; Hendrikse, N.H. Personalizing NSCLC therapy by characterizing tumors using TKI-PET and immuno-PET. Lung Cancer, 2017, 107, 1-13.
[http://dx.doi.org/10.1016/j.lungcan.2016.05.025] [PMID: 27319335]
[84]
Dijkers, E.C.F.; Kosterink, J.G.W.; Rademaker, A.P.; Perk, L.R.; van Dongen, G.A.M.S.; Bart, J.; de Jong, J.R.; de Vries, E.G.E.; Lub-de Hooge, M.N. Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J. Nucl. Med., 2009, 50(6), 974-981.
[http://dx.doi.org/10.2967/jnumed.108.060392] [PMID: 19443585]
[85]
Holland, J.P.; Caldas-Lopes, E.; Divilov, V.; Longo, V.A.; Taldone, T.; Zatorska, D.; Chiosis, G.; Lewis, J.S. Measuring the pharmacodynamic effects of a novel Hsp90 inhibitor on HER2/neu expression in mice using Zr-DFO-trastuzumab. PLoS One, 2010, 5(1)e8859
[http://dx.doi.org/10.1371/journal.pone.0008859] [PMID: 20111600]
[86]
Chang, A.J.; Desilva, R.; Jain, S.; Lears, K.; Rogers, B.; Lapi, S. 89Zr-radiolabeled trastuzumab imaging in orthotopic and metastatic breast tumors. Pharmaceuticals (Basel), 2012, 5(1), 79-93.
[http://dx.doi.org/10.3390/ph5010079] [PMID: 24288044]
[87]
Adumeau, P.; Sharma, S.K.; Brent, C.; Zeglis, B.M. Site-specifically labeled immunoconjugates for molecular imaging-Part 1: Cysteine residues and glycans. Mol. Imaging Biol., 2016, 18(1), 1-17.
[http://dx.doi.org/10.1007/s11307-015-0919-4] [PMID: 26754790]
[88]
Adumeau, P.; Vivier, D.; Sharma, S.K.; Wang, J.; Zhang, T.; Chen, A.; Brian, J. Agnew, B.J.; Zeglis, B.M. Site-specifically labeled antibody−drug conjugate for simultaneous therapy and immune-PET. Mol. Pharm., 2018, 15, 892-898.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00802] [PMID: 29356543]
[89]
Zeglis, B.M.; Davis, C.B.; Aggeler, R.; Kang, H.C.; Chen, A.; Agnew, B.J.; Lewis, J.S. Enzyme-mediated methodology for the site-specific radiolabeling of antibodies based on catalyst-free click chemistry. Bioconjug. Chem., 2013, 24(6), 1057-1067.
[http://dx.doi.org/10.1021/bc400122c] [PMID: 23688208]
[90]
Sharma, S.K.; Sevak, K.K.; Monette, S.; Carlin, S.D.; Knight, J.C.; Wuest, F.R.; Sala, E.; Zeglis, B.M.; Lewis, J.S. Preclinical 89Zr immuno-PET of high-grade serous ovarian cancer and lymph node metastasis. J. Nucl. Med., 2016, 57(5), 771-776.
[http://dx.doi.org/10.2967/jnumed.115.167072] [PMID: 26837339]
[91]
Sawada, R.; Sun, S.M.; Wu, X.; Hong, F.; Ragupathi, G.; Livingston, P.O.; Scholz, W.W. Human monoclonal antibodies to sialyl-Lewis (CA19.9) with potent CDC, ADCC, and antitumor activity. Clin. Cancer Res., 2011, 17(5), 1024-1032.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2640] [PMID: 21343375]
[92]
Viola-Villegas, N.T.; Rice, S.L.; Carlin, S.; Wu, X.; Evans, M.J.; Sevak, K.K.; Drobjnak, M.; Ragupathi, G.; Sawada, R.; Scholz, W.W.; Livingston, P.O.; Lewis, J.S. Applying PET to broaden the diagnostic utility of the clinically validated CA19.9 serum biomarker for oncology. J. Nucl. Med., 2013, 54(11), 1876-1882.
[http://dx.doi.org/10.2967/jnumed.113.119867] [PMID: 24029655]
[93]
Escorcia, F.E.; Steckler, J.M.; Abdel-Atti, D.; Price, E.W.; Carlin, S.D.; Scholz, W.W.; Lewis, J.S.; Houghton, J.L. Tumor-specific Zr-89 immuno-PET imaging in a human bladder cancer model. Mol. Imaging Biol., 2018, 20(5), 808-815.
[http://dx.doi.org/10.1007/s11307-018-1177-z] [PMID: 29508263]
[94]
Holland, J.P.; Divilov, V.; Bander, N.H.; Smith-Jones, P.M.; Larson, S.M.; Lewis, J.S. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J. Nucl. Med., 2010, 51(8), 1293-1300.
[http://dx.doi.org/10.2967/jnumed.110.076174] [PMID: 20660376]
[95]
Nayak, T.K.; Garmestani, K.; Milenic, D.E.; Brechbiel, M.W. PET and MRI of metastatic peritoneal and pulmonary colorectal cancer in mice with human epidermal growth factor receptor 1-targeted 89Zr-labeled panitumumab. J. Nucl. Med., 2012, 53(1), 113-120.
[http://dx.doi.org/10.2967/jnumed.111.094169] [PMID: 22213822]
[96]
Bhattacharyya, S.; Kurdziel, K.; Wei, L.; Riffle, L.; Kaur, G.; Hill, G.C.; Jacobs, P.M.; Tatum, J.L.; Doroshow, J.H.; Kalen, J.D. Zirconium-89 labeled panitumumab: a potential immuno-PET probe for HER1-expressing carcinomas. Nucl. Med. Biol., 2013, 40(4), 451-457.
[http://dx.doi.org/10.1016/j.nucmedbio.2013.01.007] [PMID: 23454247]
[97]
Wei, L.; Shi, J.; Afari, G.; Bhattacharyya, S. Preparation of clinical-grade (89) Zr-panitumumab as a positron emission tomography biomarker for evaluating epidermal growth factor receptor-targeted therapy. J. Labelled Comp. Radiopharm., 2014, 57(1), 25-35.
[http://dx.doi.org/10.1002/jlcr.3134] [PMID: 24448743]
[98]
Cheal, S.M.; Ruan, S.; Veach, D.R.; Longo, V.A.; Punzalan, B.J.; Wu, J.; Fung, E.K.; Kelly, M.P.; Kirshner, J.R.; Giurleo, J.T.; Ehrlich, G.; Han, A.Q.; Thurston, G.; Olson, W.C.; Zanzonico, P.B.; Larson, S.M.; Carrasquillo, J.A. ImmunoPET imaging of endogenous and transfected prolactin receptor tumor xenografts. Mol. Pharm., 2018, 15(6), 2133-2141.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b01133] [PMID: 29684277]
[99]
Maisel, D.; Birzele, F.; Voss, E.; Nopora, A.; Bader, S.; Friess, T.; Goller, B.; Laifenfeld, D.; Weigand, S.; Runza, V. Targeting tumor cells with anti-CD44 antibody triggers macrophage-mediated immune modulatory effects in a cancer xenograft model. PLoS One, 2016, 11(7)e0159716
[http://dx.doi.org/10.1371/journal.pone.0159716] [PMID: 27463372]
[100]
Vugts, D.J.; Heuveling, D.A.; Stigter-van Walsum, M.; Weigand, S.; Bergstrom, M.; van Dongen, G.A.; Nayak, T.K.; Nayak, T.K. Preclinical evaluation of 89Zr-labeled anti-CD44 monoclonal antibody RG7356 in mice and cynomolgus monkeys: Prelude to Phase 1 clinical studies. MAbs, 2014, 6(2), 567-575.
[http://dx.doi.org/10.4161/mabs.27415] [PMID: 24492295]
[101]
Jauw, Y.W.S.; Huisman, M.C.; Nayak, T.K.; Vugts, D.J.; Christen, R.; Naegelen, V.M.; Ruettinger, D.; Heil, F.; Lammertsma, A.A.; Verheul, H.M.W.; Hoekstra, O.S.; van Dongen, G.A.M.S. Menke-van der Houven van Oordt, C.W. Assessment of target-mediated uptake with immuno-PET: analysis of a phase I clinical trial with an anti-CD44 antibody. EJNMMI Res., 2018, 8(1), 6.
[http://dx.doi.org/10.1186/s13550-018-0358-8] [PMID: 29356983]
[102]
Rylova, S.N.; Del Pozzo, L.; Klingeberg, C.; Tönnesmann, R.; Illert, A.L.; Meyer, P.T.; Maecke, H.R.; Holland, J.P. Immuno-PET imaging of CD30-positive lymphoma using 89Zr-desferrioxamine–labeled CD30-specific AC-10 antibody. J. Nucl. Med., 2016, 57(1), 96-102.
[http://dx.doi.org/10.2967/jnumed.115.162735] [PMID: 26514172]
[103]
Tavaré, R.; McCracken, M.N.; Zettlitz, K.A.; Salazar, F.B.; Olafsen, T.; Witte, O.N.; Wu, A.M. Immuno-PET of murine T cell reconstitution post-adoptive stem cell transplantation using anti-CD4 and anti-CD8 cys-diabodies. J. Nucl. Med., 2015, 56(8), 1258-1264.
[http://dx.doi.org/10.2967/jnumed.114.153338] [PMID: 25952734]
[104]
Freise, A.C.; Zettlitz, K.A.; Salazar, F.B.; Lu, X.; Tavaré, R.; Wu, A.M. ImmunoPET imaging of murine CD4+ T cells using anti-CD4 cys-diabody: Effects of protein dose on T cell function and imaging. Mol. Imaging Biol., 2017, 19(4), 599-609.
[http://dx.doi.org/10.1007/s11307-016-1032-z] [PMID: 27966069]
[105]
Beckford Vera, D.R.; Smith, C.C.; Bixby, L.M.; Glatt, D.M.; Dunn, S.S.; Saito, R.; Kim, W.Y.; Serody, J.S.; Vincent, B.G.; Parrott, M.C. Immuno-PET imaging of tumor-infiltrating lymphocytes using zirconium-89 radiolabeled anti-CD3 antibody in immune-competent mice bearing syngeneic tumors. PLoS One, 2018, 13(3)e0193832
[http://dx.doi.org/10.1371/journal.pone.0193832] [PMID: 29513764]
[106]
Li, D.; Cheng, S.; Zou, S.; Zhu, D.; Zhu, T.; Wang, P.; Zhu, X. Immuno-PET imaging of 89Zr labeled anti-PD-L1 domain antibody. Mol. Pharm., 2018, 15(4)(Suppl. 1), 1674-1681.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00062] [PMID: 29502426]
[107]
Niemeijer, A.N.; Leung, D.; Huisman, M.C.; Bahce, I.; Hoekstra, O.S.; van Dongen, G.A.M.S.; Boellaard, R.; Du, S.; Hayes, W.; Smith, R.; Windhorst, A.D.; Hendrikse, N.H.; Poot, A.; Vugts, D.J.; Thunnissen, E.; Morin, P.; Lipovsek, D.; Donnelly, D.J.; Bonacorsi, S.J.; Velasquez, L.M.; de Gruijl, T.D.; Smit, E.F.; de Langen, A.J. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat. Commun., 2018, 9(1), 4664.
[http://dx.doi.org/10.1038/s41467-018-07131-y] [PMID: 30405135]
[108]
Waaijer, S.J.H.; Warnders, F.J.; Stienen, S.; Friedrich, M.; Sternjak, A.; Cheung, H.K.; van Scheltinga, A.G.T.T.; Schröder, C.P.; de Vries, E.G.E.; Lub-de Hooge, M.N. Molecular imaging of radiolabeled bispecific T-cell engager 89Zr-AMG 211 targeting CEA-positive Tumors. Clin. Cancer Res., 2018, 24(20), 4988-4996.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0786] [PMID: 29980531]
[109]
Anderson, C.J.; Connett, J.M.; Schwarz, S.W.; Rocque, P.A.; Guo, L.W.; Philpott, G.W.; Zinn, K.R.; Meares, C.F.; Welch, M.J. Copper-64-labeled antibodies for PET imaging. J. Nucl. Med., 1992, 33(9), 1685-1691.
[PMID: 1517844]
[110]
Anderson, C.J.; Schwarz, S.W.; Connett, J.M.; Cutler, P.D.; Guo, L.W.; Germain, C.J.; Philpott, G.W.; Zinn, K.R.; Greiner, D.P.; Meares, C.F.; Welch, M.J. Preparation, biodistribution and dosimetry of copper-64-labeled anti-colorectal carcinoma monoclonal antibody fragments 1A3-F(ab’)2. J. Nucl. Med., 1995, 36(5), 850-858.
[PMID: 7738663]
[111]
Philpott, G.W.; Schwarz, S.W.; Anderson, C.J.; Dehdashti, F.; Connett, J.M.; Zinn, K.R.; Meares, C.F.; Cutler, P.D.; Welch, M.W.; Siegel, B.A. Initial clinical study of Cu-64-labeled anticolon-carcinoma monoclonal antibody (MAb1A3) in colorectal cancer. J. Nucl. Med., 1995, 36, 1818-1824.
[PMID: 7562049]
[112]
Cai, W.; Chen, K.; Mohamedali, K.A.; Cao, Q.; Gambhir, S.S.; Rosenblum, M.G.; Chen, X. PET of vascular endothelial growth factor receptor expression. J. Nucl. Med., 2006, 47(12), 2048-2056.
[PMID: 17138749]
[113]
Niu, G.; Li, Z.; Cao, Q.; Chen, X. Monitoring therapeutic response of human ovarian cancer to 17-DMAG by noninvasive PET imaging with (64)Cu-DOTA-trastuzumab. Eur. J. Nucl. Med. Mol. Imaging, 2009, 36(9), 1510-1519.
[http://dx.doi.org/10.1007/s00259-009-1158-1] [PMID: 19440708]
[114]
Paudyal, P.; Paudyal, B.; Hanaoka, H.; Oriuchi, N.; Iida, Y.; Yoshioka, H.; Tominaga, H.; Watanabe, S.; Watanabe, S.; Ishioka, N.S.; Endo, K. Imaging and biodistribution of Her2/neu expression in non-small cell lung cancer xenografts with Cu-labeled trastuzumab PET. Cancer Sci., 2010, 101(4), 1045-1050.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01480.x] [PMID: 20219072]
[115]
Schjoeth-Eskesen, C.; Nielsen, C.H.; Heissel, S.; Højrup, P.; Hansen, P.R.; Gillings, N.; Kjaer, A. [(64) Cu]-labelled trastuzumab: optimisation of labelling by DOTA and NODAGA conjugation and initial evaluation in mice. J. Labelled Comp. Radiopharm., 2015, 58(6), 227-233.
[http://dx.doi.org/10.1002/jlcr.3287] [PMID: 25906708]
[116]
Tamura, K.; Kurihara, H.; Yonemori, K.; Tsuda, H.; Suzuki, J.; Kono, Y.; Honda, N.; Kodaira, M.; Yamamoto, H.; Yunokawa, M.; Shimizu, C.; Hasegawa, K.; Kanayama, Y.; Nozaki, S.; Kinoshita, T.; Wada, Y.; Tazawa, S.; Takahashi, K.; Watanabe, Y.; Fujiwara, Y. 64Cu-DOTA-trastuzumab PET imaging in patients with HER2-positive breast cancer. J. Nucl. Med., 2013, 54(11), 1869-1875.
[http://dx.doi.org/10.2967/jnumed.112.118612] [PMID: 24029656]
[117]
Mortimer, J.E.; Bading, J.R.; Colcher, D.M.; Conti, P.S.; Frankel, P.H.; Carroll, M.I.; Tong, S.; Poku, E.; Miles, J.K.; Shively, J.E.; Raubitschek, A.A. Functional imaging of human epidermal growth factor receptor 2-positive metastatic breast cancer using (64)Cu-DOTA-trastuzumab PET. J. Nucl. Med., 2014, 55(1), 23-29.
[http://dx.doi.org/10.2967/jnumed.113.122630] [PMID: 24337604]
[118]
Mortimer, J.E.; Bading, J.R.; Park, J.M.; Frankel, P.H.; Carroll, M.I.; Tran, T.T.; Poku, E.K.; Rockne, R.C.; Raubitschek, A.A.; Shively, J.E.; Colcher, D.M. Tumor uptake of 64Cu-DOTA-trastuzumab in patients with metastatic breast cancer. J. Nucl. Med., 2018, 59(1), 38-43.
[http://dx.doi.org/10.2967/jnumed.117.193888] [PMID: 28637802]
[119]
Wang, H.; Li, D.; Liu, S.; Liu, R.; Yuan, H.; Krasnoperov, V.; Shan, H.; Conti, P.S.; Gill, P.S.; Li, Z. Li1, Z. Small-animal PET imaging of pancreatic cancer xenografts using a 64Cu-labeled monoclonal antibody, mAb159. J. Nucl. Med., 2015, 56(6), 908-913.
[http://dx.doi.org/10.2967/jnumed.115.155812] [PMID: 25908833]
[120]
Mayer, A.T.; Natarajan, A.; Gordon, S.R.; Maute, R.L.; McCracken, M.N.; Ring, A.M.; Weissman, I.L.; Gambhir, S.S. Practical immuno-PET radiotracer design considerations for human immune checkpoint imaging. J. Nucl. Med., 2017, 58(4), 538-546.
[http://dx.doi.org/10.2967/jnumed.116.177659] [PMID: 27980047]
[121]
Shimizu, T.; Seto, T.; Hirai, F.; Takenoyama, M.; Nosaki, K.; Tsurutani, J.; Kaneda, H.; Iwasa, T.; Kawakami, H.; Noguchi, K.; Shimamoto, T.; Nakagawa, K. Phase 1 study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in Japanese patients with advanced solid tumors. Invest. New Drugs, 2016, 34(3), 347-354.
[http://dx.doi.org/10.1007/s10637-016-0347-6] [PMID: 27000274]
[122]
Natarajan, A.; Patel, C.B.; Habte, F.; Gambhir, S.S. Dosimetry prediction for clinical translation of 64Cu-pembrolizumab immunoPET targeting human PD-1 expression. Sci. Rep., 2018, 8(1), 633.
[http://dx.doi.org/10.1038/s41598-017-19123-x] [PMID: 29330552]
[123]
Song, I.H.; Noh, Y.; Kwon, J.; Jung, J.H.; Lee, B.C.; Kim, K.I.; Lee, Y.J.; Kang, J.H.; Rhee, C.S.; Lee, C.H.; Lee, T.S.; Choi, I.J. Immuno-PET imaging based radioimmunotherapy in head and neck squamous cell carcinoma model. Oncotarget, 2017, 8(54), 92090-92105.
[http://dx.doi.org/10.18632/oncotarget.20760] [PMID: 29190900]