[1]
WHO World Malaria Report. 2018. World Health Organization: Geneva, 2018.
[23]
Peyton, D.H.; Burgess, S.J. Quinoline derivatives & uses thereof. 2006. WO 2006/088541A2, November 15 2016.
[36]
(a)De, D.; Krogstad, F.M.; Byers, L.D.; Krogstad, D.J. Structure-activity relationships for antiplasmodial activity among 7-substituted 4-aminoquinolines.
J. Med. Chem., 1998,
41(25), 4918-4926.
[
http://dx.doi.org/10.1021/jm980146x] [PMID:
9836608]
(b)Musonda, C.C.; Little, S.; Yardley, V.; Chibale, K. Application of multicomponent reactions to antimalarial drug discovery. Part 3: discovery of aminoxazole 4-aminoquinolines with potent antiplasmodial activity
in vitro. Bioorg. Med. Chem. Lett., 2007,
17(17), 4733-4736.
[
http://dx.doi.org/10.1016/j.bmcl.2007.06.070] [PMID:
17644333]
(c)De, D.; Byers, L.D.; Krogstad, D.J. Antimalarial: Synthesis of 4-aminoquinolines that circumvent resistance in malarial parasite.
J. Heterocycl. Chem., 1997,
34, 315-320.
[
http://dx.doi.org/10.1002/jhet.5570340149]
(d)Stocks, P.A.; Raynes, K.J.; Bray, P.G.; Park, B.K.; O’Neill, P.M.; Ward, S.A. Novel short chain chloroquine analogues retain activity against chloroquine resistant K1 Plasmodium falciparum.
J. Med. Chem., 2002,
45(23), 4975-4983.
[
http://dx.doi.org/10.1021/jm0108707] [PMID:
12408708]
(e)Biot, C.; Daher, W.; Ndiaye, C.M.; Melnyk, P.; Pradines, B.; Chavain, N.; Pellet, A.; Fraisse, L.; Pelinski, L.; Jarry, C.; Brocard, J.; Khalife, J.; Forfar-Bares, I.; Dive, D. Probing the role of the covalent linkage of ferrocene into a chloroquine template.
J. Med. Chem., 2006,
49(15), 4707-4714.
[PMID:
16854077]
[64]
Hofheinz, W.; Jaquet, C.; Jolidon, S. Aminochinoline derivates useful in the treatment of malaria. Patent: EP0656353 1995.
[108]
Bignelli, P. Aldureids of ethylic acetoacetate and ethylic oxaloacetate. Gazz. Chim. Ital., 1893, 23, 360-416.
[114]
Medlen, C.E.; Chibale, K; de Melo, S.C. Quinoline derivatives for use in the inhibition of the growth of tumour cells PCT Int. Appl., Patent: WO2008135886, November 13th 2008.
[117]
lliashevsky, O.; Amir, L.; Glaser, R.; Marks, R.S.; Lemcoff, N.G. Synthesis, characterization and protein binding properties of supported dendrons. J. Mater. Chem., 2009, 16, 6616-6622.
[119]
Jiricek, J.; Patel, S.; Keller, T.H.; Barry, C.E., III; Dowd, C.S. Nitroimidazole compounds. PCT Int. Appl., Patent: WO20080275035 2008.
[125]
Ansari, M.; Craig, J.C. A convenient, short synthesis of desethylchloroquine [7-chloro-4-(4`-ethylamino-1`-methyl-butyl-amino)-quinoline. Synthe., 1995, 02, 147-149.
[141]
Rawat, D.S.; Manohar, S.; Rajesh, U.C. Aminoquinoline based hybrids and uses thereof. Indian Patent Application No. 661/DEL/2012 2012.
[150]
Tallarida, R.J.; Murray, R.B. Dunnett’s test Comparision with a control. In manual of pharmacology calculations; Springer: New York, 1987.
[194]
Cosledan, F.; Pellet, A.; Meunier, B. French Patent Application, FR06/05235 2006.
[204]
Bright, G.M.; Nagel, A.A.; Bordner, J.; Desai, K.A.; Dibrino, J.N.; Nowakowska, J.; Vincent, L.; Watrous, R.M.; Sciavolino, F.C.; English, A.R. Synthesis, in vitro and in vivo activity of novel 9-deoxo-9a-AZA-9a-homoerythromycin A derivatives; a new class of macrolide antibiotics, the azalides. J. Antibiot. , 1988, 41, 1029-1047.
[205]
Krajacić, M.B.; Kujundzić, N.; Dumić, M.; Cindrić, M.; Brajsa, K.; Metelko, B.; Novak, P. Synthesis, characterization and in vitro antimicrobial activity of novel sulfonylureas of 15-membered azalides. J. Antibiot. , 2005, 58, 380-389.
[206]
Mercep, M.; Mesic, M.; Tomaskovic, L. Compounds with antiinflamatory activity. Patent: US 7579334 B2 2009.