3-O-Acyl Triterpenoids and Antileishmanial Effect of the Ethanolic Extract from Mimosa caesalpiniifolia Inflorescences

Page: [1225 - 1230] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Background: Mimosa caesalpiniifolia Benth. (Mimosaceae) is a native plant from Brazilian Caatinga/Cerrado used in the traditional medicine. The aim of this work was to investigate the chemical composition and the antileishmanial activity of the inflorescences from M. caesalpiniifolia.

Methods: The ethanolic extract from M. caesalpiniifolia inflorescences was submitted to fractionation in silica gel chromatography column, and the known structures were elucidated using spectroscopic methods. The antileishmanial activity of the EtOH extract and pure compounds was evaluated against the promastigote forms of Leishmania amazonensis.

Results: In this study, the EtOH extract from M. caesalpiniifolia inflorescences (IC50 = 74.52 μg mL-1) and lupeol (IC50 = 15.40 μg mL-1) demonstrated significant inhibition of the growth at 48 h for promastigote forms of L. amazonensis when compared with Glucantime® (IC50 = 1190.21 μg mL-1), a reference drug. Moreover, the cytotoxicity evaluation of EtOH extract of M. caesalpiniifolia inflorescences against murine peritoneal macrophages was also determined. Then, the selectivity index shows that the EtOH extract of M. caesalpiniifolia inflorescences is more toxic to the parasite than mammalian host cells. The chemical characterization of the ethanolic extract from M. caesalpiniifolia inflorescences resulted in the identification of fatty acids and isoprenoids as lupeol acetate, lupeol, β-amyrin, a mixture of steroids and a mixture of fatty acid triterpenyl esters. 3-O-Acyl triterpenoids are being reported for the first time in M. caesalpiniifolia.

Conclusion: The EtOH extract of M. caesalpiniifolia inflorescences is a rich source of triterpenoids and a promising natural product against leishmaniasis.

Keywords: Mimosa caesalpiniifolia, Fabaceae, isoprenoids, triterpenyl esters, Leishmania (Leishmania) amazonensis, macrophages, antileishmanial compounds.

Graphical Abstract

[1]
Grether, R. Nomenclatural changes in the Genus mimosa (Fabaceae, Mimosoideae) in Southern Mexico and Central America. Novon, 2000, 10, 29-37.
[http://dx.doi.org/10.2307/3393180]
[2]
Monção, N.B.N.; Araújo, B.Q.; Citó, A.M.G.L. Exploring the chemistry of natural products and biological properties of Mimosa Linnaeus genus (Fabaceae-Mimosoideae). Rev. Virtual Quim., 2019, 11, 970-1010.
[http://dx.doi.org/10.21577/1984-6835.20190067]
[3]
de Albuquerque, U.P.; Muniz de Medeiros, P.; de Almeida, A.L.; Monteiro, J.M.; Machado de Freitas Lins Neto, E.; Gomes de Melo, J.; dos Santos, J.P. Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: A quantitative approach. J. Ethnopharmacol., 2007, 114(3), 325-354.
[http://dx.doi.org/10.1016/j.jep.2007.08.017] [PMID: 17900836]
[4]
Monção, N.B.N.; Costa, L.M.; Arcanjo, D.D.R.; Araújo, B.Q. Lustosa, Mdo.C.; Rodrigues, K.A.; Carvalho, F.A.; Costa, A.P.; Lopes Citó, A.M. Chemical constituents and toxicological studies of leaves from Mimosa caesalpiniifolia Benth., A Brazilian honey plant. Pharmacogn. Mag., 2014, 10(Suppl. 3), S456-S462.
[http://dx.doi.org/10.4103/0973-1296.139773] [PMID: 25298660]
[5]
Alencar, J.W.; Rouquayrol, P.A.; Matos, F.J.A. Ácido morólico em Mimosa caesalpiniaefolia. An. Acad. Bras. Cienc., 1970, 42, 93-94.
[6]
Alencar, J.W.; Braz-Filho, R.; Machado, M.I.L. 3-O-Arabinosyl-morolic acid from Mimosa caesalpiniaefolia. Rev. Latinoam. Quím., 1976, 7, 44-49.
[7]
Monção, N.B.N.; Araújo, B.Q.; Silva, J.N.; Lima, D.J.; Ferreira, P.M.; Airoldi, F.P.; Pessoa, C.; Citó, A.M. Assessing chemical constituents of Mimosa caesalpiniifolia stem bark: Possible bioactive components accountable for the cytotoxic effect of M. caesalpiniifolia on human tumour cell lines. Molecules, 2015, 20(3), 4204-4224.
[http://dx.doi.org/10.3390/molecules20034204] [PMID: 25751783]
[8]
Dias Silva, M.J.; Simonet, A.M.; Silva, N.C.; Dias, A.L.T.; Vilegas, W.; Macías, F.A. Bioassay-guided isolation of fungistatic compounds from Mimosa caesalpiniifolia leaves. J. Nat. Prod., 2019, 82, 1496-1502.
[http://dx.doi.org/10.1021/acs.jnatprod.8b01025] [PMID: 31244146]
[9]
Moraes, M.O.; Fonteles, M.C.; Moraes, M.E.A.; Machado, M.L.; Matos, F.J.A. Screening for anticancer activity of plants from the northeast of Brazil. Fitoterapia, 1997, 68, 235-239.
[10]
Silva, M.J.D.; Carvalho, A.J.S.; Rocha, C.Q.; Vilegas, W.; Silva, M.A.; Gouvêa, C.M.C.P. Ethanolic extract of Mimosa caesalpiniifolia leaves: Chemical characterization and cytotoxic effect on human breast cancer MCF-7 cell line. S. Afr. J. Bot., 2014, 93, 64-69.
[http://dx.doi.org/10.1016/j.sajb.2014.03.011]
[11]
Santos, M.E.P.; Moura, L.H.P.; Mendes, M.B.; Arcanjo, D.D.R.; Monção, N.B.N.; Araújo, B.Q.; Lopes, J.A.D.; Silva-Filho, J.C.; Fernandes, R.M.; Oliveira, R.C.M.; Citó, A.M.G.L.; Oliveira, A.P. Hypotensive and vasorelaxant effects induced by the ethanolic extract of the Mimosa caesalpiniifolia Benth. (Mimosaceae) inflorescences in normotensive rats. J. Ethnopharmacol., 2015, 164, 120-128.
[http://dx.doi.org/10.1016/j.jep.2015.02.008] [PMID: 25683301]
[12]
Silva, M.J.D.; Vilegas, W.; da Silva, M.A.; Paiotti, A.P.R.; Pastrelo, M.M.; Ruiz, P.L.M.; de Moura, C.F.G.; Oshima, C.T.F.; Ribeiro, D.A. The anti-infammatory potential of Mimosa caesalpiniifolia following experimental colitis: Role of COX-2 and TNF-alpha expression. Drug Res. (Stuttg.), 2018, 68(4), 196-204.
[http://dx.doi.org/10.1055/s-0043-119750] [PMID: 28992661]
[13]
Yulin, R.; Chen, X. Distribution, bioactivities and therapeutical potentials of pentagalloylglucopyranose. Curr. Bioact. Compd., 2007, 3, 81-88.
[http://dx.doi.org/10.2174/157340707780809635]
[14]
Arias, A.R.; Pandolfi, E.; Vega, M.C.; Rolón, M. Selected natural and synthetic phenolic compounds with antileishmanial activity: A five-year review. Curr. Bioact. Compd., 2012, 8, 307-333.
[http://dx.doi.org/10.2174/1573407211208040002]
[15]
Navina, R.; Lee, Y.G.; Kim, S.M. Molecular biological roles of ursolic acid in the treatment of human diseases. Curr. Bioact. Compd., 2017, 13, 177-185.
[http://dx.doi.org/10.2174/1573407213666161216111731]
[16]
Chaves, R.X.; Quelemes, P.V.; Leite, L.M.; Aquino, D.S.A.; Amorim, L.V.; Rodrigues, K.A.F.; Campelo, Y.D.M.; Veras, L.M.C.; Bemquerer, M.P.; Ramos-Jesus, J.; Arcanjo, D.D.R.; Carvalho, F.A.A.; Kückelhaus, S.A.S.; Leite, J.R.S.A. Antileishmanial and immunomodulatory effects of dermaseptin-01, a promising peptide against Leishmania amazonensis. Curr. Bioact. Compd., 2017, 13, 305-311.
[http://dx.doi.org/10.2174/1573407212666161014131415]
[17]
Dias, C.N.; Rodrigues, K.A.; Carvalho, F.A.; Carneiro, S.M.; Maia, J.G.; Andrade, E.H.; Moraes, D.F. Molluscicidal and leishmanicidal activity of the leaf essential oil of Syzygium cumini (L.) skeels from Brazil. Chem. Biodivers., 2013, 10(6), 1133-1141.
[http://dx.doi.org/10.1002/cbdv.201200292] [PMID: 23776029]
[18]
Néris, P.L.; Caldas, J.P.; Rodrigues, Y.K.; Amorim, F.M.; Leite, J.A.; Rodrigues-Mascarenhas, S.; Barbosa-Filho, J.M.; Rodrigues, L.C.; Oliveira, M.R. Neolignan Licarin A presents effect against Leishmania (Leishmania) major associated with immunomodulation in vitro. Exp. Parasitol., 2013, 135(2), 307-313.
[http://dx.doi.org/10.1016/j.exppara.2013.07.007] [PMID: 23891943]
[19]
Olea, R.S.G.; Roque, N.F. Análise de misturas de triterpenos por RMN de 13C. Quim. Nova, 1990, 13, 278-281.
[20]
Mahato, S.B.; Kundu, A.P. 13C NMR spectra of pentacyclic triterpenóides - A compilation and some salient features. Phytochemistry, 1994, 37, 1517-1575.
[http://dx.doi.org/10.1016/S0031-9422(00)89569-2]
[21]
Chávez, J.P.; Santos, I.D.; Cruz, F.G.; David, J.M. Flavonoids and triterpene ester derivatives from Erythroxylum leal costae. Phytochemistry, 1996, 41, 941-943.
[http://dx.doi.org/10.1016/0031-9422(95)00681-8]
[22]
Post-Beittenmiller, D. Biochemistry and molecular biology of wax production in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1996, 47, 405-430.
[http://dx.doi.org/10.1146/annurev.arplant.47.1.405] [PMID: 15012295]
[23]
Rocha, L.G.; Almeida, J.R.G.S.; Macêdo, R.O.; Barbosa-Filho, J.M. A review of natural products with antileishmanial activity. Phytomedicine, 2005, 12(6-7), 514-535.
[http://dx.doi.org/10.1016/j.phymed.2003.10.006] [PMID: 16008131]
[24]
Da Silva, B.J.M.; Hage, A.A.P.; Silva, E.O.; Rodrigues, A.P.D. Medicinal plants from the Brazilian Amazonian region and their antileishmanial activity: A review. J. Integr. Med., 2018, 16(4), 211-222.
[http://dx.doi.org/10.1016/j.joim.2018.04.004] [PMID: 29691188]
[25]
Singh, N.; Mishra, B.B.; Bajpai, S.; Singh, R.K.; Tiwari, V.K. Natural product based leads to fight against leishmaniasis. Bioorg. Med. Chem., 2014, 22(1), 18-45.
[http://dx.doi.org/10.1016/j.bmc.2013.11.048] [PMID: 24355247]
[26]
Emam, A.M.; Moussa, A.M.; Faure, R.; Favel, A.; Delmas, F.; Elias, R.; Balansard, G. Isolation and biological study of a triterpenoid saponin, mimengoside A, from the leaves of Buddleja madagascariensis. Planta Med., 1996, 62(1), 92-93.
[http://dx.doi.org/10.1055/s-2006-957821] [PMID: 17252426]
[27]
Torres-Santos, E.C.; Lopes, D.; Oliveira, R.R.; Carauta, J.P.; Falcao, C.A.; Kaplan, M.A.; Rossi-Bergmann, B. Antileishmanial activity of isolated triterpenoids from Pourouma guianensis. Phytomedicine, 2004, 11(2-3), 114-120.
[http://dx.doi.org/10.1078/0944-7113-00381] [PMID: 15070160]
[28]
Graziose, R.; Rojas-Silva, P.; Rathinasabapathy, T.; Dekock, C.; Grace, M.H.; Poulev, A.; Ann Lila, M.; Smith, P.; Raskin, I. Antiparasitic compounds from Cornus florida L. with activities against Plasmodium falciparum and Leishmania tarentolae. J. Ethnopharmacol., 2012, 142(2), 456-461.
[http://dx.doi.org/10.1016/j.jep.2012.05.017] [PMID: 22609155]
[29]
Al Musayeib, N.M.; Mothana, R.A.; Gamal, A.A.; Al-Massarani, S.M.; Maes, L. In vitro antiprotozoal activity of triterpenoid constituents of Kleinia odora growing in Saudi Arabia. Molecules, 2013, 18(8), 9207-9218.
[http://dx.doi.org/10.3390/molecules18089207] [PMID: 23912274]
[30]
Uddin, G.; Rauf, A.; Al-Othman, A.M.; Collina, S.; Arfan, M.; Ali, G.; Khan, I. Pistagremic acid, a glucosidase inhibitor from Pistacia integerrima. Fitoterapia, 2012, 83(8), 1648-1652.
[http://dx.doi.org/10.1016/j.fitote.2012.09.017] [PMID: 23022534]
[31]
Lai, T.K.; Biswas, G.; Chatterjee, S.; Dutta, A.; Pal, C.; Banerji, J.; Bhuvanesh, N.; Reibenspies, J.H.; Acharya, K. Leishmanicidal and anticandidal activity of constituents of Indian edible mushroom Astraeus hygrometricus. Chem. Biodivers., 2012, 9(8), 1517-1524.
[http://dx.doi.org/10.1002/cbdv.201100272] [PMID: 22899612]
[32]
Chowdhury, A.R.; Mandal, S.; Goswami, A.; Ghosh, M.; Mandal, L.; Chakraborty, D.; Ganguly, A.; Tripathi, G.; Mukhopadhyay, S.; Bandyopadhyay, S.; Majumder, H.K. Dihydrobetulinic acid induces apoptosis in Leishmania donovani by targeting DNA topoisomerase I and II: Implications in antileishmanial therapy. Mol. Med., 2003, 9(1-2), 26-36.
[http://dx.doi.org/10.1007/BF03402104] [PMID: 12765337]
[33]
Ukil, A.; Biswas, A.; Das, T.; Das, P.K. 18 β-glycyrrhetinic acid triggers curative Th1 response and nitric oxide up-regulation in experimental visceral leishmaniasis associated with the activation of NF-kappa B. J. Immunol., 2005, 175(2), 1161-1169.
[http://dx.doi.org/10.4049/jimmunol.175.2.1161] [PMID: 16002718]
[34]
Rodrigues, K.A.F.; Amorim, L.V.; de Oliveira, J.M.; Dias, C.N.; Moraes, D.F.C.; Andrade, E.H.A.; Maia, J.G.S.; Carneiro, S.M.P.; Carvalho, F.A.A. Eugenia uniflora L. essential oil as a potential anti-leishmania agent: Effects on Leishmania amazonensis and possible mechanisms of action. Evid. Based Complement. Alternat. Med., 2013, 2013,279726.
[PMID: 23533469]
[35]
Fournet, A.; Angelo, A.; Muñoz, V.; Roblot, F.; Hocquemiller, R.; Cavé, A. Biological and chemical studies of Pera benensis, a Bolivian plant used in folk medicine as a treatment of cutaneous leishmaniasis. J. Ethnopharmacol., 1992, 37(2), 159-164.
[http://dx.doi.org/10.1016/0378-8741(92)90074-2] [PMID: 1434690]
[36]
Souza, A.C.; Alves, M.M.M.; Brito, L.M.; Oliveira, L.G.C.; Sobrinho-Júnior, E.P.C.; Costa, I.C.G.; Freitas, S.D.L.; Rodrigues, K.A.D.F.; Chaves, M.H.; Arcanjo, D.D.R.; Carvalho, F.A.A. Platonia insignis Mart., A Brazilian Amazonian plant: The stem barks extract and its main constituen lupeol exert antileishmanial effects involving macrophages activation. Evid. Based Complement. Alternat. Med., 2017, 2017,3126458.
[http://dx.doi.org/10.1155/2017/3126458] [PMID: 28852412]
[37]
Silva, A.A.S.; Morais, S.M.; Falcão, M.J.C.; Vieira, I.G.P.; Ribeiro, L.M.; Viana, S.M.; Teixeira, M.J.; Barreto, F.S.; Carvalho, C.A.; Cardoso, R.P.A.; Andrade-Junior, H.F. Activity of cycloartane-type triterpenes and sterols isolated from Musa paradisiaca fruit peel against Leishmania infantum chagasi. Phytomedicine, 2014, 21(11), 1419-1423.
[http://dx.doi.org/10.1016/j.phymed.2014.05.005] [PMID: 24916706]
[38]
Wert, L.; Alakurtti, S.; Corral, M.J.; Sánchez-Fortún, S.; Yli-Kauhaluoma, J.; Alunda, J.M. Toxicity of betulin derivatives and in vitro effect on promastigotes and amastigotes of Leishmania infantum and L. donovani. J. Antibiot. (Tokyo), 2011, 64(7), 475-481.
[http://dx.doi.org/10.1038/ja.2011.34] [PMID: 21522160]
[39]
Sidana, J.; Singh, S.; Arora, S.K.; Foley, W.J.; Singh, I.P. Terpenoidal constituents of Eucalyptus loxophleba ssp. lissophloia. Pharm. Biol., 2012, 50(7), 823-827.
[http://dx.doi.org/10.3109/13880209.2011.636058] [PMID: 22468852]