Recent Progress Towards Synthesis of the Indolizidine Alkaloid 195B

Page: [82 - 90] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Natural products have been received attention due to their importance in human life as those are biologically active. In this review, there are some reports through different methods related to the synthesis of the indolizidine 195B which was extracted from poisonous frog; however, due to respect nature, the synthesis of natural compounds such as indolizidine has been attracted much attention among scientists and researchers.

Objective: This review discloses the procedures and methods to provide indolizidine 195B from 1989 to 2018 due to their importance as a natural product.

Conclusion: There are several methods to give rise to the indolizidine 195B as a natural product that is highly active from the biological perspective in pharmaceutical chemistry. In summary, many protocols for the preparations of indolizidine 195B from various substrates, several reagents, and conditions have been reported from different aromatic and aliphatic.

Keywords: Natural products, alkaloids, aromatic groups, indolizidine 195B, biologically active compounds, poisonous frog.

Graphical Abstract

[1]
Daly, J.; Spande, T. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S.W., Ed.; Wiley: New York, 1986.
[2]
Barrett, A.G.; Bezuidenhoudt, B.C.; Gasiecki, A.F.; Howell, A.R.; Russell, M.A. Redox glycosidation: A new strategy for disaccharide synthesis. J. Am. Chem. Soc., 1989, 111(4), 1392-1396. Available at
[http://dx.doi.org/10.1021/ja00186a037]
[3]
Hill, R.K.; Chan, T.H.; Joule, J.A. The stereochemistry of pinidine. Tetrahedron, 1965, 21(1), 147-161. Available at
[http://dx.doi.org/10.1016/S0040-4020(01)82210-9] [PMID: 5879338]
[4]
Tallent, W.; Stromberg, V.; Horning, E.C. Pinus Alkaloids. The Alkaloids of P. Sabiniana Dougl. and Related Species. J. Am. Chem. Soc., 1955, 77, 6361-6364. Available at
[http://dx.doi.org/10.1021/ja01628a084]
[5]
Tokuyama, T.; Nishimori, N.; Karle, I.L.; Edwards, M.W.; Daly, J.W. Alkaloids from dendrobatid poison frogs: Trans-decahydroquinolines and indolizidines. Tetrahedron, 1986, 42(13), 3453-3460. Available at
[http://dx.doi.org/10.1016/S0040-4020(01)87312-9]
[6]
Garraffo, H.M.; Spande, T.F.; Daly, J.W.; Baldessari, A.; Gros, E.G. Alkaloids from bufonid toads (Melanophryniscus): Decahydroquinolines, pumiliotoxins and homopumiliotoxins, indolizidines, pyrrolizidines, and quinolizidines. J. Nat. Prod., 1993, 56(3), 357-373. Available at
[http://dx.doi.org/10.1021/np50093a008] [PMID: 8482947]
[7]
Daly, J.W.; Brown, G.B.; Mensah-Dwumah, M.; Myers, C.W. Classification of skin alkaloids from neotropical poison-dart frogs (Dendrobatidae). Toxicon, 1978, 16(2), 163-188. Available at
[http://dx.doi.org/10.1016/0041-0101(78)90036-3] [PMID: 635931]
[8]
Molyneux, R.J.; Tropea, J.E.; Elbein, A.D. 7-deoxy-6-epi-castanospermine, a trihydroxyindolizidine alkaloid glycosidase inhibitor from Castanospermum australe. J. Nat. Prod., 1990, 53(3), 609-614. Available at
[http://dx.doi.org/10.1021/np50069a011] [PMID: 2213032]
[9]
Molyneux, R.J.; Pan, Y.T.; Tropea, J.E.; Benson, M.; Kaushal, G.P.; Elbein, A.D. 6,7-Diepicastanospermine, a tetrahydroxyindolizidine alkaloid inhibitor of amyloglucosidase. Biochemistry, 1991, 30(41), 9981-9987. Available at
[http://dx.doi.org/10.1021/bi00105a024] [PMID: 1911789]
[10]
Hart, D.J.; Tsai, Y.M. Stereoselective indolizidine synthesis: Preparation of stereoisomers of gephyrotoxin-223AB. J. Org. Chem., 1982, 47(23), 4403-4409. Available at
[http://dx.doi.org/10.1021/jo00144a003]
[11]
Royer, J.; Husson, H-P. Asymmetric synthesis III. Enantiospecific synthesis of the natural 3r, 5r, 9r (−) gephyrotoxin-223 AB. Tetrahedron Lett., 1985, 26(12), 1515-1518. Available at
[http://dx.doi.org/10.1016/S0040-4039(00)98540-X]
[12]
Daly, J.W.; Spande, T.F.; Whittaker, N.; Highet, R.J.; Feigl, D.; Nishimori, N.; Tokuyama, T.; Myers, C.W. Alkaloids from dendrobatid frogs: Structures of two ω-hydroxy congeners of 3-butyl-5-propylindolizidine and occurrence of 2,5-disubstituted pyrrolidines and a 2,6-disubstituted piperidine. J. Nat. Prod., 1986, 49(2), 265-280. Available at
[http://dx.doi.org/10.1021/np50044a012] [PMID: 3734811]
[13]
Daly, J.W.; Secunda, S.I.; Garraffo, H.M.; Spande, T.F.; Wisnieski, A.; Cover, J.F., Jr An uptake system for dietary alkaloids in poison frogs (Dendrobatidae). Toxicon, 1994, 32(6), 657-663. Available at
[http://dx.doi.org/10.1016/0041-0101(94)90335-2] [PMID: 7940573]
[14]
Tokuyama, T.; Nishimori, N.; Shimada, A.; Edwards, M.W.; Daly, J.W. New classes of amidine, indolizidine and quinolizidine alkaloids from a poison-frog, dendrobates pumilio (dendrobatidae). Tetrahedron, 1987, 43(3), 643-652. Available at
[http://dx.doi.org/10.1016/S0040-4020(01)89998-1]
[15]
Daly, J.W.; Spande, T.F.; Garraffo, H.M. Alkaloids from amphibian skin: A tabulation of over eight-hundred compounds. J. Nat. Prod., 2005, 68(10), 1556-1575. Available at
[http://dx.doi.org/10.1021/np0580560] [PMID: 16252926]
[16]
Saporito, R.A.; Norton, R.A.; Andriamaharavo, N.R.; Garraffo, H.M.; Spande, T.F. Alkaloids in the mite Scheloribates laevigatus: Further alkaloids common to oribatid mites and poison frogs. J. Chem. Ecol., 2011, 37(2), 213-218. Available at
[http://dx.doi.org/10.1007/s10886-011-9914-7] [PMID: 21318398]
[17]
Koriyama, Y.; Nozawa, A.; Hayakawa, R.; Shimizu, M. Reversal of diastereofacial selectivity in the nucleophilic addition reaction to chiral N-sulfinimine and application to the synthesis of indrizidine 223AB. Tetrahedron, 2002, 58(47), 9621-9628. Available at
[http://dx.doi.org/10.1016/S0040-4020(02)01250-4]
[18]
Smith, A.B., III; Kim, D-S. A general, convergent strategy for the construction of indolizidine alkaloids: Total syntheses of (-)-indolizidine 223AB and alkaloid (-)-205B. J. Org. Chem., 2006, 71(7), 2547-2557. Available at
[http://dx.doi.org/10.1021/jo052314g] [PMID: 16555804]
[19]
Sun, Z.; Yu, S.; Ding, Z.; Ma, D. Enantioselective addition of activated terminal alkynes to 1-acylpyridinium salts catalyzed by Cu-Bis(oxazoline) complexes. J. Am. Chem. Soc., 2007, 129(30), 9300-9301. Available at
[http://dx.doi.org/10.1021/ja0734849] [PMID: 17625864]
[20]
Angle, S.R.; Kim, M. A general approach to 3-n-butyl-5-alkylindolizidines: Total synthesis of (-)-indolizidine 195B. J. Org. Chem., 2007, 72(23), 8791-8796. Available at
[http://dx.doi.org/10.1021/jo7015423] [PMID: 17949043]
[21]
Abels, F.; Lindemann, C.; Koch, E.; Schneider, C. A general organocatalytic approach toward the enantioselective total synthesis of indolizidine based alkaloids. Org. Lett., 2012, 14(23), 5972-5975. Available at
[http://dx.doi.org/10.1021/ol302871u] [PMID: 23163802]
[22]
Abels, F.; Lindemann, C.; Schneider, C. A general strategy for the catalytic, highly enantio- and diastereoselective synthesis of indolizidine-based alkaloids. Chemistry, 2014, 20(7), 1964-1979. Available at
[http://dx.doi.org/10.1002/chem.201304086] [PMID: 24436076]
[23]
Rao, N.N.; Parida, B.B.; Cha, J.K. Cross-coupling of cyclopropanols: Concise syntheses of indolizidine 223AB and congeners. Org. Lett., 2014, 16(23), 6208-6211. Available at
[http://dx.doi.org/10.1021/ol503136s] [PMID: 25423297]
[24]
Vavrecka, M.; Janowitz, A.; Hesse, M. Transformation of 4-nitroalkane-1, 7-diones into pyrrolizidines. Tetrahedron Lett., 1991, 32(40), 5543-5546. Available at
[http://dx.doi.org/10.1016/0040-4039(91)80079-L]
[25]
Mohammadi Ziarani, G.; Chenevert, R.; Badiei, A.R. Chemoenzymatic enantioselective formal synthesis of (-)-gephyrotoxin-223. Iran. J. Chem. Chem. Eng., 2006, 25, 31-38.
[26]
Chênevert, R.; Mohammadi Ziarani, G.; Morin, M.P.; Dasser, M. Enzymatic desymmetrization of meso cis-2, 6-and cis, cis-2, 4, 6-substituted piperidines. Chemoenzymatic synthesis of (5S, 9S)-(+)-indolizidine 209D. Tetrahedron Asymmetry, 1999, 10(16), 3117-3122. Available at
[http://dx.doi.org/10.1016/S0957-4166(99)00315-8]
[27]
Chênevert, R.; Mohammadi Ziarani, G.; Dasser, M. Chemoenzymatic Enantoselective Synthesis of (-)-Indolizidine 167 B. Heterocycles, 1999, 51, 593. Available at
[http://dx.doi.org/10.3987/COM-98-8421]
[28]
Solladié, G.; Chu, G-H. Total synthesis of (+)-Indolizidine 195 B and (+)-Monomorine. Tetrahedron Lett., 1996, 37(1), 111-114. Available at
[http://dx.doi.org/10.1016/0040-4039(95)02086-1]
[29]
Solladié, G.; Almario, A. Asymmetric synthesis of (−)-(2E, 4R, 5S, 11R)-cladospolide A, induced by chiral sulfoxides. Tetrahedron, 1995, 6(2), 559-576. Available at
[http://dx.doi.org/10.1016/0957-4166(95)00040-V]
[30]
Yamazaki, N.; Kibayashi, C. Asymmetric synthesis with. alpha.,beta.-bis[(methoxymethyl)oxy] ketones. Enantioselective total synthesis of natural (+)-indolizidine 195B (bicyclic gephyrotoxin 195B) and (-)-pinidine and their enantiomers from a common chiral synthon. J. Am. Chem. Soc., 1989, 111(4), 1396-1408. Available at
[http://dx.doi.org/10.1021/ja00186a038]
[31]
Hiittel, R. Palladium Salts and Palladium Complexes in Preparative Organic Chemistry; Synth, 1970, p. 225.
[32]
Dellaria, J.F., Jr; Maki, R.G. The enantio-and diastereoselective synthesis of the first phospho-statine derivative. Tetrahedron Lett., 1986, 27(21), 2337-2340. Available at
[http://dx.doi.org/10.1016/S0040-4039(00)84523-2]
[33]
Still, W.C.; McDonald, J.H. III Chelation-controlled nucleophilic additions. 1. A highly effective system for asymmetric induction in the reaction of organometallics with α-alkoxyketones. Tetrahedron Lett., 1980, 21(11), 1031-1034. Available at
[http://dx.doi.org/10.1016/S0040-4039(00)78831-9]
[34]
Iida, H.; Yamazaki, N.; Kibayashi, C. Total synthesis of (+)-codonopsinine and its stereoisomers: Stereochemical assignment of natural (-)-codonopsinine. J. Org. Chem., 1987, 52(10), 1956-1962. Available at
[http://dx.doi.org/10.1021/jo00386a012]
[35]
Corey, E.; Winter, R.A. A new, stereospecific olefin synthesis from 1, 2-diols. J. Am. Chem. Soc., 1963, 85(17), 2677-2678. Available at
[http://dx.doi.org/10.1021/ja00900a043]
[36]
Célimène, C.; Dhimane, H.; Lhommet, G. Synthesis of indolizidines (−)-195B,(−)-223AB and (−)-239AB:(2S, 5R)-1-[(benzyloxy) carbonyl]-2-methoxycarbonyl-5-(4-pentenyl) pyrrolidine as a versatile chiral building block. Tetrahedron, 1998, 54(35), 10457-10468. Available at
[http://dx.doi.org/10.1016/S0040-4020(98)00498-0]
[37]
Meyers, A.; Higashiyama, K. Asymmetric additions to chiral naphthalenes. 4. Asymmetric synthesis of the AB-ring of aklavinone. J. Org. Chem., 1987, 52(20), 4592-4597. Available at
[http://dx.doi.org/10.1021/jo00229a028]
[38]
Miller, D.; Wayner, D.D. Improved method for the Wacker oxidation of cyclic and internal olefins. J. Org. Chem., 1990, 55(9), 2924-2927. Available at
[http://dx.doi.org/10.1021/jo00296a067]
[39]
Xia, X.; Gao, X.; Xu, J.; Hu, C.; Peng, X. A ligand-free Pd(OAc)2 catalyst for the Wacker oxidation of styrene derivatives using hydrogen peroxide as the oxidant. J. Saudi Chem. Soc., 2017, 21(3), 334-340. Available at
[http://dx.doi.org/10.1016/j.jscs.2016.10.004]
[40]
Conchon, E.; Gelas-Mialhe, Y.; Remuson, R. Asymmetric synthesis of 3, 5-disubstituted indolizidines by intermolecular addition of an allylsilane on an N-acyliminium ion. Tetrahedron Asymmetry, 2006, 17(8), 1253-1257. Available at
[http://dx.doi.org/10.1016/j.tetasy.2006.04.027]
[41]
Pilli, R.A.; Dias, L.C.; Maldaner, A.O. One-Pot preparation of quinolizidin-2-one and indolizidin-7-one ring systems. Concise total syntheses of (.+-.)-myrtine,(.+-.)-lasubine ii, and (-)-indolizidine 223AB. J. Org. Chem., 1995, 60(3), 717-722. Available at
[http://dx.doi.org/10.1021/jo00108a040]
[42]
Melching, K.H.; Hiemstra, H.; Klaver, W.J.; Speckamp, W.N. Total synthesis of (±)-anatoxin-a via N-acyliminium intermediates. Tetrahedron Lett., 1986, 27(39), 4799-4802. Available at
[http://dx.doi.org/10.1016/S0040-4039(00)85068-6]
[43]
Peroche, S.; Remuson, R.; Gelas-Mialhe, Y.; Jean-Claude, G. A convenient allylsilane-N-acyliminium route toward 5-alkylindolizidines. Diastereoselective synthesis of (±)-indolizidine 167B. Tetrahedron Lett., 2001, 42(28), 4617-4619. Available at
[http://dx.doi.org/10.1016/S0040-4039(01)00822-X]
[44]
Angle, S.R.; Breitenbucher, J.G.; Arnaiz, D.O. An efficient stereoselective synthesis of. DELTA. 4, 5-pipecolic esters. J. Org. Chem., 1992, 57(22), 5947-5955. Available at
[http://dx.doi.org/10.1021/jo00048a030]
[45]
Gärtner, M.; Weihofen, R.; Helmchen, G. Enantioselective syntheses of 2,5-disubstituted pyrrolidines based on iridium-catalyzed allylic aminations--total syntheses of alkaloids from amphibian skins. Chemistry, 2011, 17(27), 7605-7622. Available at
[http://dx.doi.org/10.1002/chem.201100649] [PMID: 21611991]
[46]
Gnamm, C.; Franck, G.; Miller, N.; Stork, T.; Broedner, K.; Helmchen, G. Enantioselective iridium-catalyzed allylic aminations of allylic carbonates with functionalized side chains. Asymmetric total synthesis of (S)-vigabatrin. Synth., 2008, 2008(20), 3331-3350. Available at
[http://dx.doi.org/10.1055/s-0028-1083158]
[47]
Huwe, C.M.; Blechert, S. A flexible synthesis of azasugars and homoazasugars via olefin metathesis. Synth., 1997, 1997(01), 61-67. Available at
[http://dx.doi.org/10.1055/s-1997-1497]
[48]
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95(7), 2457-2483. Available at
[http://dx.doi.org/10.1021/cr00039a007]
[49]
Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Sato, M.; Suzuki, A. Palladium-catalyzed inter-and intramolecular cross-coupling reactions of B-alkyl-9-borabicyclo [3.3. 1] nonane derivatives with 1-halo-1-alkenes or haloarenes. Syntheses of functionalized alkenes, arenes, and cycloalkenes via a hydroboration-coupling sequence. J. Am. Chem. Soc., 1989, 111(1), 314-321. Available at
[http://dx.doi.org/10.1021/ja00183a048]
[50]
Johnson, C.R.; Braun, M.P. A two-step, three-component synthesis of PGE1: Utilization of. alpha.-iodo enones in Pd (0)-catalyzed cross-couplings of organoboranes. J. Am. Chem. Soc., 1993, 115(23), 11014-11015. Available at
[http://dx.doi.org/10.1021/ja00076a079]
[51]
Dixon, D.J.; Ley, S.V.; Longbottom, D.A. Copper (I)‐catalyzed preparation of (E)‐3‐iodoprop‐2‐enoic acid. Org. Synth., 2003, 80, 129. Available at
[http://dx.doi.org/10.15227/orgsyn.080.0129]
[52]
Collier, P.N.; Campbell, A.D.; Patel, I.; Raynham, T.M.; Taylor, R.J. Enantiomerically pure α-amino acid synthesis via hydroboration-suzuki cross-coupling. J. Org. Chem., 2002, 67(6), 1802-1815. Available at
[http://dx.doi.org/10.1021/jo010865a] [PMID: 11895396]
[53]
Shengming, M.; Xiyan, L.; Zhigang, L. A novel regio-and stereospecific hydrohalogenation reaction of 2-propynoic acid and its derivatives. J. Org. Chem., 1992, 57(2), 709-713. Available at
[http://dx.doi.org/10.1021/jo00028a055]
[54]
Wipf, P.; Kim, Y. Studies on the synthesis of stemona alkaloids; stereoselective preparation of the hydroindole ring system by oxidative cyclization of tyrosine. Tetrahedron Lett., 1992, 33(38), 5477-5480. Available at
[http://dx.doi.org/10.1016/S0040-4039(00)61121-8]
[55]
Spangenberg, T.; Airiau, E.; Donnard, M.; Billet, M.; Mann, A. Expeditious Syntheses of (±)-allo-Sedamine and (±)-allo-Lobeline via a Combination of Aza-Sakurai-Hosomi and Hydroformylation Reactions. Synlett, 2008, (18), 2859-2863.
[56]
Spangenberg, T.; Breit, B.; Mann, A. Hydroformylation of homoallylic azides: A rapid approach toward alkaloids. Org. Lett., 2009, 11(2), 261-264. Available at
[http://dx.doi.org/10.1021/ol802314g] [PMID: 19072630]
[57]
Knouzi, N.; Vaultier, M.; Toupet, L.; Carrie, R. Intramolecular cyclization of ω-primary amino electrophilic olefins to functionalized pyrrolidines and piperidines. Tetrahedron Lett., 1987, 28(16), 1757-1760. Available at
[http://dx.doi.org/10.1016/S0040-4039(00)95413-3]
[58]
Enkisch, C.; Schneider, C. Sequential Mannich‐Aza‐Michael Reactions for the Stereodivergent Synthesis of Highly Substituted Pyrrolidines. Eur. J. Org. Chem., 2009, 2009(32), 5549-5564. Available at
[http://dx.doi.org/10.1002/ejoc.200900787]
[59]
Davis, F.A.; Zhang, J.; Wu, Y. Total syntheses of (+)-monomorine I and (−)-indolizidine 195B from sulfinimine-derived 3-oxo pyrrolidine 2-phosphonates. Tetrahedron Lett., 2011, 52(17), 2054-2057. Available at
[http://dx.doi.org/10.1016/j.tetlet.2010.10.076]
[60]
Davis, F.A.; Wu, Y.; Xu, H.; Zhang, J. Asymmetric synthesis of cis-5-substituted pyrrolidine 2-phosphonates using metal carbenoid NH insertion and δ-amino β-ketophosphonates. Org. Lett., 2004, 6(24), 4523-4525. Available at
[http://dx.doi.org/10.1021/ol048157+] [PMID: 15548066]
[61]
Davis, F.A.; Zhang, J.; Qiu, H.; Wu, Y. Asymmetric synthesis of cis- and trans-2,5-disubstituted pyrrolidines from 3-oxo pyrrolidine 2-phosphonates: Synthesis of (+)-preussin and analogs. Org. Lett., 2008, 10(7), 1433-1436. Available at
[http://dx.doi.org/10.1021/ol800255r] [PMID: 18331047]
[62]
Machinaga, N.; Kibayashi, C. General entry to the 3, 5-disubstituted indolizidine class of dendrobatid alkaloids. Total syntheses of both enantiomers of indolizidines 195B, 223AB, 239AB, and 239CD from a common chiral synthon. J. Org. Chem., 1992, 57(19), 5178-5189. Available at
[http://dx.doi.org/10.1021/jo00045a034]
[63]
Somfai, P.; Jarevång, T.; Lindström, U.M.; Svensson, A. Total synthesis of (+/-)-monomorine I and (+/-)-indolizidine 195B by an aza-[2,3]-Wittig rearrangement of a vinylaziridine. Acta Chem. Scand., 1997, 51(10), 1024-1029. Available at
[http://dx.doi.org/10.3891/acta.chem.scand.51-1024] [PMID: 9362550]
[64]
Nebe, M.M.; Zinn, S.; Opatz, T. A short and modular approach towards 3,5-disubstituted indolizidine alkaloids. Org. Biomol. Chem., 2016, 14(29), 7084-7091. Available at
[http://dx.doi.org/10.1039/C6OB01308B] [PMID: 27377480]