Phenylamino-pyrimidine (PAP) Privileged Structure: Synthesis and Medicinal Applications

Page: [227 - 243] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

The phenylamino-pyrimidine (PAP) nucleus has been demonstrated to be useful for the development of new drugs and is present in a wide variety of antiretroviral agents and tyrosine kinase inhibitors (TKIs). This review aims to evaluate the application of PAP derivatives in drugs and other bioactive compounds. It was concluded that PAP derivatives are still worth exploring, as they may provide highly competitive ATP TKI’s with nano/picomolar activity.

Keywords: PAP, Pyrimidine, Tyrosine kinase, ATP, Cancer, Antiretroviral.

Graphical Abstract

[1]
Brown, D.J.; Mason, S.F. The pyrimidines, 1st ed; John Wiley: New York, 2009.
[2]
Rewcastle, G.W. Denny, W. A.; Showalter, H. D. H. Synthesis of 4-(phenylamino)pyrimidine derivatives as ATP-competitive Protein kinase inhibitors with potential for cancer chemotherapy. Curr. Org. Chem., 2000, 4, 679-706.
[3]
Kumar, P.R.L.; Gautam, G. Synthesis and anti inflammatory activity of 3-(2-4-methyl-2-(2-nitrophenylamino)-6-(piperazin-1-yl methyl) pyrimidin-5-yl)-2H-chromen-2-one. World J. Pharm. Pharm. Sci., 2018, 7(11), 1410-1417.
[4]
Zimmerman, J.; Buchdunger, E.; Mett, H.; Meyer, T.; Lydon, N.B. Potent and selective inhibitors of the Abl-kinase: phenylamino-pyrimidine (PAP) derivatives. Bioorg. Med. Chem. Lett., 1997, 7(2), 187-192.
[5]
Basford, F.R.; Curd, F.H.; Rose, F.L.; Openshaw, H.; Hull, R.T.; Todd, A.R. Pyrimidine Compounds. U.S. Patent 2,465,568, March 29. 1949.
[6]
Grimaux. On the synthesis of uric derivatives from the alloxane series. Bull. Soc. Chim. Fr., 1879, 31(146), 436-447.
[7]
Katritzky, A.R.; Rees, C.W. Comprehensive Heterocyclic Chemistry, 1st ed; Pergamon Press: New York, 1984.
[8]
Elderfield, R.C. Six-Membered Heterocycles Containing Two Hetero Atoms and Their Benzo Derivatives Heterocyclic Compounds; John Wiley: New York, 1957, Vol. 6, pp. 564-600.
[9]
Selvam, T.P.; James, C.R.; Dniandev, P.V.; Valzita, S.K. A mini review of pyrimidine and fused pyrimidine marketed drugs. Res. Pharm, 2012, 2(4), 1-9.
[10]
Cocco, M.T.; Congiu, C.; Onnis, V.; Piras, R. Synthesis and antitumor evaluation of 6-thioxo-, 6-oxo- and 2,4-dioxopyrimidine derivatives. Farmaco, 2001, 56(10), 741-748.
[http://dx.doi.org/10.1016/S0014-827X(01)01123-5] [PMID: 11718266]
[11]
Ashour, H.M.; Shaaban, O.G.; Rizk, O.H.; El-Ashmawy, I.M. Synthesis and biological evaluation of thieno [2′,3′:4,5]pyrimido[1,2-b][1,2,4]triazines and thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidines as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2013, 62, 341-351.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.003] [PMID: 23376247]
[12]
Kumar, S.; Narasimhan, B. Therapeutic potential of heterocyclic pyrimidine scaffolds. Chem. Cent. J., 2018, 12(1), 38.
[http://dx.doi.org/10.1186/s13065-018-0406-5] [PMID: 29619583]
[13]
Kawal, S.; Miyoshiy, T. On the Reaction between 2,4,6-trichloropyrimidine and dimethylaniline. Nippon Kagaku Kaishi, 1936, 57(11), 1230-1232.
[http://dx.doi.org/10.1246/nikkashi1921.57.11_1230]
[14]
Wagner, H.A. 2-anilino-5-methyl-6-phenylpyrimidines and congeners. US Patent 3,481,932. 1967.
[15]
Short, J.H. Benzamide substituted anilino aminopyrimidines. U.S. Patent 3,478,030. 1966.
[16]
Brown, D.J. The Pyrimidines; Interscience Publishers: New York, 1962.
[17]
Fanta, P.E.; Hedman, E.A. 2-Substituted 5-nitropyrimidines by the Condensation of Sodium Nitromalonaldehyde with Amidines. J. Am. Chem. Soc., 1956, 78(7), 1434-1437.
[http://dx.doi.org/10.1021/ja01588a045]
[18]
Sprague, J.M.; Kissinger, L.M.; Lincoln, R.M. Sulfonamido derivatives of pyrimidines. J. Am. Chem. Soc., 1941, 63(11), 3028-3030.
[http://dx.doi.org/10.1021/ja01856a046]
[19]
Mariella, R.; Zelko, J. Notes- preparation of various substituted pyrimidines. J. Org. Chem., 1960, 25(4), 647-648.
[http://dx.doi.org/10.1021/jo01074a611]
[20]
(a) Roblin, R.O., Jr; Williams, J.H.; Winnek, P.S.; English, J.P. Chemotherapy. ii. some sulfanilamido heterocycles. J. Am. Chem. Soc., 1940, 62(8), 2002-2005.
[http://dx.doi.org/10.1021/ja01865a027]
(b) Caldwell, W.T.; Kime, H.B. A New Synthesis of Isocytosine. J. Am. Chem. Soc., 1940, 62(9), 2365-2365.
[http://dx.doi.org/10.1021/ja01866a028]
[21]
Snyder, H.R.; Foster, H.M. Mannich Reactions of Pyrimidines. I. 2,6-Dimethyl-4-hydroxypyrimidine. J. Am. Chem. Soc., 1954, 76(1), 118-123.
[http://dx.doi.org/10.1021/ja01630a033]
[22]
Overberger, C.G.; Kogon, I.C. Monomer Synthesis. X.1 The preparation and polymerization of 4-vinylpyrimidine and 2-N,N-dimethylamino-4-vinylpyrimidine. J. Am. Chem. Soc., 1954, 76(7), 1879-1883.
[http://dx.doi.org/10.1021/ja01636a043]
[23]
Bendich, A.; Getler, H.; Brown, G.B. A synthesis of isotopic cytosine and a study of its metabolism in the rat. J. Biol. Chem., 1949, 177(2), 565-570.
[PMID: 18110434]
[24]
Korte, F.; Weitkamp, H. Heterocyclen im Stoffwechsel, XII1): Zur Biosynthese des Vitamins B1. Ann. Chem, 1959, 622(1), 121-126.
[http://dx.doi.org/10.1002/jlac.19596220119]
[25]
Russell, P.B.; Hitchings, G.H. 2,4-Diaminopyrimidines as Antimalarials. III. 5-Aryl Derivatives. J. Am. Chem. Soc., 1951, 73(8), 3763-3770.
[http://dx.doi.org/10.1021/ja01152a060]
[26]
Middleton, W.J.; Engelhardt, V.A. Cyanocarbon Chemistry. IX.1 heterocyclic compounds from dicyanoketene acetals. J. Am. Chem. Soc., 1958, 80(11), 2829-2832.
[http://dx.doi.org/10.1021/ja01544a059]
[27]
Maggiob, A.; Phillips, A.P.; Hitchings, G.H. Synthesis of 2-Methyl-4-amino-6-substituted Aminopyrimidines. J. Am. Chem. Soc., 1951, 73, 106-107.
[http://dx.doi.org/10.1021/ja01145a039]
[28]
Cain, C.K.; Mallette, M.F.; Taylor, E.C. Jr Pyrimido [4,5-beta] pyrazines; synthesis of 6,7-symmetrically substituted derivatives. J. Am. Chem. Soc., 1946, 68(10), 1996-1999.
[http://dx.doi.org/10.1021/ja01214a036] [PMID: 21001123]
[29]
Wilson, W. Some 2: 4-diamino-5-acylamido-6-hydroxyprimidines. J. Chem. Soc., 1948, 10, 1157-1161.
[http://dx.doi.org/10.1039/jr9480001157] [PMID: 18884389]
[30]
Taylor, E.C.; Vogl, O.; Cheng, C.C. Studies in Purine Chemistry. II. A Facile Synthesis of 2-Substituted Adenines. J. Am. Chem. Soc., 1959, 81(10), 2442-2448.
[http://dx.doi.org/10.1021/ja01519a042]
[31]
Boechat, N.; Bastos, M.M.; Duarte, S.L.; Costa, J.C.S.; Mafra, J.C.M.; Daniel, L.C.C. Imatinib mesylate: Na optimization in its synthesis. Rev. Virtual Quím, 2013, 5(2), 222-234.
[32]
Liu, Y.F.; Wang, C.L.; Bai, Y.J.; Han, N.; Jiao, J.P.; Qi, X.L. A Facile Total synthesis of imatinib base and its analogues. Org. Process Res. Dev., 2008, 12(3), 490-495.
[http://dx.doi.org/10.1021/op700270n]
[33]
Niedermeier, W.; Creitz, E.E.; Holley, H.L. Trace metal composition of synovial fluid from patients with rheumatoid arthritis. Arthritis Rheum., 1962, 5, 439-444.
[http://dx.doi.org/10.1002/art.1780050502] [PMID: 14479622]
[34]
Niedermeier, W. Concentration and chemical state of copper in synovial fluid and blood serum of patients with rheumatoid arthritis. Ann. Rheum. Dis., 1965, 24(6), 544-548.
[http://dx.doi.org/10.1136/ard.24.6.544] [PMID: 5855248]
[35]
Vasilets, I.M. Ceruloplasmins, their molecular structure, and their biological function. Usp. Biol. Khim., 1973, 14, 172-201.
[36]
Grigor’eva, A.S.; Kriss, E.E.; Lazur, S.P.; Mikhalovskii, S.V.; Portnyagina, V.A.; Mokhort, N.A.; Karp, V.K.; Barkova, I.S.; Kocharovskii, B.A. Catalytic activity of complexes of copper(II) with carboxyphenylaminopyrimidines (antiinflammatory drugs) in model reactions of oxidase and catalase type. Khim. Farrn. Zh, 1978, 12(4), 7-18.
[37]
Wagner, H.A. 2-Anilino-5-methyl-6-phenylpyrimidines and congeners. U.S. Patent 3,481,932. 1969.
[38]
Von Bebenburg, W.; Thiele, K. 2-amnophenyl and 2-amnopyridyl pyrimidnes having an amino or amido group in the 5-positon. U.S. Patent 3,499,898. 1970.
[39]
Pisarzhevskii, L.V. Khimiko-Farmatsevticheskii Zhurnal. Pharma. Chem. J., 1979, 13(3), 5-10.
[40]
Keche, A.P.; Hatnapure, G.D.; Tale, R.H.; Rodge, A.H.; Birajdar, S.S.; Kamble, V.M. A novel pyrimidine derivatives with aryl urea, thiourea and sulfonamide moieties: synthesis, anti-inflammatory and antimicrobial evaluation. Bioorg. Med. Chem. Lett., 2012, 22(10), 3445-3448.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.092] [PMID: 22520258]
[41]
Soares, D.F.; Faria, A.M.; Rosa, A.H. Risk analysis of groundwater contamination by pesticide residues in the municipality of Campo Novo do Parecis (MT), Brazil. Eng. Sanit. Ambient., 2017, 22(2), 277-284.
[http://dx.doi.org/10.1590/s1413-41522016139118]
[42]
Azevedo, L.A.S. Fungicidas sistêmicos – teoria e pratica, 1st ed; EMOPI: Campinas, 2007.
[43]
Ito, S.; Masuda, K.; Kusano, S.; Nagata, T.; Kojima, Y.; Sawai, N.; Maeno, S. Pyrimidine derivative, process for preparing same and agricultural or horticultural fungicidal composition containing same. U.S. Patent 4,814,338. 1989.
[44]
Ito, S.; Masuda, K.; Kusano, S.; Nagata, T.; Kojima, Y.; Sawai, N.; Maeno, S. Pyrimidine derivative, process for preparing same and agricultural or horticultural fungicidal composition containing same. U.S. Patent 4,988,704. 1991.
[45]
Hubele, A. 2-Phenylaminopyrimidine dervatives and ther uses as microbicides. U.S. Patent 4,897,396. 1990.
[46]
Ludovici, D.W.; De Corte, B.L.; Kukla, M.J.; Ye, H.; Ho, C.Y.; Lichtenstein, M.A.; Kavash, R.W.; Andries, K.; de Béthune, M.P.; Azijn, H.; Pauwels, R.; Lewi, P.J.; Heeres, J.; Koymans, L.M.H.; de Jonge, M.R.; Van Aken, K.J.; Daeyaert, F.F.D.; Das, K.; Arnold, E.; Janssen, P.A.J. Evolution of anti-HIV drug candidates. Part 3: Diarylpyrimidine (DAPY) analogues. Bioorg. Med. Chem. Lett., 2001, 11(17), 2235-2239.
[http://dx.doi.org/10.1016/S0960-894X(01)00412-7] [PMID: 11527705]
[47]
Kohlstaedt, L.A.; Wang, J.; Friedman, J.M.; Rice, P.A.; Steitz, T.A. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science, 1992, 256(5065), 1783-1790.
[http://dx.doi.org/10.1126/science.1377403] [PMID: 1377403]
[48]
Ding, J.; Das, K.; Moereels, H.; Koymans, L.; Andries, K.; Janssen, P.A.; Hughes, S.H.; Arnold, E. Structure of HIV-1 RT/TIBO R 86183 complex reveals similarity in the binding of diverse nonnucleoside inhibitors. Nat. Struct. Biol., 1995, 2(5), 407-415.
[http://dx.doi.org/10.1038/nsb0595-407] [PMID: 7545077]
[49]
De Clercq, E. Highlights in the discovery of antiviral drugs: a personal retrospective. J. Med. Chem., 2010, 53(4), 1438-1450.
[http://dx.doi.org/10.1021/jm900932g] [PMID: 19860424]
[50]
IAS. Available from:. https://www.ias2019.org/
[51]
Ilina, T.; Labarge, K.; Sarafianos, S.G.; Ishima, R.; Parniak, M.A. Inhibitors of HIV-1 Reverse Transcriptase-Associated Ribonuclease H Activity. Biology (Basel), 2012, 1(3), 521-541.
[http://dx.doi.org/10.3390/biology1030521] [PMID: 23599900]
[52]
Lansdon, E.B.; Brendza, K.M.; Hung, M.; Wang, R.; Mukund, S.; Jin, D.; Birkus, G.; Kutty, N.; Liu, X. Crystal structures of HIV-1 reverse transcriptase with etravirine (TMC125) and rilpivirine (TMC278): implications for drug design. J. Med. Chem., 2010, 53(10), 4295-4299.
[http://dx.doi.org/10.1021/jm1002233] [PMID: 20438081]
[53]
Das, K.; Clark, A.D., Jr; Lewi, P.J.; Heeres, J.; De Jonge, M.R.; Koymans, L.M.H.; Vinkers, H.M.; Daeyaert, F.; Ludovici, D.W.; Kukla, M.J.; De Corte, B.; Kavash, R.W.; Ho, C.Y.; Ye, H.; Lichtenstein, M.A.; Andries, K.; Pauwels, R.; De Béthune, M.P.; Boyer, P.L.; Clark, P.; Hughes, S.H.; Janssen, P.A.J.; Arnold, E. Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J. Med. Chem., 2004, 47(10), 2550-2560.
[http://dx.doi.org/10.1021/jm030558s] [PMID: 15115397]
[54]
La Regina, G.; Coluccia, A.; Silvestri, R. Looking for an active conformation of the future HIV type-1 non-nucleoside reverse transcriptase inhibitors. Antivir. Chem. Chemother., 2010, 20(6), 213-237.
[http://dx.doi.org/10.3851/IMP1607] [PMID: 20710063]
[55]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38, 27-28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[56]
Kang, D.; Fang, Z.; Huang, B.; Lu, X.; Zhang, H.; Xu, H.; Huo, Z.; Zhou, Z.; Yu, Z.; Meng, Q.; Wu, G.; Ding, X.; Tian, Y.; Daelemans, D.; De Clercq, E.; Pannecouque, C.; Zhan, P.; Liu, X. Structure-Based Optimization of Thiophene[3,2-d]pyrimidine Derivatives as Potent HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors with Improved Potency against Resistance-Associated Variants. J. Med. Chem., 2017, 60(10), 4424-4443.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00332] [PMID: 28481112]
[57]
Shirvani, P.; Fassihi, A.; Saghaie, L. Recent advances in the design and development of nonnucleoside reverse transcriptase inhibitor scaffolds. ChemMedChem, 2019, 14(1), 52-77.
[http://dx.doi.org/10.1002/cmdc.201800577] [PMID: 30417561]
[58]
Zhou, Z.; Liu, T.; Kang, D.; Huo, Z.; Wu, G.; Daelemans, D.; De Clercq, E.; Pannecouque, C.; Zhan, P.; Liu, X. Discovery of novel diarylpyrimidines as potent HIV-1 NNRTIs by investigating the chemical space of a less explored “hydrophobic channel”. Org. Biomol. Chem., 2018, 16(6), 1014-1028.
[http://dx.doi.org/10.1039/C7OB02828H] [PMID: 29349445]
[59]
Jin, K.; Yin, H.; De Clercq, E.; Pannecouque, C.; Meng, G.; Chen, F. Discovery of biphenyl-substituted diarylpyrimidines as non-nucleoside reverse transcriptase inhibitors with high potency against wild-type and mutant HIV-1. Eur. J. Med. Chem., 2018, 145, 726-734.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.016] [PMID: 29353724]
[60]
Gu, S.X.; Zhu, Y.Y.; Chen, F.E.; De Clercq, E.; Balzarini, J.; Pannecouque, C. Structural modification of diarylpyrimidine derivatives as HIV-1 reverse transcriptase inhibitors. Med. Chem. Res., 2015, 24, 220-225.
[http://dx.doi.org/10.1007/s00044-014-1119-5]
[61]
Lu, H.H.; Xue, P.; Zhu, Y.Y.; Ju, X.L.; Zheng, X.J.; Zhang, X.; Xiao, T.; Pannecouque, C.; Li, T.T.; Gu, S.X. Structural modifications of diarylpyrimidines (DAPYs) as HIV-1 NNRTIs: Synthesis, anti-HIV activities and SAR. Bioorg. Med. Chem., 2017, 25(8), 2491-2497.
[http://dx.doi.org/10.1016/j.bmc.2017.03.009] [PMID: 28314514]
[62]
Liu, Z.; Tian, Y.; Liu, J.; Huang, B.; Kang, D.; De Clercq, E.; Daelemans, D.; Pannecouque, C.; Zhan, P.; Liu, X. Design, synthesis and anti-HIV evaluation of novel diarylpyridine derivatives as potent HIV-1 NNRTIs. Eur. J. Med. Chem., 2017, 140, 383-391.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.012] [PMID: 28987601]
[63]
Li, X.; Chen, W.; Tian, Y.; Liu, H.; Zhan, P.; De Clercq, E.; Pannecouque, C.; Balzarini, J.; Liu, X. Discovery of novel diarylpyrimidines as potent HIV NNRTIs via a structure-guided core-refining approach. Eur. J. Med. Chem., 2014, 80, 112-121.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.036] [PMID: 24769349]
[64]
Yang, J.; Chen, W.; Kang, D.; Lu, X.; Li, X.; Liu, Z.; Huang, B.; Daelemans, D.; Pannecouque, C.; De Clercq, E.; Zhan, P.; Liu, X. Design, synthesis and anti-HIV evaluation of novel diarylpyridine derivatives targeting the entrance channel of NNRTI binding pocket. Eur. J. Med. Chem., 2016, 109, 294-304.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.039] [PMID: 26802545]
[65]
Kang, D.; Wang, Z.; Chen, M.; Feng, D.; Wu, G.; Zhou, Z.; Jing, L.; Zuo, X.; Jiang, X.; Daelemans, D.; De Clercq, E.; Pannecouque, C.; Zhan, P.; Liu, X. Discovery of potent HIV-1 non-nucleoside reverse transcriptase inhibitors by exploring the structure-activity relationship of solvent-exposed regions I. Chem. Biol. Drug Des., 2019, 93(4), 430-437.
[http://dx.doi.org/10.1111/cbdd.13429] [PMID: 30381875]
[66]
Sang, Y.; Han, S.; Han, S.; Pannecouque, C.; De Clercq, E.; Zhuang, C.; Chen, F. Follow on-based optimization of the biphenyl-DAPYs as HIV-1 nonnucleoside reverse transcriptase inhibitors against the wild-type and mutant strains. Bioorg. Chem., 2019, 89 102974
[http://dx.doi.org/10.1016/j.bioorg.2019.102974] [PMID: 31102693]
[67]
Čechová, L.; Dejmek, M.; Baszczyňski, O.; Šaman, D.; Gao, L.; Hu, E.; Stepan, G.; Jansa, P.; Janeba, Z.; Šimon, P. Synthesis and anti-human immunodeficiency virus activity of substituted (o,o-difluorophenyl)-linked-pyrimidines as potent non-nucleoside reverse transcriptase inhibitors. Antivir. Chem. Chemother., 2019, 27 2040206619826265
[http://dx.doi.org/10.1177/2040206619826265] [PMID: 30788976]
[68]
Huang, B.; Chen, W.; Zhao, T.; Li, Z.; Jiang, X.; Ginex, T.; Vílchez, D.; Luque, F.J.; Kang, D.; Gao, P.; Zhang, J.; Tian, Y.; Daelemans, D.; De Clercq, E.; Pannecouque, C.; Zhan, P.; Liu, X. Exploiting the tolerant region I of the non-nucleoside reverse transcriptase inhibitor (NNRTI) binding pocket: discovery of potent diarylpyrimidine-typed HIV-1 NNRTIs against wild-type and E138K mutant virus with significantly improved water solubility and favorable safety profiles. J. Med. Chem., 2019, 62(4), 2083-2098.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01729] [PMID: 30721060]
[69]
Kang, D.; Zhang, H.; Wang, Z.; Zhao, T.; Ginex, T.; Luque, F.J.; Yang, Y.; Wu, G.; Feng, D.; Wei, F.; Zhang, J.; De Clercq, E.; Pannecouque, C.; Chen, C.H.; Lee, K.H.; Murugan, N.A.; Steitz, T.A.; Zhan, P.; Liu, X. Identification of dihydrofuro[3,4-d]pyrimidine derivatives as novel HIV-1 non-nucleoside reverse transcriptase inhibitors with promising antiviral activities and desirable physicochemical properties. J. Med. Chem., 2019, 62(3), 1484-1501.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01656] [PMID: 30624934]
[70]
Han, A. Q.; Wang, E.; Gauss, C.; Xie, W.; Coburn, G.; Demuys, J. M. Antiviral pyrimidines. W.O. Patent 2010/118367A2. 2010.
[71]
Baselga, J. Targeting tyrosine kinases in cancer: the second wave. Science, 2006, 312(5777), 1175-1178.
[http://dx.doi.org/10.1126/science.1125951] [PMID: 16728632]
[72]
Prenzel, N.; Fischer, O.M.; Streit, S.; Hart, S.; Ullrich, A. The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr. Relat. Cancer, 2001, 8(1), 11-31.
[http://dx.doi.org/10.1677/erc.0.0080011] [PMID: 11350724]
[73]
Slichenmyer, W.J.; Fry, D.W. Anticancer therapy targeting the erbB family of receptor tyrosine kinases. Semin. Oncol., 2001, 28(5)(Suppl. 16), 67-79.
[http://dx.doi.org/10.1016/S0093-7754(01)90284-2] [PMID: 11706398]
[74]
Avila, C.M.; Romeiro, N.C. Protein tyrosine kinases: Challenges in the development of drugs aimed at cancer therapy. Rev. Virtual Quim, 2010, 2(1), 59-82.
[http://dx.doi.org/10.5935/1984-6835.20100007]
[75]
Pao, W.; Miller, V.A.; Politi, K.A.; Riely, G.J.; Somwar, R.; Zakowski, M.F.; Kris, M.G.; Varmus, H. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med., 2005, 2(3) e73
[http://dx.doi.org/10.1371/journal.pmed.0020073] [PMID: 15737014]
[76]
Madhusudan, S.; Ganesan, T.S. Tyrosine kinase inhibitors in cancer therapy. Clin. Biochem., 2004, 37(7), 618-635.
[http://dx.doi.org/10.1016/j.clinbiochem.2004.05.006] [PMID: 15234243]
[77]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[78]
Chen, H.; Ma, J.; Li, W.; Eliseenkova, A.V.; Xu, C.; Neubert, T.A.; Miller, W.T.; Mohammadi, M. A molecular brake in the kinase hinge region regulates the activity of receptor tyrosine kinases. Mol. Cell, 2007, 27(5), 717-730.
[http://dx.doi.org/10.1016/j.molcel.2007.06.028] [PMID: 17803937]
[79]
Zimmermann, J.; Buchdunger, E.; Mett, H.; Meyer, T.; Lydon, N.B.; Traxler, P. Phenylamino-pyrimidine (PAP) - derivatives: a new class of potent and highly selective pdgf-receptor autophosphorylation inhibitors. Bioorg. Med. Chem. Lett., 1996, 6(11), 1221-1226.
[http://dx.doi.org/10.1016/0960-894X(96)00197-7]
[80]
Weisberg, E.; Manley, P.; Mestan, J.; Cowan-Jacob, S.; Ray, A.; Griffin, J.D. AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br. J. Cancer, 2006, 94(12), 1765-1769.
[http://dx.doi.org/10.1038/sj.bjc.6603170] [PMID: 16721371]
[81]
Kim, S.H.; Menon, H.; Jootar, S.; Saikia, T.; Kwak, J.Y.; Sohn, S.K.; Park, J.S.; Jeong, S.H.; Kim, H.J.; Kim, Y.K.; Oh, S.J.; Kim, H.; Zang, D.Y.; Chung, J.S.; Shin, H.J.; Do, Y.R.; Kim, J.A.; Kim, D.Y.; Choi, C.W.; Park, S.; Park, H.L.; Lee, G.Y.; Cho, D.J.; Shin, J.S.; Kim, D.W. Efficacy and safety of radotinib in chronic phase chronic myeloid leukemia patients with resistance or intolerance to BCR-ABL1 tyrosine kinase inhibitors. Haematologica, 2014, 99(7), 1191-1196.
[http://dx.doi.org/10.3324/haematol.2013.096776] [PMID: 24705186]
[82]
Harris, P.A.; Boloor, A.; Cheung, M.; Kumar, R.; Crosby, R.M.; Davis-Ward, R.G.; Epperly, A.H.; Hinkle, K.W.; Hunter, R.N., III; Johnson, J.H.; Knick, V.B.; Laudeman, C.P.; Luttrell, D.K.; Mook, R.A.; Nolte, R.T.; Rudolph, S.K.; Szewczyk, J.R.; Truesdale, A.T.; Veal, J.M.; Wang, L.; Stafford, J.A. Discovery of 5-[[4-[(2,3-dimethyl-2H-indazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2-methyl-benzenesulfonamide (Pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor. J. Med. Chem., 2008, 51(15), 4632-4640.
[http://dx.doi.org/10.1021/jm800566m] [PMID: 18620382]
[83]
Simpson, G.L.; Bertrand, S.M.; Borthwick, J.A.; Campobasso, N.; Chabanet, J.; Chen, S.; Coggins, J.; Cottom, J.; Christensen, S.B.; Dawson, H.C.; Evans, H.L.; Hobbs, A.N.; Hong, X.; Mangatt, B.; Munoz-Muriedas, J.; Oliff, A.; Qin, D.; Scott-Stevens, P.; Ward, P.; Washio, Y.; Yang, J.; Young, R.J. Identification and Optimization of Novel Small c-Abl Kinase Activators Using Fragment and HTS Methodologies. J. Med. Chem., 2019, 62(4), 2154-2171.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01872] [PMID: 30689376]
[84]
Nagar, B.; Hantschel, O.; Young, M.A.; Scheffzek, K.; Veach, D.; Bornmann, W.; Clarkson, B.; Superti-Furga, G.; Kuriyan, J. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell, 2003, 112(6), 859-871.
[http://dx.doi.org/10.1016/S0092-8674(03)00194-6] [PMID: 12654251]
[85]
Yang, J.; Campobasso, N.; Biju, M.P.; Fisher, K.; Pan, X.Q.; Cottom, J.; Galbraith, S.; Ho, T.; Zhang, H.; Hong, X.; Ward, P.; Hofmann, G.; Siegfried, B.; Zappacosta, F.; Washio, Y.; Cao, P.; Qu, J.; Bertrand, S.; Wang, D.Y.; Head, M.S.; Li, H.; Moores, S.; Lai, Z.; Johanson, K.; Burton, G.; Erickson-Miller, C.; Simpson, G.; Tummino, P.; Copeland, R.A.; Oliff, A. Discovery and characterization of a cell-permeable, small-molecule c-Abl kinase activator that binds to the myristoyl binding site. Chem. Biol., 2011, 18(2), 177-186.
[http://dx.doi.org/10.1016/j.chembiol.2010.12.013] [PMID: 21338916]
[86]
Cowan-Jacob, S.W.; Fendrich, G.; Floersheimer, A.; Furet, P.; Liebetanz, J.; Rummel, G.; Rheinberger, P.; Centeleghe, M.; Fabbro, D.; Manley, P.W. Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia. Acta Crystallogr. D Biol. Crystallogr., 2007, 63(Pt 1), 80-93.
[http://dx.doi.org/10.1107/S0907444906047287] [PMID: 17164530]
[87]
Tokarski, J.S.; Newitt, J.A.; Chang, C.Y.J.; Cheng, J.D.; Wittekind, M.; Kiefer, S.E.; Kish, K.; Lee, F.Y.F.; Borzillerri, R.; Lombardo, L.J.; Xie, D.; Zhang, Y.; Klei, H.E. The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res., 2006, 66(11), 5790-5797.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4187] [PMID: 16740718]
[88]
Young, M.A.; Shah, N.P.; Chao, L.H.; Seeliger, M.; Milanov, Z.V.; Biggs, W.H., III; Treiber, D.K.; Patel, H.K.; Zarrinkar, P.P.; Lockhart, D.J.; Sawyers, C.L.; Kuriyan, J. Structure of the kinase domain of an imatinib-resistant Abl mutant in complex with the Aurora kinase inhibitor VX-680. Cancer Res., 2006, 66(2), 1007-1014.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2788] [PMID: 16424036]
[89]
Wylie, A.A.; Schoepfer, J.; Jahnke, W.; Cowan-Jacob, S.W.; Loo, A.; Furet, P.; Marzinzik, A.L.; Pelle, X.; Donovan, J.; Zhu, W.; Buonamici, S.; Hassan, A.Q.; Lombardo, F.; Iyer, V.; Palmer, M.; Berellini, G.; Dodd, S.; Thohan, S.; Bitter, H.; Branford, S.; Ross, D.M.; Hughes, T.P.; Petruzzelli, L.; Vanasse, K.G.; Warmuth, M.; Hofmann, F.; Keen, N.J.; Sellers, W.R. The allosteric inhibitor ABL001 enables dual targeting of BCR-ABL1. Nature, 2017, 543(7647), 733-737.
[http://dx.doi.org/10.1038/nature21702] [PMID: 28329763]
[90]
Weisberg, E.; Manley, P.W.; Breitenstein, W.; Brüggen, J.; Cowan-Jacob, S.W.; Ray, A.; Huntly, B.; Fabbro, D.; Fendrich, G.; Hall-Meyers, E.; Kung, A.L.; Mestan, J.; Daley, G.Q.; Callahan, L.; Catley, L.; Cavazza, C.; Azam, M.; Neuberg, D.; Wright, R.D.; Gilliland, D.G.; Griffin, J.D. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell, 2005, 7(2), 129-141.
[http://dx.doi.org/10.1016/j.ccr.2005.01.007] [PMID: 15710326]
[91]
U.S. Food and Drug Administration (FDA) Available from:. https://www.fda.gov
[92]
Cohen, M.H.; Williams, G.A.; Sridhara, R.; Chen, G.; McGuinn, W.D., Jr; Morse, D.; Abraham, S.; Rahman, A.; Liang, C.; Lostritto, R.; Baird, A.; Pazdur, R. United states food and drug administration drug approval summary: gefitinib (ZD1839; Iressa) tablets. Clin. Cancer Res., 2004, 10(4), 1212-1218.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0564] [PMID: 14977817]
[93]
Cohen, M.H.; Johnson, J.R.; Chen, Y-F.; Sridhara, R.; Pazdur, R. FDA drug approval summary: erlotinib (Tarceva) tablets. Oncologist, 2005, 10(7), 461-466.
[http://dx.doi.org/10.1634/theoncologist.10-7-461] [PMID: 16079312]
[94]
Dungo, R.T.; Keating, G.M. Afatinib: first global approval. Drugs, 2013, 73(13), 1503-1515.
[http://dx.doi.org/10.1007/s40265-013-0111-6] [PMID: 23982599]
[95]
Yu, H.A.; Arcila, M.E.; Rekhtman, N.; Sima, C.S.; Zakowski, M.F.; Pao, W.; Kris, M.G.; Miller, V.A.; Ladanyi, M.; Riely, G.J. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin. Cancer Res., 2013, 19(8), 2240-2247.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2246] [PMID: 23470965]
[96]
Walter, A.O.; Sjin, R.T.T.; Haringsma, H.J.; Ohashi, K.; Sun, J.; Lee, K.; Dubrovskiy, A.; Labenski, M.; Zhu, Z.; Wang, Z.; Sheets, M.; St Martin, T.; Karp, R.; van Kalken, D.; Chaturvedi, P.; Niu, D.; Nacht, M.; Petter, R.C.; Westlin, W.; Lin, K.; Jaw-Tsai, S.; Raponi, M.; Van Dyke, T.; Etter, J.; Weaver, Z.; Pao, W.; Singh, J.; Simmons, A.D.; Harding, T.C.; Allen, A. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov., 2013, 3(12), 1404-1415.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0314] [PMID: 24065731]
[97]
Ward, R.A.; Anderton, M.J.; Ashton, S.; Bethel, P.A.; Box, M.; Butterworth, S.; Colclough, N.; Chorley, C.G.; Chuaqui, C.; Cross, D.A.E.; Dakin, L.A.; Debreczeni, J.É.; Eberlein, C.; Finlay, M.R.V.; Hill, G.B.; Grist, M.; Klinowska, T.C.M.; Lane, C.; Martin, S.; Orme, J.P.; Smith, P.; Wang, F.; Waring, M.J. Structure- and reactivity-based development of covalent inhibitors of the activating and gatekeeper mutant forms of the epidermal growth factor receptor (EGFR). J. Med. Chem., 2013, 56(17), 7025-7048.
[http://dx.doi.org/10.1021/jm400822z] [PMID: 23930994]
[98]
(a) IRM LCC. Novel compounds and compositions as protein kinase inhibitors. IW.O. Patent 089286,. 2004.
(b) Natco Pharma Ltd. Natco Pharma Ltd. Preparation of phenylaminopyrimidine derivatives as inhibitors of BCR-ABL kinase for treating cancer. U.S. Patent 0,306,100. 2008.
[99]
Pardanani, A.; Lasho, T.; Smith, G.; Burns, C.J.; Fantino, E.; Tefferi, A. CYT387, a selective JAK1/JAK2 inhibitor: in vitro assessment of kinase selectivity and preclinical studies using cell lines and primary cells from polycythemia vera patients. Leukemia, 2009, 23(8), 1441-1445.
[http://dx.doi.org/10.1038/leu.2009.50] [PMID: 19295546]
[100]
Walsby, E.; Pratt, G.; Shao, H.; Abbas, A.Y.; Fischer, P.M.; Bradshaw, T.D.; Brennan, P.; Fegan, C.; Wang, S.; Pepper, C. A novel Cdk9 inhibitor preferentially targets tumor cells and synergizes with fludarabine. Oncotarget, 2014, 5(2), 375-385.
[http://dx.doi.org/10.18632/oncotarget.1568] [PMID: 24495868]
[101]
Wang, S.; Midgley, C.A.; Scaërou, F.; Grabarek, J.B.; Griffiths, G.; Jackson, W.; Kontopidis, G.; McClue, S.J.; McInnes, C.; Meades, C.; Mezna, M.; Plater, A.; Stuart, I.; Thomas, M.P.; Wood, G.; Clarke, R.G.; Blake, D.G.; Zheleva, D.I.; Lane, D.P.; Jackson, R.C.; Glover, D.M.; Fischer, P.M. Discovery of N-phenyl-4-(thiazol-5-yl)pyrimidin-2-amine aurora kinase inhibitors. J. Med. Chem., 2010, 53(11), 4367-4378.
[http://dx.doi.org/10.1021/jm901913s] [PMID: 20462263]
[102]
Cheon, J.H.; Kim, J.Y.; Lee, B.M.; Kim, H.S.; Yoon, S. P-gp Inhibition by XL019, a JAK2 Inhibitor, Increases Apoptosis of Vincristine-treated Resistant KBV20C Cells with Increased p21 and pH2AX Expression. Anticancer Res., 2017, 37(12), 6761-6769.
[PMID: 29187454]
[103]
Passamonti, F.; Maffioli, M. The role of JAK2 inhibitors in MPNs 7 years after approval. Blood, 2018, 131(22), 2426-2435.
[http://dx.doi.org/10.1182/blood-2018-01-791491] [PMID: 29650801]
[104]
Lin, S.F.; Lin, J.D.; Hsueh, C.; Chou, T.C.; Wong, R.J. Potent effects of roniciclib alone and with sorafenib against well-differentiated thyroid cancer. Endocr. Relat. Cancer, 2018, 25(10), 853-864.
[http://dx.doi.org/10.1530/ERC-18-0150] [PMID: 29895526]
[105]
Moore, K.; Walter, A. Defactinib hydrochloride. Dual FAK1/PYK2 inhibitor, Treatment of non-small cell lung cancer, treatment of malignant mesothelioma, treatment of ovarian cancer. Drugs Future, 2014, 39(11), 767-827.
[http://dx.doi.org/10.1358/dof.2014.039.011.2235834]
[106]
Li, J.; Wang, X.; Xie, Y.; Ying, Z.; Liu, W.; Ping, L.; Zhang, C.; Pan, Z.; Ding, N.; Song, Y.; Zhu, J. The mTOR kinase inhibitor everolimus synergistically enhances the anti-tumor effect of the Bruton’s tyrosine kinase (BTK) inhibitor PLS-123 on Mantle cell lymphoma. Int. J. Cancer, 2018, 142(1), 202-213.
[http://dx.doi.org/10.1002/ijc.31044] [PMID: 28905990]
[107]
Lee-Vergés, E.; Hanna, B.S.; Yazdanparast, H.; Rodríguez, V.; Rodríguez, M.L.; Giró, A.; Vidal-Crespo, A.; Rosich, L.; Amador, V.; Aymerich, M.; Villamor, N.; Delgado, J.; Lichter, P.; Pérez-Galán, P.; López-Guerra, M.; Campo, E.; Seiffert, M.; Colomer, D. Selective BTK inhibition improves bendamustine therapy response and normalizes immune effector functions in chronic lymphocytic leukemia. Int. J. Cancer, 2019, 144(11), 2762-2773.
[http://dx.doi.org/10.1002/ijc.32010] [PMID: 30468254]
[108]
Iommelli, F.; De Rosa, V.; Terlizzi, C.; Monti, M.; Panico, M.; Fonti, R.; Del Vecchio, S. Inositol trisphosphate receptor type 3-mediated enhancement of egfr and met cotargeting efficacy in non-small cell lung cancer detected by 18f-fluorothymidine. Clin. Cancer Res., 2018, 24(13), 3126-3136.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3657] [PMID: 29618618]
[109]
Hawkinson, J.E.; Sinville, R.; Mudaliar, D.; Shetty, J.; Ward, T.; Herr, J.C.; Georg, G.I. Potent pyrimidine and pyrrolopyrimidine inhibitors of testis-specific serine/threonine kinase 2 (TSSK2). ChemMedChem, 2017, 12(22), 1857-1865.
[http://dx.doi.org/10.1002/cmdc.201700503] [PMID: 28952188]