[6]
Selva kumar, S, Senthamarai Kannan, K, Gothai Nachiyar, S. Pre diction of Diabetes Diagnosis Using Classification Based Data Mining Techniques. International Journal of Statistics and Systems 2017; 12(2): 183-8.
[7]
Guo Yang, Bai Guohua. and Hu,Yan.. Using bayes network for prediction of type-2 diabetes Internet Technology and SecuredTransactions, IEEE 2012; 471-2..
[8]
Parashar Ankita. Burse, Kavita., and Rawat, Kavita. A Comparative Approach for Pima Indians Diabetes Diagnosis using LDASupport Vector Machine and Feed Forward Neural Network. Int J Adv Res Comput Sci Softw Eng 2014; 4(11): 378-83.
[9]
Parashar Ankita. Burse, Kavita and Rawat, Kavita. (2014).Diagnosis of Pima Indians Diabetes by LDA-SVM Approach: A Survey. International Journal of Engineering Research & Technology (IJERT), Vol 3, Issues 10, pp 1192-1194
[10]
Choubey Dilip Kumar. Paul, Sanchita., Dhandhania, Vinay Kumar. (2017). Rule Based Diagnosis System for Diabetes. Biomedical Research. Allied Academies 2017; 28(12): 5196-209.
[11]
Vijyan V. Veena., Aswathy, Ravi Kumar. (2014). Study of Data Mining Algorithms for Prediction and Diagnosis of Diabetes Mellitus. Int J Comput Appl 2014; 95(17): 12-6.
[13]
Saravananathan K, Velmurugan T. Analyzing Diabetic Data using Classification Algorithms in Data Mining. Indian J Sci Technol 2016; 9(43): 1-6.
[14]
Kandhasamy J. Pradeep., Balamurali, S. (2015). Performance Analysis of Classifier Models to Predict Diabetes Mellitus. Procedia Computer Science, Elsevier 2015; 47: 45-51.
[22]
Kayaer Kamer. , Yildirim, Tulay.. Medical Diagnosis on Pima Indian Diabetes Using General Regression Neural Networks. IEEE In: 2003; pp. 181-4.
[25]
Ganji Mostafa Fathi. Abadeh, Mohammad Saniee Using fuzzy Ant Colony Optimization for Diagnosis of Diabetes Disease Proceedings of ICEE May 11-13. IEEE 2010; pp. 501-5.
[26]
Choubey, Dilip Kumar. Paul, Sanchita.. GA_SVM-A Classification System for Diagnosis of Diabetes, Handbook of Research on
Nature Inspired Soft Computing and Algorithms, IGI Global. 359-
97.
[27]
Choubey Dilip Kumar Paul Sanchita. GA_J48graft DT: A Hybrid
Intelligent System for Diabetes Disease Diagnosis International
Journal of Bio-Science and Bio-Technology (IJBSBT) SERSC.
2015; 7(5): 135-50. ISSN: 2233-7849.
[29]
Naser Samy S, Abu , Ola Abu Zaiter A. An Expert System for Diagnosing Eye Diseases Using Clips. Journal of Theoretical and Applied Information Technology (JATIT) 2005-2008; 923-30.
[31]
Karatsiolis, Savvas., Schizas, Christos N. Region based Support
vector machine algorithm for medical diagnosis on pima indian diabetes dataset. Proceedings of the IEEE 12th International Conference on Bioinformatics Bioengineering (BIBE), Larnaca, Cyprus. 139-4..
[37]
Choubey Dilip Kumar. Paul, Sanchita.; GA_MLP NN: A Hybrid Intelligent System for Diabetes Disease Diagnosis. International Journal of Intelligent Systems and Applications (IJISA) MECS, ISSN: 2074-904X (Print), ISSN: 2074-9058 (Online). 2016; 8(1): 49-59..
[40]
Choubey, Dilip Kumar., Paul, Sanchita., Dhandhenia, Vinay Kumar.. GA_NN: An intelligent Classification System for Diabetes,
Chapter 2, Soft Computing for Problem Solving. In: Advances in
Intelligent Systems and Computing 817, Springer. 2; pp. 11-23.
[41]
Choubey Dilip Kumar. Paul, Sanchita., Bhattacharjee, Joy.; Soft Computing Approaches for Diabetes Disease Diagnosis: A Survey. International Journal of Applied Engineering Research (IJAER). RIP 2014; 9: 11715-26.
[42]
Barakat N. Rule extraction from support vector machines: Medical diagnosis prediction and explanation. Ph.D. thesis, School Inf. Technol. Electr. Eng. (ITEE), Univ. Queensland, Brisbane, Australia.. 2007.
[43]
Choubey Dilip Kumar. Paul, Sanchita. Classification Techniques for Diagnosis of Diabetes Disease: A Review. International Journal of Biomedical Engineering and Technology (IJBET). Inderscience 2016; 21(1): 15-39.
[44]
Choubey Dilip Kumar. Paul, Sanchita. GA_RBF NN: A Classification System for Diabetes, International Journal of Biomedical Engineering and Technology (IJBET). Inderscience 2017; 23(1): 71-93.
[46]
Palivela Hemant. Thotadara Pushpavathi A novel approach to predict diabetes by Cascading Clustering and Classification Computing Communication Networking Technologies. ICCCNT 2012; pp. 1-7.
[47]
Daho Mostafa El Habib. Settouti,Nesma., Lazouni, Mohammed El Amine., Chikh, M. Amine. Recognition of Diabetes Disease Using A New Hybrid Learning Algorithm For Nefclass. 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA). 239-43.
[48]
Sathasivam Saratha. Hamadneh, Nawaf., Choon, Ong Hong. (2011). Comparing Neural Networks: Hopfield Network and RBF Network. Appl Math Sci 2011; 5(69): 3439-52.
[49]
Kala Rahul. Evolutionary Radial Basis Function Network for Classificatory Problems. International Journal of Computer Science and Applications. Technomathematics Research Foundation 2010; 7(4): 34-49.
[50]
Duygu., Calisir, and. Dogantekin, Esin. An Automatic Diabetes Diagnosis System based on LDA-Wavelet Support Vector Machine classifier. Expert System with Applications 2011; 38: 8311-5.
[52]
Choubey Dilip Kumar, Paul Sanchita, Bala Kanchan, Kumar Manish, Singh Uday Pratap. Implementation of a Hybrid Classification
Method for diabetes In: Innovations in Multimedia Data Engineering and Management. 201-40..
[53]
Jaakkola Tommi S. MIT CSAIL “Machine Learning: Lecture 5”.