Oral Biofilm on Dental Materials Among Khat Chewers

Page: [964 - 972] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Nowadays khat chewing habit is increasing among population in southern part of Saudi Arabia, Jazan and till date there is no literature investigating the effect of khat on oral biofilm on dental materials.

Objective: To evaluate and compare the bacterial biofilm on different types of dental restorative materials used in replacing missing tooth structures among khat chewers and non-khat chewers.

Materials and Methods: Hundred and twenty biofilm samples were collected from different dental restorations, such as All-ceramic (AL), Metal Ceramic (MC), Metal crowns or bridges (M), Composite (C), Glass Ionomer (GI) and Amalgam (A) restorations in non-khat and khat chewers (K). DNA extraction was done and subjected to PCR. Bacterial species, such as Streptococcus, Neisseria, Bacillus, Granulicatella and Veillonella were identified and counted. PCR products were also sequenced to detect similarity. Association between bacterial type and dental materials among non-khat and khat chewers were tested with Chi-Square test (Fishers Exact test).

Results: The frequency and percentage of Streptococcus species were marginally higher among khat chewers (42; 70%) compared with non-khat chewers (38; 63.3%) group. But the Veillonella species were higher among non-khat chewers (9: 15%), compared to the khat chewers group (7; 11.7%). No statistically significant difference was detected among species in both groups. In non-khat and khat chewer group, the maximum hits were related to Streptococcus spp. in glass ionomer, amalgam, and composite (restorative materials), followed by metal ceramic and metal (prosthetic materials). Veillonella spp. showed maximum hits in the metal group among non-khat chewers and in all-ceramic among khat chewers. Statically significant differences were recorded among composite and amalgam samples with p values 0.047 and 0.036 in khat chewer group.

Conclusion: Khat chewers showed statistically significant differences in oral biofilm in the composite and amalgam restorative materials, but there were no significant differences found among any materials and species between the groups.

Keywords: Khat, prosthetic materials, restorative materials, streptococcus, veillonella, oral biofilm.

Graphical Abstract

[1]
Teughels, W.; Van Assche, N.; Sliepen, I.; Quirynen, M. Effect of material characteristics and/or surface topography on biofilm development. Clin. Oral Implants Res., 2006, 17(Suppl. 2), 68-81.
[http://dx.doi.org/10.1111/j.1600-0501.2006.01353.x] [PMID: 16968383]
[2]
Aas, J.A.; Paster, B.J.; Stokes, L.N.; Olsen, I.; Dewhirst, F.E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol., 2005, 43(11), 5721-5732.
[http://dx.doi.org/10.1128/JCM.43.11.5721-5732.2005] [PMID: 16272510]
[3]
Loesche, W.J. Role of Streptococcus mutans in human dental decay. Microbiol. Rev., 1986, 50(4), 353-380.
[PMID: 3540569]
[4]
Marsh, P.D. Oral microbiology. oxford: wright; , 1999.
[5]
Bollen, C.M.; Lambrechts, P.; Quirynen, M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dental. Materials., 1997, 13(4), 258-269.
[6]
Sakaguchi, R.L.; Powers, J.M. Craig’s restorative dental materials-e-book; Elsevier Health Sciences, 2012.
[7]
Azam, M.; Khan, A.; Muzzafar, D.; Faryal, R.; Siddiqi, S.; Ahmad, R.; Chauhdry, A.; Rehman, I. Structural, surface, in vitro bacterial adhesion and biofilm formation analysis of three dental restorative composites. Materials (Basel), 2015, 8(6), 3221-3237.
[http://dx.doi.org/10.3390/ma8063221]
[8]
(a) Hill, C.M.; Gibson, A. The oral and dental effects of q’at chewing. oral surg. oral med. oral pathol., 1987, 63(4), 433-436.
[http://dx.doi.org/10.1016/0030-4220(87)90255-6] [PMID: 3472143]
(b) Kalix, P.; Braenden, O. Pharmacological aspects of the chewing of khat leaves. Pharmacol. Rev., 1985, 37(2), 149-164.
[PMID: 2864707]
[9]
Nyanchoka, I.; Dimba, E.; Chindia, M.; Wanzala, P.; Macigo, F. The oral and dental effects of khat chewing in the Eastleigh area of Nairobi. J. Kenya Dent. Assoc., 2008, 1(1), 37-42.
[10]
(a) Al-Maweri, S.A.; Warnakulasuriya, S.; Samran, A. khat (catha edulis) and its oral health effects: an updated review. j. investig. clin. dent. 2018, 9(1)
[http://dx.doi.org/10.1111/jicd.12288] [PMID: 28834423]
(b) Yarom, N.; Epstein, J.; Levi, H.; Porat, D.; Kaufman, E.; Gorsky, M. Oral manifestations of habitual khat chewing: a casecontrol study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2010, 109(6), e60-e66.
[http://dx.doi.org/10.1016/j.tripleo.2010.02.022] [PMID: 20451834]
[11]
Al-Alimi, K.R.; Razak, A.A.A.; Saub, R. Salivary caries parameters: Comparative study among Yemeni khat chewers and nonchewers. J. Dent. Sci., 2014, 9(4), 328-331.
[http://dx.doi.org/10.1016/j.jds.2014.04.003]
[12]
(a) Al-Hebshi, N.N.; Al-Sharabi, A.K.; Shuga-Aldin, H.M.; Al-Haroni, M.; Ghandour, I. effect of khat chewing on periodontal pathogens in subgingival biofilm from chronic periodontitis patients. j. ethnopharmacol. 2010, 132(3), 564-569.
[http://dx.doi.org/10.1016/j.jep.2010.08.051] [PMID: 20816745]
(b) Al-Alimi, A.; Taiyeb-Ali, T.; Jaafar, N.; Al-hebshi, N.N. Qat chewing and periodontal pathogens in health and disease: Further evidence for a prebiotic-like effect. BioMed Res. Int., 2015. 2015291305
[http://dx.doi.org/10.1155/2015/291305] [PMID: 26351631]
[13]
(a) Al-Hebshi, N.N.; Skaug, N. effect of khat chewing on 14 selected periodontal bacteria in sub- and supragingival plaque of a young male population. oral microbiol. immunol. 2005, 20(3), 141-146.
[http://dx.doi.org/10.1111/j.1399-302x.2004.00195.x] [PMID: 15836514]
(b) Al-Hebshi, N.N.; Nielsen, O.; Skaug, N. In vitro effects of crude khat extracts on the growth, colonization, and glucosyltransferases of Streptococcus mutans. Acta Odontol. Scand., 2005, 63(3), 136-142.
[http://dx.doi.org/10.1080/00016350510019838] [PMID: 16191906]
[14]
Moaleem, M.M.A.; Dorout, I.A.; Elamin, E.F.; Mattoo, K.A.; Ghazali, N.A. biofilm formation on dental materials in the presence of khat. JSM Dent., 2017, 5(2), 1087-12.
[15]
(a) Chen, F.; Wang, D. Novel technologies for the prevention and treatment of dental caries: A patent survey. expert opin. ther. pat, 2010, 20(5), 681-694.
[http://dx.doi.org/10.1517/13543771003720491] [PMID: 20230309]
(b) Haukioja, A.; Yli-Knuuttila, H.; Loimaranta, V.; Kari, K.; Ouwehand, A.C.; Meurman, J.H.; Tenovuo, J. Oral adhesion and survival of probiotic and other lactobacilli and bifidobacteria in vitro. Oral Microbiol. Immunol., 2006, 21(5), 326-332.
[http://dx.doi.org/10.1111/j.1399-302X.2006.00299.x] [PMID: 16922933]
[16]
Al-Kholani, A.I. Influence of khat chewing on periodontal tissues and oral hygiene status among Yemenis. Dent. Res. J. (Isfahan), 2010, 7(1), 1-6.
[PMID: 21448439]
[17]
Anerud, A.; Löe, H.; Boysen, H. The natural history and clinical course of calculus formation in man. J. Clin. Periodontol., 1991, 18(3), 160-170.
[http://dx.doi.org/10.1111/j.1600-051X.1991.tb01128.x] [PMID: 2061415]
[18]
Al-Bayaty, F.H.; Ali, N.; Bulgiba, A.M.; Masood, M.; Hussain, S.F.; Abdulla, M.A. Tooth mortality in khat and non khat chewer in Sana’a Yemen. Sci. Res. Essays, 2011, 6(5), 1039-1045.
[19]
(a) al-Meshal, I.A.; Qureshi, S.; Ageel, A.M.; Tariq, M. the toxicity of catha edulis (khat) in mice. j. subst. abuse, 1991, 3(1), 107-115.
[http://dx.doi.org/10.1016/s0899-3289(05)80011-2] [PMID: 1687965]
(b) El-Wajeh, Y.A.; Thornhill, M.H. Qat and its health effects. Br. Dent. J., 2009, 206(1), 17-21.
[http://dx.doi.org/10.1038/sj.bdj.2008.1122] [PMID: 19132030]
[20]
Luqman, W.; Danowski, T.S. The use of khat (Catha edulis) in Yemen. Social and medical observations. Ann. Intern. Med., 1976, 85(2), 246-249.
[http://dx.doi.org/10.7326/0003-4819-85-2-246] [PMID: 942147]
[21]
Heintze, U.; Birkhed, D.; Björn, H. Secretion rate and buffer effect of resting and stimulated whole saliva as a function of age and sex. Swed. Dent. J., 1983, 7(6), 227-238.
[PMID: 6583873]
[22]
van Dijken, J.W.; Kalfas, S.; Litra, V.; Oliveby, A. Fluoride and mutans streptococci levels in plaque on aged restorations of resin-modified glass ionomer cement, compomer and resin composite. Caries Res., 1997, 31(5), 379-383.
[http://dx.doi.org/10.1159/000262422] [PMID: 9286522]
[23]
Mjör, I.A.; Moorhead, J.E.; Dahl, J.E. Reasons for replacement of restorations in permanent teeth in general dental practice. Int. Dent. J., 2000, 50(6), 361-366.
[http://dx.doi.org/10.1111/j.1875-595X.2000.tb00569.x] [PMID: 11197194]
[24]
Cheng, L.; Zhang, K.; Zhang, N.; Melo, M.A.S.; Weir, M.D.; Zhou, X.D.; Bai, Y.X.; Reynolds, M.A.; Xu, H.H.K. Developing a new generation of antimicrobial and bioactive dental resins. J. Dent. Res., 2017, 96(8), 855-863.
[http://dx.doi.org/10.1177/0022034517709739] [PMID: 28530844]
[25]
Ionescu, A.; Wutscher, E.; Brambilla, E.; Schneider-Feyrer, S.; Giessibl, F.J.; Hahnel, S. Influence of surface properties of resin-based composites on in vitro Streptococcus mutans biofilm development. Eur. J. Oral Sci., 2012, 120(5), 458-465.
[http://dx.doi.org/10.1111/j.1600-0722.2012.00983.x] [PMID: 22985005]
[26]
(a) Park, J.W.; Song, C.W.; Jung, J.H.; Ahn, S.J.; Ferracane, J.L. The effects of surface roughness of composite resin on biofilm formation of Streptococcus mutans in the presence of saliva. oper. dent., 2012, 37(5), 532-539.
[http://dx.doi.org/10.2341/11-371-l] [PMID: 22339385]
(b) Cazzaniga, G.; Ottobelli, M.; Ionescu, A.; Garcia-Godoy, F.; Brambilla, E. Surface properties of resin-based composite materials and biofilm formation: A review of the current literature. Am. J. Dent., 2015, 28(6), 311-320.
[PMID: 26846036]
[27]
Friedl, K.H.; Schmalz, G.; Hiller, K.A.; Shams, M. Resin-modified glass ionomer cements: Fluoride release and influence on Streptococcus mutans growth. Eur. J. Oral Sci., 1997, 105(1), 81-85.
[http://dx.doi.org/10.1111/j.1600-0722.1997.tb00184.x] [PMID: 9085033]
[28]
Moreau, J. L.; Xu, H. H. Fluoride releasing restorative materials: Effects of pH on mechanical properties and ion release. Dental Mats., 2010, 26(11), e227-e235.
[29]
(a) Zhang, S.; Qiu, J.; Ren, Y.; Yu, W.; Zhang, F.; Liu, X. reciprocal interaction between dental alloy biocorrosion and streptococcus mutans virulent gene expression. j. mater. sci. mater. med. 2016, 27(4), 78.
[http://dx.doi.org/10.1007/s10856-015-5645-6] [PMID: 26896953]
(b) Li, Y.; Carrera, C.; Chen, R.; Li, J.; Lenton, P.; Rudney, J.D.; Jones, R.S.; Aparicio, C.; Fok, A. Degradation in the dentincomposite interface subjected to multi-species biofilm challenges. Acta Biomater., 2014, 10(1), 375-383.
[http://dx.doi.org/10.1016/j.actbio.2013.08.034] [PMID: 24008178]
[30]
Hao, Y.; Huang, X.; Zhou, X.; Li, M.; Ren, B.; Peng, X.; Cheng, L. Influence of dental prosthesis and restorative materials interface on oral biofilms. Int. J. Mol. Sci., 2018, 19(10), E3157.
[http://dx.doi.org/10.3390/ijms19103157] [PMID: 30322190]
[31]
Al-Alimi, K.R.; Razak, A.A.A.; Saub, R. Is Khat chewing habit a risk factor for occlusal caries progression? Afr. Health Sci., 2018, 18(4), 1036-1045.
[http://dx.doi.org/10.4314/ahs.v18i4.25] [PMID: 30766570]
[32]
Nabert-Georgi, C.; Rodloff, A.C.; Jentsch, H.; Reissmann, D.R.; Schaumann, R.; Stingu, C.S. Influence of oral bacteria on adhesion of Streptococcus mutans and Streptococcus sanguinis to dental materials. Clin. Exp. Dent. Res., 2018, 4(3), 72-77.
[http://dx.doi.org/10.1002/cre2.107] [PMID: 29955390]
[33]
Padovani, G.C.; Fùcio, S.B.; Ambrosano, G.M.; Correr-Sobrinho, L.; Puppin-Rontani, R.M. In situ bacterial accumulation on dental restorative materials. CLSM/COMSTAT analysis. Am. J. Dent., 2015, 28(1), 3-8.
[PMID: 25864234]
[34]
Netuschil, L.; Vohrer, K.G.; Riethe, P.; Kasloff, Z.; Brecx, M. Antibacterial effects of amalgams on mutans streptococci in an in vitro biofilm test procedure. Acta Stomatol. Belg., 1996, 93(2), 73-78.
[PMID: 9253207]
[35]
Beyth, N.; Domb, A.J.; Weiss, E.I. An in vitro quantitative antibacterial analysis of amalgam and composite resins. J. Dent., 2007, 35(3), 201-206.
[http://dx.doi.org/10.1016/j.jdent.2006.07.009] [PMID: 16996674]
[36]
Souza, J.C.; Mota, R.R.; Sordi, M.B.; Passoni, B.B.; Benfatti, C.A.; Magini, R.S. Biofilm formation on different materials used in oral rehabilitation. Braz. Dent. J., 2016, 27(2), 141-147.
[http://dx.doi.org/10.1590/0103-6440201600625] [PMID: 27058375]
[37]
Chan, C.; Weber, H. Plaque retention on teeth restored with fullceramic crowns: A comparative study. J. Prosthet. Dent., 1986, 56(6), 666-671.
[http://dx.doi.org/10.1016/0022-3913(86)90140-X] [PMID: 3464748]
[38]
Kim, K.H.; Loch, C.; Waddell, J.N.; Tompkins, G.; Schwass, D. Surface characteristics and biofilm development on selected dental ceramic materials. Int. J. Dent., 2017, 2017, 7627945.
[http://dx.doi.org/10.1155/2017/7627945] [PMID: 28567055]
[39]
Zalkind, M.M.; Keisar, O.; Ever-Hadani, P.; Grinberg, R.; Sela, M.N. Accumulation of Streptococcus mutans on light-cured composites and amalgam: An in vitro study. J. Esthet. Dent., 1998, 10(4), 187-190.
[http://dx.doi.org/10.1111/j.1708-8240.1998.tb00356.x] [PMID: 9893513]
[40]
Yu, P; Wang, C; Zhou, J; Jiang, L; Xue, J; Li, W. Influence of surface properties on adhesion forces and attachment of Streptococcus mutans to Zirconia in vitro. BioMed Res. Int., 2016, 10 article id 8901253
[http://dx.doi.org/http://dx.doi.org/10.1155/2016/8901253]
[41]
Motevasselian, F.; Zibafar, E.; Yassini, E.; Mirzaei, M.; Pourmirhoseni, N. Adherence of Streptococcus mutans to microhybrid and nanohybrid resin composites and dental amalgam: An in vitro study. J. Dent. (Tehran), 2017, 14(6), 337-343.
[PMID: 29942328]
[42]
Jorgensen, E.; Kaimenyi, J.T. The status of periodontal health and oral hygiene of Miraa (Catha edulis) chewers. East Afr. Med. J., 1990, 67(8), 585-590.
[PMID: 1979771]
[43]
Al-Bekairi, A.; Abulaban, F.; Qureshi, S.; Shah, A. The toxicity of Catha edulis (Khat). A review. Fitoterapia, 1991, 62(4), 291-300.
[44]
Beighton, D. The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent. Oral Epidemiol., 2005, 33(4), 248-255.
[http://dx.doi.org/10.1111/j.1600-0528.2005.00232.x] [PMID: 16008631]
[45]
(a) Hamada, S.; Slade, H.D. Biology, immunology, and cariogenicity of Streptococcus mutans. microbiol. rev.,, 1980, 44(2), 331-384.
[PMID: 6446023]
(b) Auschill, T.M.; Arweiler, N.B.; Brecx, M.; Reich, E.; Sculean, A.; Netuschil, L. The effect of dental restorative materials on dental biofilm. Eur. J. Oral Sci., 2002, 110(1), 48-53.
[http://dx.doi.org/10.1046/j.0909-8836.2001.101160.x] [PMID: 11878760]
[46]
Fúcio, S.B.; Carvalho, F.G.; Sobrinho, L.C.; Sinhoreti, M.A.; Puppin-Rontani, R.M. The influence of 30-day-old Streptococcus mutans biofilm on the surface of esthetic restorative materials-an in vitro study. J. Dent., 2008, 36(10), 833-839.
[http://dx.doi.org/10.1016/j.jdent.2008.06.002] [PMID: 18621456]
[47]
Aas, J.A.; Griffen, A.L.; Dardis, S.R.; Lee, A.M.; Olsen, I.; Dewhirst, F.E.; Leys, E.J.; Paster, B.J. Bacteria of dental caries in primary and permanent teeth in children and young adults. J. Clin. Microbiol., 2008, 46(4), 1407-1417.
[http://dx.doi.org/10.1128/JCM.01410-07] [PMID: 18216213]
[48]
Periasamy, S.; Kolenbrander, P.E. Central role of the early colonizer Veillonella sp. in establishing multispecies biofilm communities with initial, middle, and late colonizers of enamel. J. Bacteriol., 2010, 192(12), 2965-2972.
[http://dx.doi.org/10.1128/JB.01631-09] [PMID: 20154130]
[49]
Elhag, H.; Mossa, J.S.; El-Olemy, M.M. Antimicrobial and cytotoxic activity of the extracts of khat callus cultures; Center for New Crops & Plant Products: West Lafayette, Ind, USA, 1999.
[50]
Taha, M.M.E.; Homeida, H.E.; Dafalla, O.M.E.; Abdelwahab, S.I. Multidrug resistance, prevalence and phylogenetic analysis of genes encoding class II and III integrons in clinically isolated Escherichia coli. Cell. Mol. Biol., 2018, 64(5), 122-126.
[http://dx.doi.org/10.14715/cmb/2018.64.5.21] [PMID: 29729705]