Monoclonal Antibodies Carried in Drug Delivery Nanosystems as a Strategy for Cancer Treatment

Page: [401 - 418] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Monoclonal antibodies carried in nanosystems have been extensively studied and reported as a promising tool for the treatment of various types of cancers. Monoclonal antibodies have great advantages for the treatment of cancer because their protein structure can bind to the target tissue; however, it has some challenges such as denaturation following heat exposure and extreme values of pH, temperature and solvents, the ability to undergo hydrolysis, oxidation and deamination and the formation of non-native aggregates, which compromise drug stability to a large extent. In addition to these characteristics, they suffer rapid elimination when in the blood, which results in a short half-life and the production of neutralizing antibodies, rendering the doses ineffective. These challenges are overcome with encapsulation in nanosystems (liposomes, polymer nanoparticles, cyclodextrins, solid lipid nanoparticles, nanostructured lipid carriers, dendrimers and micelles) due to the characteristics of improving solubility, permeability, and selectivity only with tumor tissue; with that, there is a decrease in side effects beyond controlled release, which is critical to improving the therapeutic efficacy of cancer treatment. The article was divided into different types of nanosystems, with a description of their definitions and applications in various types of cancers. Therefore, this review summarizes the use of monoclonal antibodies encapsulated in nanosystems and the description of clinical studies with biosimilars. Biosimilars are defined as products that are similar to monoclonal antibodies which are produced when the patent for the monoclonal antibodies expires.

Keywords: Drug delivery nanosystems, biopharmaceuticals, cancer treatment, biosimilars, antibodies, new therapy.

[1]
Iarc. International Association of Cancer Registries. Global Cancer Observatory. Available at: . https://gco.iarc.fr/tomorrow/home(Accessed Date: 2nd February,2020.
[2]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[3]
Pillai, G. Nanotechnology Toward Treating Cancer; Elsevier Inc: Amsterdam, 2019, Vol. 9, pp. 221-256.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00009-0]
[4]
Guichard, M.J.; Leal, T.; Vanbever, R. PEGylation, an approach for improving the pulmonary delivery of biopharmaceuticals. Curr. Opin. Colloid Interface Sci., 2017, 31, 43-50.
[http://dx.doi.org/10.1016/j.cocis.2017.08.001]
[5]
Agyei, D.; Ahmed, I.; Akram, Z.; Iqbal, H.M.; Danquah, M.K. Protein and peptide biopharmaceuticals: an overview. Protein Pept. Lett., 2017, 24(2), 94-101.
[http://dx.doi.org/10.2174/0929866523666161222150444] [PMID: 28017145]
[6]
Jozala, A.F.; Geraldes, D.C.; Tundisi, L.L.; Feitosa, V.A.; Breyer, C.A.; Cardoso, S.L.; Mazzola, P.G.; Oliveira-Nascimento, L.; Rangel-Yagui, C.O.; Magalhães, P.O.; Oliveira, M.A.; Pessoa, A., Jr Biopharmaceuticals from microorganisms: from production to purification. Braz. J. Microbiol., 2016, 47(Suppl. 1), 51-63.
[http://dx.doi.org/10.1016/j.bjm.2016.10.007] [PMID: 27838289]
[7]
Vass, P.; Démuth, B.; Hirsch, E.; Nagy, B.; Andersen, S.K.; Vigh, T.; Verreck, G.; Csontos, I.; Nagy, Z.K.; Marosi, G. Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. J. Control. Release, 2019, 296, 162-178.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.023] [PMID: 30677436]
[8]
Harloff-Helleberg, S.; Nielsen, L.H.; Nielsen, H.M. Animal models for evaluation of oral delivery of biopharmaceuticals. J. Control. Release, 2017, 268, 57-71.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.025] [PMID: 28935596]
[9]
Walsh, G. Second-generation biopharmaceuticals. Eur. J. Pharm. Biopharm., 2004, 58(2), 185-196.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.012] [PMID: 15296948]
[10]
Basso, A.M.M.; Prado, G.S.; Pelegrini, P.B.; Grossi-de-Sa, M.F. Biopharmaceuticals and biosimilars.In: Current Developments in Biotechnology and Bioengineering; , 2016. 23-48.
[http://dx.doi.org/10.1016/B978-0-444-63660-7.00002-4]
[11]
LeVine, H. Biopharmaceuticals; Elsevier Ltd: London, 2013, Vol. 12, pp. 171-188.
[http://dx.doi.org/10.1016/B978-0-7020-4299-7.00012-3]
[12]
Schloot, N.C.; Hood, R.C.; Corrigan, S.M.; Panek, R.L.; Heise, T. Concentrated insulins in current clinical practice. Diabetes Res. Clin. Pract., 2019, 148, 93-101.
[http://dx.doi.org/10.1016/j.diabres.2018.12.007] [PMID: 30583034]
[13]
French, C. Erythropoietin in critical illness and trauma. Crit. Care Clin., 2019, 35(2), 277-287.
[http://dx.doi.org/10.1016/j.ccc.2018.11.015] [PMID: 30784609]
[14]
Ohno, M.; Natsume, A.; Wakabayashi, T. Cytokine therapy. Adv. Exp. Med. Biol., 2012, 746, 86-94.
[http://dx.doi.org/10.1007/978-1-4614-3146-6_7] [PMID: 22639161]
[15]
Cardoso, T.; Saracoglu, A. Factor VII and thromboembolism. Trends Anaesth. Crit. Care, 2018, 22, 33-40.
[http://dx.doi.org/10.1016/j.tacc.2018.04.010]
[16]
Zhou, L.; Xu, N.; Sun, Y.; Liu, X.M. Targeted biopharmaceuticals for cancer treatment. Cancer Lett., 2014, 352(2), 145-151.
[http://dx.doi.org/10.1016/j.canlet.2014.06.020] [PMID: 25016064]
[17]
Feher, J. Protein structure in: Quantitative human physiology (Second Edition); Elsevier Inc: Amsterdam; , 2017, 2.3, pp. 130-141.
[18]
Engelking, L.R. Protein structure in: Textbook of Veterinary Physiological Chemistry, Third Edition; Elsevier Inc: Amsterdam, 2015, Vol. 4, pp. 18-25.
[19]
Littlechild, J.A. Protein structure and function in: Introduction to Biological and Small Molecule Drug Research and Development; Elsevier Ltd: Amsterdam, 2013, Vol. 2, pp. 57-79.
[20]
Tripathi, N.K.; Shrivastava, A. Scale up of biopharmaceuticals production. In: Nanoscale fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology; Grumezescu, A.M., Ed.; Elsevier Inc: Amsterdam, 2018, Vol. 4, pp. 133-172.
[http://dx.doi.org/10.1016/B978-0-12-813629-4.00004-8]
[21]
Leachman, R.C.; Johnston, L.; Li, S.; Shen, Z.J. An automated planning engine for biopharmaceutical production. Eur. J. Oper. Res., 2014, 238(1), 327-338.
[http://dx.doi.org/10.1016/j.ejor.2014.03.002]
[22]
Hong, M.S.; Severson, K.A.; Jiang, M.; Lu, A.E.; Love, J.C.; Braatz, R.D. Challenges and opportunities in biopharmaceutical manufacturing control. Comput. Chem. Eng., 2018, 110, 106-114.
[http://dx.doi.org/10.1016/j.compchemeng.2017.12.007]
[23]
Fang, Z. Wusgal; Cheng, H.; Liang, L. Natural biodegradable medical polymers: therapeutic peptides and proteins.Science and Principles of Biodegradable and Bioresorbable Medical Polymers; Elsevier Ltd: Cambridge, 2016, Vol. 11, pp. 321-350.
[http://dx.doi.org/10.1016/B978-0-08-100372-5.00011-8]
[24]
Aulton, M.E.; Taylor, K.M.G. Delineamento de Formas Farmacêuticas, 4th ed; Elsevier: São Paulo, 2016.
[25]
Langguth, P.; Bohner, V.; Heizmann, J.; Merkle, H.P.; Wolffram, S.; Amidon, G.L.; Yamashita, S. The challenge of proteolysis enzymes in intestinal peptide delivery. J. Control. Release, 1997, 46(1-2), 39-57.
[http://dx.doi.org/10.1016/S0168-3659(96)01586-6]
[26]
Khafagy, S.; Morishita, M. Oral biodrug delivery using cell-penetrating peptide. Adv. Drug Deliv. Rev., 2012, 64(6), 531-539.
[http://dx.doi.org/10.1016/j.addr.2011.12.014] [PMID: 22245080]
[27]
Antosova, Z.; Mackova, M.; Kral, V.; Macek, T. Therapeutic application of peptides and proteins: parenteral forever? Trends Biotechnol., 2009, 27(11), 628-635.
[http://dx.doi.org/10.1016/j.tibtech.2009.07.009] [PMID: 19766335]
[28]
Zhou, X.H.; Zhou, X.H.; Li-Wan-Pao, A. Peptide and protein drugs: I. Therapeutic applications, absorption and parenteral administration. Int. J. Pharm., 1991, 75(2–3), 97-115.
[http://dx.doi.org/10.1016/0378-5173(91)90184-P]
[29]
Gondim, B.L.C.; Oshiro, J.A. Jr.; Fernanandes, F.H.A.; Nóbrega, F.P.; Castellano, L.R.C.; Medeiros, A.C.D. Plant extracts loaded in nanostructured drug delivery systems for treating parasitic and antimicrobial diseases. Curr. Pharm. Des., 2019, 25(14), 1604-1615.
[http://dx.doi.org/10.2174/1381612825666190628153755] [PMID: 31264539]
[30]
Raza, K.; Kumar, P.; Kumar, N.; Malik, R. Pharmacokinetics and biodistribution of the nanoparticles.In: Advances in nanomedicine for the delivery of therapeutic nucleic acids; , 2017. pp. 166-186.
[http://dx.doi.org/10.1016/B978-0-08-100557-6.00009-2]
[31]
Araújo, G.M.F.; Barros, A.R.A.; Oshiro, J.A. Jr.; Soares, L.F.; da Rocha, L.G.; de Lima, Á.A.N.; da Silva, J.A.; Converti, A.; Damasceno, B.P.G.L. Nanoemulsions loaded with amphotericin B: development, characterization and leishmanicidal activity. Curr. Pharm. Des., 2019, 25(14), 1616-1622.
[http://dx.doi.org/10.2174/1381612825666190705202030] [PMID: 31298163]
[32]
Tan, M.L.; Choong, P.F.M.; Dass, C.R. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides, 2010, 31(1), 184-193.
[http://dx.doi.org/10.1016/j.peptides.2009.10.002] [PMID: 19819278]
[33]
Sánchez-Paulete, A.R.; Cueto, F.J.; Martínez-López, M.; Labiano, S.; Morales-Kastresana, A.; Rodríguez-Ruiz, M.E.; Jure-Kunkel, M.; Azpilikueta, A.; Aznar, M.A.; Quetglas, J.I.; Sancho, D.; Melero, I. Monoclonal antibodies. Cancer Discov., 2016, 6(1), 71-79.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0510] [PMID: 26493961]
[34]
Parr, M.K.; Montacir, O.; Montacir, H. Physicochemical characterization of biopharmaceuticals. J. Pharm. Biomed. Anal., 2016, 130, 366-389.
[http://dx.doi.org/10.1016/j.jpba.2016.05.028] [PMID: 27324698]
[35]
Moosavian, S.A.; Sahebkar, A. Aptamer-functionalized liposomes for targeted cancer therapy. Cancer Lett., 2019, 448, 144-154.
[http://dx.doi.org/10.1016/j.canlet.2019.01.045] [PMID: 30763718]
[36]
Oshiro-Junior, J.A.; Alves, R.C.; Hanck-Silva, G.; Sato, M.R.; Rodero, C.; Eloy, J.O.; Chorilli, M. Stimuli-responsive drug delivery nanocarriers in the treatment of breast cancer. Curr. Med. Chem., 2018, 26, 1-19.
[http://dx.doi.org/10.2174/0929867325666181009120610] [PMID: 30306849]
[37]
Batista, C.M.; de Carvalho, C.M.B.; Magalhães, N.S.S. Lipossomas e suas aplicações terapêuticas: estado da arte. Rev. Bras. Ciências Farm., 2007, 43(2), 167-179.
[http://dx.doi.org/10.1590/S1516-93322007000200003]
[38]
Li, M.; Du, C.; Guo, N.; Teng, Y.; Meng, X.; Sun, H.; Li, S.; Yu, P.; Galons, H. Composition design and medical application of liposomes. Eur. J. Med. Chem., 2019, 164, 640-653.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.007] [PMID: 30640028]
[39]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-252.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[40]
Barenholz, Y. Doxil®--the first FDA-approved nano-drug: lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[41]
Zununi Vahed, S.; Salehi, R.; Davaran, S.; Sharifi, S. Liposome-based drug co-delivery systems in cancer cells. Mater. Sci. Eng. C, 2017, 71, 1327-1341.
[http://dx.doi.org/10.1016/j.msec.2016.11.073] [PMID: 27987688]
[42]
Kuesters, G.M.; Campbell, R.B. Conjugation of bevacizumab to cationic liposomes enhances their tumor-targeting potential. Nanomedicine (Lond.), 2010, 5(2), 181-192.
[http://dx.doi.org/10.2217/nnm.09.105] [PMID: 20148631]
[43]
Karumanchi, D.K.; Skrypai, Y.; Thomas, A.; Gaillard, E.R. Rational design of liposomes for sustained release drug delivery of bevacizumab to treat ocular angiogenesis. J. Drug Deliv. Sci. Technol., 2018, 47, 275-282.
[http://dx.doi.org/10.1016/j.jddst.2018.07.003]
[44]
Danino, D.; Portnoy, E.; Magdassi, S.; Lazarovici, P.; Lecht, S. Cetuximab-labeled liposomes containing near-infrared probe for in vivo imaging. Nanomedicine nanotechnology. Biol. Med. (Aligarh), 2011, 7(4), 480-488.
[http://dx.doi.org/10.1016/j.nano.2011.01.001]
[45]
Zalba, S.; Contreras, A.M.; Haeri, A.; Ten Hagen, T.L.; Navarro, I.; Koning, G.; Garrido, M.J. Cetuximab-oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer. J. Control. Release, 2015, 210, 26-38.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.271] [PMID: 25998052]
[46]
Nguyen, H.T.; Tran, T.H.; Thapa, R.K.; Phung, C.D.; Shin, B.S.; Jeong, J.H.; Choi, H.G.; Yong, C.S.; Kim, J.O. Targeted co-delivery of polypyrrole and rapamycin by trastuzumab-conjugated liposomes for combined chemo-photothermal therapy. Int. J. Pharm., 2017, 527(1-2), 61-71.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.034] [PMID: 28528212]
[47]
Amin, M.; Pourshohod, A.; Kheirollah, A.; Afrakhteh, M.; Gholami-Borujeni, F.; Zeinali, M.; Jamalan, M. Specific delivery of idarubicin to HER2-positive breast cancerous cell line by trastuzumab-conjugated liposomes. J. Drug Deliv. Sci. Technol., 2018, 47, 209-214.
[http://dx.doi.org/10.1016/j.jddst.2018.07.017]
[48]
Sarcan, E.T.; Silindir-Gunay, M.; Ozer, A.Y. Theranostic polymeric nanoparticles for NIR imaging and photodynamic therapy. Int. J. Pharm., 2018, 551(1-2), 329-338.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.019] [PMID: 30244148]
[49]
Buishvili, L.L.; Khalvashi, E.K. The theory of nonstationary dynamic polarization of nuclei. Radiophys. Quantum Electron., 1974, 14(9), 1143-1144.
[http://dx.doi.org/10.1007/BF01029480]
[50]
Cheng, C.J.; Tietjen, G.T.; Saucier-Sawyer, J.K.; Saltzman, W.M. A holistic approach to targeting disease with polymeric nanoparticles. Nat. Rev. Drug Discov., 2015, 14(4), 239-247.
[http://dx.doi.org/10.1038/nrd4503] [PMID: 25598505]
[51]
Karra, N.; Nassar, T.; Ripin, A.N.; Schwob, O.; Borlak, J.; Benita, S. Antibody conjugated PLGA nanoparticles for targeted delivery of paclitaxel palmitate: efficacy and biofate in a lung cancer mouse model. Small, 2013, 9(24), 4221-4236.
[http://dx.doi.org/10.1002/smll.201301417] [PMID: 23873835]
[52]
Tseng, S.H.; Chou, M.Y.; Chu, I.M. Cetuximab-conjugated iron oxide nanoparticles for cancer imaging and therapy. Int. J. Nanomedicine, 2015, 10, 3663-3685.
[http://dx.doi.org/10.2147/ijn.s80134] [PMID: 26056447]
[53]
Wu, F-L.; Zhang, J.; Li, W.; Bian, B-X.; Hong, Y-D.; Song, Z-Y.; Wang, H-Y.; Cui, F-B.; Li, R-T.; Liu, Q.; Jiang, X.D.; Li, X.M.; Zheng, J.N. Enhanced antiproliferative activity of antibody-functionalized polymeric nanoparticles for targeted delivery of anti-miR-21 to HER2 positive gastric cancer. Oncotarget, 2017, 8(40), 67189-67202.
[http://dx.doi.org/10.18632/oncotarget.18066] [PMID: 28978026]
[54]
Aydın, R.S.T. Herceptin-decorated salinomycin-loaded nanoparticles for breast tumor targeting. J. Biomed. Mater. Res. A, 2013, 101(5), 1405-1415.
[http://dx.doi.org/10.1002/jbm.a.34448] [PMID: 23086911]
[55]
Hu, N.; Yin, J.F.; Ji, Z.; Hong, Y.; Wu, P.; Bian, B.; Song, Z.; Li, R.; Liu, Q.; Wu, F. Strengthening gastric cancer therapy by trastuzumab-conjugated nanoparticles with simultaneous encapsulation of anti-MiR-21 and 5-fluorouridine. Cell. Physiol. Biochem., 2017, 44(6), 2158-2173.
[http://dx.doi.org/10.1159/000485955] [PMID: 29241186]
[56]
Nobs, L.; Buchegger, F.; Gurny, R.; Allémann, E. Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjug. Chem., 2006, 17(1), 139-145.
[http://dx.doi.org/10.1021/bc050137k] [PMID: 16417262]
[57]
Cirstoiu-Hapca, A.; Bossy-Nobs, L.; Buchegger, F.; Gurny, R.; Delie, F. Differential tumor cell targeting of anti-HER2 (Herceptin) and anti-CD20 (Mabthera) coupled nanoparticles. Int. J. Pharm., 2007, 331(2), 190-196.
[http://dx.doi.org/10.1016/j.ijpharm.2006.12.002.]
[58]
Maya, S.; Kumar, L.G.; Sarmento, B.; Sanoj Rejinold, N.; Menon, D.; Nair, S.V.; Jayakumar, R. Cetuximab conjugated O-carboxymethyl chitosan nanoparticles for targeting EGFR overexpressing cancer cells. Carbohydr. Polym., 2013, 93(2), 661-669.
[http://dx.doi.org/10.1016/j.carbpol.2012.12.032] [PMID: 23499109]
[59]
Maya, S.; Sarmento, B.; Lakshmanan, V.K.; Menon, D.; Seabra, V.; Jayakumar, R. Chitosan cross-linked docetaxel loaded EGF receptor targeted nanoparticles for lung cancer cells. Int. J. Biol. Macromol., 2014, 69, 532-541.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.06.009] [PMID: 24950310]
[60]
Deepagan, V.G.; Sarmento, B.; Menon, D.; Nascimento, A.; Jayasree, A.; Sreeranganathan, M.; Koyakutty, M.; Nair, S.V.; Rangasamy, J. In vitro targeted imaging and delivery of camptothecin using cetuximab-conjugated multifunctional PLGA-ZnS nanoparticles. Nanomedicine (Lond.), 2012, 7(4), 507-519.
[http://dx.doi.org/10.2217/nnm.11.139] [PMID: 22471719]
[61]
Voltan, R.; Secchiero, P.; Ruozi, B.; Forni, F.; Agostinis, C.; Caruso, L.; Vandelli, M.A.; Zauli, G. Nanoparticles engineered with rituximab and loaded with Nutlin-3 show promising therapeutic activity in B-leukemic xenografts. Clin. Cancer Res., 2013, 19(14), 3871-3880.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0015] [PMID: 23719263]
[62]
Kutlu, C.; Çakmak, A.S.; Gümüşderelioğlu, M. Double-effective chitosan scaffold-PLGA nanoparticle system for brain tumour therapy: in vitro study. J. Microencapsul., 2014, 31(7), 700-707.
[http://dx.doi.org/10.3109/02652048.2014.913727] [PMID: 24963961]
[63]
Colzani, B.; Pandolfi, L.; Hoti, A.; Iovene, P.A.; Natalello, A.; Avvakumova, S.; Colombo, M.; Prosperi, D. Investigation of antitumor activities of trastuzumab delivered by PLGA nanoparticles. Int. J. Nanomedicine, 2018, 13, 957-973.
[http://dx.doi.org/10.2147/IJN.S152742] [PMID: 29491709]
[64]
Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[65]
Calderón-Colón, X.; Raimondi, G.; Benkoski, J.J.; Patrone, J.B. Solid lipid nanoparticles (SLNs) for intracellular targeting applications. J. Vis. Exp., 2015, 105(105), 1-8.
[http://dx.doi.org/10.3791/53102] [PMID: 26650036]
[66]
Gordillo-Galeano, A.; Mora-Huertas, C.E. Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm., 2018, 133, 285-308.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.017] [PMID: 30463794]
[67]
Rigon, R.B.; Fachinetti, N.; Severino, P.; Santana, M.H.A.; Chorilli, M. Skin delivery and in vitro biological evaluation of trans-resveratrol-loaded solid lipid nanoparticles for skin disorder therapies. Molecules, 2016, 21(1)E116
[http://dx.doi.org/10.3390/molecules21010116] [PMID: 26805794]
[68]
Rigon, R.B.; Gonçalez, M.L.; Severino, P.; Alves, D.A.; Santana, M.H.A.; Souto, E.B.; Chorilli, M. Solid lipid nanoparticles optimized by 22 factorial design for skin administration: Cytotoxicity in NIH3T3 fibroblasts. Colloids Surf. B Biointerfaces, 2018, 171, 501-505.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.065] [PMID: 30081382]
[69]
Graverini, G.; Piazzini, V.; Landucci, E.; Pantano, D.; Nardiello, P.; Casamenti, F.; Pellegrini-Giampietro, D.E.; Bilia, A.R.; Bergonzi, M.C. Solid lipid nanoparticles for delivery of andrographolide across the blood-brain barrier: in vitro and in vivo evaluation. Colloids Surf. B Biointerfaces, 2018, 161, 302-313.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.062] [PMID: 29096375]
[70]
Battaglia, L.; Gallarate, M.; Peira, E.; Chirio, D.; Solazzi, I.; Giordano, S.M.A.; Gigliotti, C.L.; Riganti, C.; Dianzani, C. Bevacizumab loaded solid lipid nanoparticles prepared by the coacervation technique: preliminary in vitro studies. Nanotechnology, 2015, 26(25)255102
[http://dx.doi.org/10.1088/0957-4484/26/25/255102] [PMID: 26043866]
[71]
Kuo, Y-C.; Lee, C-H. Dual targeting of solid lipid nanoparticles grafted with 83-14 MAb and anti-EGF receptor for malignant brain tumor therapy. Life Sci., 2016, 146, 222-231.
[http://dx.doi.org/10.1016/j.lfs.2016.01.025] [PMID: 26784850]
[72]
Kuo, Y.C.; Chao, I.W. Conjugation of melanotransferrin antibody on solid lipid nanoparticles for mediating brain cancer malignancy. Biotechnol. Prog., 2016, 32(2), 480-490.
[http://dx.doi.org/10.1002/btpr.2214] [PMID: 26701338]
[73]
Büyükköroǧlu, G.; Şenel, B.; Gezgin, S.; Dinh, T. The simultaneous delivery of paclitaxel and Herceptin® using solid lipid nanoparticles: in vitro evaluation. J. Drug Deliv. Sci. Technol., 2016, 35, 98-105.
[http://dx.doi.org/10.1016/j.jddst.2016.06.010]
[74]
Sato, M.R.; Oshiro, J.A. Jr.; Machado, R.T.; de Souza, P.C.; Campos, D.L.; Pavan, F.R.; da Silva, P.B.; Chorilli, M. Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis. Drug Des. Devel. Ther., 2017, 11, 909-921.
[http://dx.doi.org/10.2147/DDDT.S127048] [PMID: 28356717]
[75]
Jaiswal, P.; Gidwani, B.; Vyas, A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 27-40.
[http://dx.doi.org/10.3109/21691401.2014.909822] [PMID: 24813223]
[76]
Beloqui, A.; Solinís, M.Á.; Rodríguez-Gascón, A.; Almeida, A.J.; Préat, V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine (Lond.), 2016, 12(1), 143-161.
[http://dx.doi.org/10.1016/j.nano.2015.09.004] [PMID: 26410277]
[77]
Liu, D.; Liu, F.; Liu, Z.; Wang, L.; Zhang, N. Tumor specific delivery and therapy by double-targeted nanostructured lipid carriers with anti-VEGFR-2 antibody. Mol. Pharm., 2011, 8(6), 2291-2301.
[http://dx.doi.org/10.1021/mp200402e] [PMID: 21923159]
[78]
Guo, S.; Zhang, Y.; Wu, Z.; Zhang, L.; He, D.; Li, X.; Wang, Z. Synergistic combination therapy of lung cancer: Cetuximab functionalized nanostructured lipid carriers for the co-delivery of paclitaxel and 5-Demethylnobiletin. Biomed. Pharmacother., 2019, 118(12)109225
[http://dx.doi.org/10.1016/j.biopha.2019.109225] [PMID: 31325705]
[79]
Varshosaz, J.; Davoudi, M.A.; Rasoul-Amini, S. Docetaxel-loaded nanostructured lipid carriers functionalized with trastuzumab (Herceptin) for HER2-positive breast cancer cells. J. Liposome Res., 2018, 28(4), 285-295.
[http://dx.doi.org/10.1080/08982104.2017.1370471] [PMID: 28826287]
[80]
Han, C.; Li, Y.; Sun, M.; Liu, C.; Ma, X.; Yang, X.; Yuan, Y.; Pan, W. Small peptide-modified nanostructured lipid carriers distribution and targeting to EGFR-overexpressing tumor in vivo. Artif. Cells Nanomed. Biotechnol., 2014, 42(3), 161-166.
[http://dx.doi.org/10.3109/21691401.2013.801848] [PMID: 23731383]
[81]
Gidwani, B.; Vyas, A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res. Int., 2015, 2015198268
[http://dx.doi.org/10.1155/2015/198268] [PMID: 26582104]
[82]
Lakkakula, J.R.; Maçedo Krause, R.W. A vision for cyclodextrin nanoparticles in drug delivery systems and pharmaceutical applications. Nanomedicine (Lond.), 2014, 9(6), 877-894.
[http://dx.doi.org/10.2217/nnm.14.41] [PMID: 24981652]
[83]
Pham, E.; Yin, M.; Peters, C.G.; Lee, C.R.; Brown, D.; Xu, P.; Man, S.; Jayaraman, L.; Rohde, E.; Chow, A.; Lazarus, D.; Eliasof, S.; Foster, F.S.; Kerbel, R.S. Preclinical efficacy of bevacizumab with CRLX101, an investigational nanoparticle-drug conjugate, in treatment of metastatic triple-negative breast cancer. Cancer Res., 2016, 76(15), 4493-4503.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3435] [PMID: 27325647]
[84]
Pham, E.; Birrer, M.J.; Eliasof, S.; Garmey, E.G.; Lazarus, D.; Lee, C.R.; Man, S.; Matulonis, U.A.; Peters, C.G.; Xu, P.; Krasner, C.; Kerbel, R.S. Translational impact of nanoparticle-drug conjugate CRLX101 with or without bevacizumab in advanced ovarian cancer. Clin. Cancer Res., 2015, 21(4), 808-818.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2810] [PMID: 25524310]
[85]
Keefe, S.M.; Hoffman-Censits, J.; Cohen, R.B.; Mamtani, R.; Heitjan, D.; Eliasof, S.; Nixon, A.; Turnbull, B.; Garmey, E.G.; Gunnarsson, O.; Waliki, M.; Ciconte, J.; Jayaraman, L.; Senderowicz, A.; Tellez, A.B.; Hennessy, M.; Piscitelli, A.; Vaughn, D.; Smith, A.; Haas, N.B. Efficacy of the nanoparticle-drug conjugate CRLX101 in combination with bevacizumab in metastatic renal cell carcinoma: results of an investigator-initiated phase I-IIa clinical trial. Ann. Oncol., 2016, 27(8), 1579-1585.
[http://dx.doi.org/10.1093/annonc/mdw188] [PMID: 27457310]
[86]
Tomalia, D.A.; Huang, B.; Swanson, D.R.; Brothers, H.M.; Klimash, J.W. Structure control within poly(amidoamine) dendrimers: size, shape and regio-chemical mimicry of globular proteins. Tetrahedro., 2003, 59(22), 3799-3813.
[http://dx.doi.org/10.1016/S0040-4020(03)00430-7]
[87]
Sherje, A.P.; Jadhav, M.; Dravyakar, B.R.; Kadam, D. Dendrimers: a versatile nanocarrier for drug delivery and targeting. Int. J. Pharm., 2018, 548(1), 707-720.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.030] [PMID: 30012508]
[88]
Jain, N.K.; Tare, M.S.; Mishra, V.; Tripathi, P.K. The development, characterization and in vivo anti-ovarian cancer activity of poly(propylene imine) (PPI)-antibody conjugates containing encapsulated paclitaxel. Nanomedicine (Lond.), 2015, 11(1), 207-218.
[http://dx.doi.org/10.1016/j.nano.2014.09.006] [PMID: 25262579]
[89]
Marcinkowska, M.; Sobierajska, E.; Stanczyk, M.; Janaszewska, A.; Chworos, A.; Klajnert-Maculewicz, B. Conjugate of PAMAM dendrimer, doxorubicin and monoclonal antibody-trastuzumab: the new approach of a well-known strategy. Polymers (Basel), 2018, 10(2), 187.
[http://dx.doi.org/10.3390/polym10020187] [PMID: 30966223]
[90]
Kulhari, H.; Pooja, D.; Shrivastava, S.; Kuncha, M.; Naidu, V.G.M.; Bansal, V.; Sistla, R.; Adams, D.J. Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci. Rep., 2016, 6, 23179.
[http://dx.doi.org/10.1038/srep23179] [PMID: 27052896]
[91]
Biswas, S.; Kumari, P.; Lakhani, P.M.; Ghosh, B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur. J. Pharm. Sci., 2016, 83, 184-202.
[http://dx.doi.org/10.1016/j.ejps.2015.12.031] [PMID: 26747018]
[92]
Raveendran, R. Polymeric micelles: smart nanocarriers for anticancer drug delivery.Drug delivery nanosystems for biomedical applications; Elsevier Inc: Amsterdam, 2018, Vol. 12, pp. 255-273.
[93]
Rafael, D.; Martínez, F.; Andrade, F.; Seras-Franzoso, J.; Garcia-Aranda, N.; Gener, P.; Sayós, J.; Arango, D.; Abasolo, I.; Schwartz, S. Efficient EFGR Mediated SiRNA delivery to breast cancer cells by cetuximab functionalized Pluronic® F127/Gelatin. Chem. Eng. J., 2018, 340, 81-93.
[http://dx.doi.org/10.1016/j.cej.2017.12.114]
[94]
Kutty, R.V.; Chia, S.L.; Setyawati, M.I.; Muthu, M.S.; Feng, S.S.; Leong, D.T. In vivo and ex vivo proofs of concept that cetuximab conjugated vitamin E TPGS micelles increases efficacy of delivered docetaxel against triple negative breast cancer. Biomaterials, 2015, 63, 58-69.
[http://dx.doi.org/10.1016/j.biomaterials.2015.06.005] [PMID: 26081868]
[95]
Chang, M-H.; Pai, C-L.; Chen, Y-C.; Yu, H-P.; Hsu, C-Y.; Lai, P-S. Enhanced antitumor effects of epidermal growth factor receptor targetable cetuximab-conjugated polymeric micelles for photodynamic therapy. Nanomaterials (Basel), 2018, 8(2), 121.
[http://dx.doi.org/10.3390/nano8020121] [PMID: 29470420]
[96]
Tesan, F.; Cerqueira-Coutinho, C.; Salgueiro, J.; de Souza Albernaz, M.; Pinto, S.R.; Rezende Dos Reis, S.R.; Bernardes, E.S.; Chiapetta, D.; Zubillaga, M.; Santos-Oliveira, R. Characterization and biodistribution of bevacizumab tpgs-based nanomicelles: preliminary studies. J. Drug Deliv. Sci. Technol., 2016, 36, 95-98.
[http://dx.doi.org/10.1016/j.jddst.2016.09.011]
[97]
Kenmotsu, H.; Yasunaga, M.; Goto, K.; Nagano, T.; Kuroda, J.; Koga, Y.; Takahashi, A.; Nishiwaki, Y.; Matsumura, Y. The antitumor activity of NK012, an SN-38-incorporating micelle, in combination with bevacizumab against lung cancer xenografts. Cancer, 2010, 116(19), 4597-4604.
[http://dx.doi.org/10.1002/cncr.25233] [PMID: 20572031]
[98]
Singh, G. Pharmaceutical medicine and translational clinical research; Elsevier Inc: Amsterdam, 2018, Vol. 22, pp. 355-367.
[99]
Atzeni, F.; Barilaro, G.; Sarzi-puttini, P. Biologics and biosimilar.In: Mosaic of Autoimmunity; Elsevier Inc: Amsterdam, 2019, Vol. 58, pp. 625-628.
[100]
Food and Drug Administration. Biosimilar and Interchangeable Products.Available at:, https://www.fda.gov/drugs/biosimilars/biosimilar-and-interchangeable-products#top(Accessed Date: Feb 02,2019.
[113]
Food and Drug Administration. Approved Biosimilar Products., https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761074s000lbl.pdf(Accessed Date: Feb 252019.
[114]
Food and Drug Administration. Approved Biosimilar Products., https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761091s000lbl.pdf(Accessed Date: Feb 252019.
[115]
Food and Drug Administration. Approved Biosimilar Products., https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761088s000lbl.pdf(Accessed Date: Feb 252019.
[116]
Food and Drug Administration. Approved Biosimilar Products., https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761081s000lbl.pdf(Accessed Date: Feb 252019.
[117]
Food and Drug Administration. Approved Biosimilar Products., https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761100s000lbl.pdf(Accessed Date: Feb 252019.
[118]
Food and Drug Administration. Approved Biosimilar Products., https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761103s000lbl.pdf(Accessed Date: Feb 25, 2019.
[119]
Food and Drug Administration. Approved Biosimilar Products., https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761099s000lbl.pdf (Accessed Date: Feb 25,2019.
[121]
Deloitte. Global Life Sciences Outlook Thriving in Today's Uncertain Market, 2017. Available at: . https://www2. deloitte.com/content/dam/Deloitte/global/Documents/Life-Sciences-Health-Care/gx-lshc-2017-life-sciences-outlook.pdf(Accessed Date: Feb 19,2019.