Carbazole Derivatives as Kinase-Targeting Inhibitors for Cancer Treatment

Page: [444 - 465] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

Protein Kinases (PKs) are a heterogeneous family of enzymes that modulate several biological pathways, including cell division, cytoskeletal rearrangement, differentiation and apoptosis. In particular, due to their crucial role during human tumorigenesis and cancer progression, PKs are ideal targets for the design and development of effective and low toxic chemotherapeutics and represent the second group of drug targets after G-protein-coupled receptors. Nowadays, several compounds have been claimed to be PKs inhibitors, and some of them, such as imatinib, erlotinib and gefitinib, have already been approved for clinical use, whereas more than 30 others are in various phases of clinical trials. Among them, some natural or synthetic carbazole-based molecules represent promising PKs inhibitors due to their capability to interfere with PK activity by different mechanisms of action including the ability to act as DNA intercalating agents, interfere with the activity of enzymes involved in DNA duplication, such as topoisomerases and telomerases, and inhibit other proteins such as cyclindependent kinases or antagonize estrogen receptors. Thus, carbazoles can be considered a promising this class of compounds to be adopted in targeted therapy of different types of cancer.

Keywords: Protein kinases, kinases inhibitors, carbazoles, anticancer drugs, targeted therapy, cancer.

Graphical Abstract

[1]
Gatzka, M.V. Targeted Tumor Therapy Remixed-An Update on the Use of Small-Molecule Drugs in Combination Therapies. Cancers (Basel), 2018, 10(6), E155
[http://dx.doi.org/10.3390/cancers10060155] [PMID: 29794999]
[2]
Dervisis, N.; Klahn, S. Therapeutic Innovations: Tyrosine Kinase Inhibitors in Cancer. Vet. Sci., 2016, 3(1), E4
[http://dx.doi.org/10.3390/vetsci3010004] [PMID: 29056714]
[3]
Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315(3), 971-979.
[http://dx.doi.org/10.1124/jpet.105.084145] [PMID: 16002463]
[4]
Pearson, M.A.; Fabbro, D. Targeting protein kinases in cancer therapy: A success? Expert Rev. Anticancer Ther., 2004, 4(6), 1113-1124.
[http://dx.doi.org/10.1586/14737140.4.6.1113] [PMID: 15606337]
[5]
Blume-Jensen, P.; Hunter, T. Oncogenic kinase signalling. Nature, 2001, 411(6835), 355-365.
[http://dx.doi.org/10.1038/35077225] [PMID: 11357143]
[6]
García-Aranda, M.; Redondo, M. Protein kinase targets in breast cancer. Int. J. Mol. Sci., 2017, 18(12), 1-31.
[http://dx.doi.org/10.3390/ijms18122543] [PMID: 29186886]
[7]
Kissau, L.; Stahl, P.; Mazitschek, R.; Giannis, A.; Waldmann, H. Development of natural product-derived receptor tyrosine kinase inhibitors based on conservation of protein domain fold. J. Med. Chem., 2003, 46(14), 2917-2931.
[http://dx.doi.org/10.1021/jm0307943] [PMID: 12825933]
[8]
Bari, S.B.; Adhikari, S.; Surana, S.J. Tyrosine Kinase Receptor Inhibitors: A new target for anticancer drug development. J. Pharm. Sci. Technol., 2012, 1(2), 36-45.
[9]
Sinicropi, M.S.; Caruso, A.; Conforti, F.; Marrelli, M.; El Kashef, H.; Lancelot, J.C.; Rault, S.; Statti, G.A.; Menichini, F. Synthesis, inhibition of NO production and antiproliferative activities of some indole derivatives. J. Enzyme Inhib. Med. Chem., 2009, 24(5), 1148-1153.
[http://dx.doi.org/10.1080/14756360802693890] [PMID: 19555184]
[10]
Lappano, R.; Santolla, M.F.; Pupo, M.; Sinicropi, M.S.; Caruso, A.; Rosano, C.; Maggiolini, M. MIBE acts as antagonist ligand of both estrogen receptor α and GPER in breast cancer cells. Breast Cancer Res., 2012, 14(1), R12.
[http://dx.doi.org/10.1186/bcr3096] [PMID: 22251451]
[11]
Caruso, A.; Chimento, A.; El-Kashef, H.; Lancelot, J.C.; Panno, A.; Pezzi, V.; Saturnino, C.; Sinicropi, M.S.; Sirianni, R.; Rault, S. Antiproliferative activity of some 1,4-dimethylcarbazoles on cells that express estrogen receptors: part I. J. Enzyme Inhib. Med. Chem., 2012, 27(4), 609-613.
[http://dx.doi.org/10.3109/14756366.2011.603132] [PMID: 21883039]
[12]
Caruso, A.; Sinicropi, M.S.; Lancelot, J.C.; El-Kashef, H.; Saturnino, C.; Aubert, G.; Ballandonne, C.; Lesnard, A.; Cresteil, T.; Dallemagne, P.; Rault, S. Synthesis and evaluation of cytotoxic activities of new guanidines derived from carbazoles. Bioorg. Med. Chem. Lett., 2014, 24(2), 467-472.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.047] [PMID: 24374274]
[13]
Rizza, P.; Pellegrino, M.; Caruso, A.; Iacopetta, D.; Sinicropi, M.S.; Rault, S.; Lancelot, J.C.; El-Kashef, H.; Lesnard, A.; Rochais, C.; Dallemagne, P.; Saturnino, C.; Giordano, F.; Catalano, S.; Andò, S. 3-(Dipropylamino)-5-hydroxybenzofuro[2,3-f]quinazolin-1(2H)-one (DPA-HBFQ-1) plays an inhibitory role on breast cancer cell growth and progression. Eur. J. Med. Chem., 2016, 107, 275-287.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.004] [PMID: 26599533]
[14]
Caruso, A.; Lancelot, J.; El-Kashef, H.; Sinicropi, M.S.; Legay, R.; Lesnard, A.; Rault, S. A rapid and versatile synthesis of novel pyrimido[5,4-b]carbazoles. Tetrahedron, 2009, 65, 10400-10405.
[http://dx.doi.org/10.1016/j.tet.2009.10.025]
[15]
Caruso, A.; Lancelot, J.C.; El-Kashef, H.; Panno, A.; Sinicropi, M.S.; Legay, R.; Lesnard, A.; Lepailleur, A.; Rault, S. Four Partners, Three-Step, One-Pot Reaction for a Library of New 2-Alkyl(dialkyl)aminoquinazolin-4(3H)-ones. J. Heterocycl. Chem., 2014, 51, 282-293.
[http://dx.doi.org/10.1002/jhet.1942]
[16]
Panno, A.; Sinicropi, M.S.; Caruso, A.; El-Kashef, H.; Lancelot, J.C.; Aubert, G.; Lesnard, A.; Cresteil, T.; Rault, S. New Trimethoxybenzamides and Trimethoxyphenylureas derived from dimethylcarbazole as cytotoxic agents. Part I. J. Heterocycl. Chem., 2014, 51, 294-302.
[http://dx.doi.org/10.1002/jhet.1951]
[17]
Saturnino, C.; Caruso, A.; Iacopetta, D.; Rosano, C.; Ceramella, J.; Muià, N.; Mariconda, A.; Bonomo, M.G.; Ponassi, M.; Rosace, G.; Sinicropi, M.S.; Longo, P. Inhibition of Human Topoisomerase II by N,N,N-Trimethylethanammonium Iodide Alkylcarbazole Derivatives. ChemMedChem, 2018, 13(24), 2635-2643.
[http://dx.doi.org/10.1002/cmdc.201800546] [PMID: 30347518]
[18]
Sinicropi, M.S.; Lappano, R.; Caruso, A.; Santolla, M.F.; Pisano, A.; Rosano, C.; Capasso, A.; Panno, A.; Lancelot, J.C.; Rault, S.; Saturnino, C.; Maggiolini, M. (6-bromo-1,4-dimethyl-9H-carbazol-3-yl-methylene)-hydrazine (carbhydraz) acts as a GPER agonist in breast cancer cells. Curr. Top. Med. Chem., 2015, 15(11), 1035-1042.
[http://dx.doi.org/10.2174/1568026615666150317221549] [PMID: 25786510]
[19]
Saturnino, C.; Caruso, A.; Longo, P.; Capasso, A.; Pingitore, A.; Caroleo, M.C.; Cione, E.; Perri, M.; Nicolo, F.; Nardo, V.M.; Scolaro, L.M.; Sinicropi, M.S.; Plutino, M.R.; El-Kashef, H. Crystallographic study and biological evaluation of 1,4-dimethyl-N-alkylcarbazoles. Curr. Top. Med. Chem., 2015, 15(11), 973-979.
[http://dx.doi.org/10.2174/1568026615666150317222444] [PMID: 25786507]
[20]
Saturnino, C.; Iacopetta, D.; Sinicropi, M.S.; Rosano, C.; Caruso, A.; Caporale, A.; Marra, N.; Marengo, B.; Pronzato, M.A.; Parisi, O.I.; Longo, P.; Ricciarelli, R. N-alkyl carbazole derivatives as new tools for Alzheimer’s disease: preliminary studies. Molecules, 2014, 19(7), 9307-9317.
[http://dx.doi.org/10.3390/molecules19079307] [PMID: 24991761]
[21]
Caruso, A.; Iacopetta, D.; Puoci, F.; Cappello, A.R.; Saturnino, C.; Sinicropi, M.S. Carbazole derivatives: a promising scenario for breast cancer treatment. Mini Rev. Med. Chem., 2016, 16(8), 630-643.
[http://dx.doi.org/10.2174/1389557515666150709111342] [PMID: 26156543]
[22]
Iacopetta, D.; Rosano, C.; Puoci, F.; Parisi, O.I.; Saturnino, C.; Caruso, A.; Longo, P.; Ceramella, J.; Malzert-Fréon, A.; Dallemagne, P.; Rault, S.; Sinicropi, M.S. Multifaceted properties of 1,4-dimethylcarbazoles: Focus on trimethoxybenzamide and trimethoxyphenylurea derivatives as novel human topoisomerase II inhibitors. Eur. J. Pharm. Sci., 2017, 96, 263-272.
[http://dx.doi.org/10.1016/j.ejps.2016.09.039] [PMID: 27702608]
[23]
Maji, B.; Kumar, K.; Muniyappa, K.; Bhattacharya, S. New dimeric carbazole-benzimidazole mixed ligands for the stabilization of human telomeric G-quadruplex DNA and as telomerase inhibitors. A remarkable influence of the spacer. Org. Biomol. Chem., 2015, 13(30), 8335-8348.
[http://dx.doi.org/10.1039/C5OB00675A] [PMID: 26149178]
[24]
Sinicropi, M.S.; Iacopetta, D.; Rosano, C.; Randino, R.; Caruso, A.; Saturnino, C.; Muià, N.; Ceramella, J.; Puoci, F.; Rodriquez, M.; Longo, P.; Plutino, M.R. N-thioalkylcarbazoles derivatives as new anti-proliferative agents: synthesis, characterisation and molecular mechanism evaluation. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 434-444.
[http://dx.doi.org/10.1080/14756366.2017.1419216] [PMID: 29383954]
[25]
Saturnino, C.; Palladino, C.; Napoli, M.; Sinicropi, M.S.; Botta, A.; Sala, M.; Carcereri de Prati, A.; Novellino, E.; Suzuki, H. Synthesis and biological evaluation of new N-alkylcarbazole derivatives as STAT3 inhibitors: preliminary study. Eur. J. Med. Chem., 2013, 60, 112-119.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.004] [PMID: 23287056]
[26]
Parisi, O.I.; Morelli, C.; Puoci, F.; Saturnino, C.; Caruso, A.; Sisci, D.; Trombino, G.E.; Picci, N.; Sinicropi, M.S. Magnetic molecularly imprinted polymers (MMIPs) for carbazole derivative release in targeted cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(38), 6619-6625.
[http://dx.doi.org/10.1039/C4TB00607K]
[27]
Grande, F.; Rizzuti, B.; Occhiuzzi, M.A.; Ioele, G.; Casacchia, T.; Gelmini, F.; Guzzi, R.; Garofalo, A.; Statti, G. Identification by Molecular Docking ofHomoisoflavones from Leopoldia comosa as Ligands of Estrogen Receptors. Molecules, 2018, 23(4)E894
[http://dx.doi.org/10.3390/molecules23040894] [PMID: 29649162]
[28]
Casacchia, T.; Occhiuzzi, M.A.; Grande, F.; Rizzuti, B.; Granieri, M.C.; Rocca, C.; Gattuso, A.; Garofalo, A.; Angelone, T.; Statti, G. A pilot study on the nutraceutical properties of the Citrus hybrid Tacle (R) as a dietary source of polyphenols for supplementation in metabolic disorders. J. Funct. Foods, 2019, 52, 370-381.
[http://dx.doi.org/10.1016/j.jff.2018.11.030]
[29]
Bossemeyer, D. Protein kinases--structure and function. FEBS Lett., 1995, 369(1), 57-61.
[http://dx.doi.org/10.1016/0014-5793(95)00580-3] [PMID: 7641885]
[30]
Knighton, D.R.; Zheng, J.H.; Ten Eyck, L.F.; Ashford, V.A.; Xuong, N.H.; Taylor, S.S.; Sowadski, J.M. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science, 1991, 253(5018), 407-414.
[http://dx.doi.org/10.1126/science.1862342] [PMID: 1862342]
[31]
Krause, D.S.; Van Etten, R.A. Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med., 2005, 353(2), 172-187.
[http://dx.doi.org/10.1056/NEJMra044389] [PMID: 16014887]
[32]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[33]
Fabbro, D.; Cowan-Jacob, S.W.; Moebitz, H. Ten things you should know about protein kinases: IUPHAR Review 14. Br. J. Pharmacol., 2015, 172(11), 2675-2700.
[http://dx.doi.org/10.1111/bph.13096] [PMID: 25630872]
[34]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[35]
Blagden, S.; de Bono, J. Drugging cell cycle kinases in cancer therapy. Curr. Drug Targets, 2005, 6(3), 325-335.
[http://dx.doi.org/10.2174/1389450053765824] [PMID: 15857291]
[36]
Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase - Role and significance in Cancer. Int. J. Med. Sci., 2004, 1(2), 101-115.
[http://dx.doi.org/10.7150/ijms.1.101] [PMID: 15912202]
[37]
Fehm, T.; Jäger, W.; Krämer, S.; Sohn, C.; Solomayer, E.; Wallwiener, D.; Gebauer, G. Prognostic significance of serum HER2 and CA 15-3 at the time of diagnosis of metastatic breast cancer. Anticancer Res., 2004, 24(3b), 1987-1992.
[PMID: 15274389]
[38]
Cheng, H.C.; Qi, R.Z.; Paudel, H.; Zhu, H.J. Regulation and function of protein kinases and phosphatases. Enzyme Res., 2011, 2011794089
[http://dx.doi.org/10.4061/2011/794089] [PMID: 22195276]
[39]
Cheetham, G.M. Novel protein kinases and molecular mechanisms of autoinhibition. Curr. Opin. Struct. Biol., 2004, 14(6), 700-705.
[http://dx.doi.org/10.1016/j.sbi.2004.10.011] [PMID: 15582394]
[40]
Kondapalli, L.; Soltani, K.; Lacouture, M.E. The promise of molecular targeted therapies: protein kinase inhibitors in the treatment of cutaneous malignancies. J. Am. Acad. Dermatol., 2005, 53(2), 291-302.
[http://dx.doi.org/10.1016/j.jaad.2005.02.011] [PMID: 16021125]
[41]
Cohen, P. Protein kinases--the major drug targets of the twenty-first century? Nat. Rev. Drug Discov., 2002, 1(4), 309-315.
[http://dx.doi.org/10.1038/nrd773] [PMID: 12120282]
[42]
Melnikova, I.; Golden, J. Targeting protein kinases. Nat. Rev. Drug Discov., 2004, 3(12), 993-994.
[http://dx.doi.org/10.1038/nrd1600] [PMID: 15645605]
[43]
Vlahovic, G.; Crawford, J. Activation of tyrosine kinases in cancer. Oncologist, 2003, 8(6), 531-538.
[http://dx.doi.org/10.1634/theoncologist.8-6-531] [PMID: 14657531]
[44]
Segovia-Mendoza, M.; González-González, M.E.; Barrera, D.; Díaz, L.; García-Becerra, R. Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER2-positive breast cancer: preclinical and clinical evidence. Am. J. Cancer Res., 2015, 5(9), 2531-2561.
[PMID: 26609467]
[45]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39.
[http://dx.doi.org/10.1038/nrc2559] [PMID: 19104514]
[46]
Midland, A.A.; Whittle, M.C.; Duncan, J.S.; Abell, A.N.; Nakamura, K.; Zawistowski, J.S.; Carey, L.A.; Earp, H.S., III; Graves, L.M.; Gomez, S.M.; Johnson, G.L. Defining the expressed breast cancer kinome. Cell Res., 2012, 22(4), 620-623.
[http://dx.doi.org/10.1038/cr.2012.25] [PMID: 22310242]
[47]
Davis, M.I.; Hunt, J.P.; Herrgard, S.; Ciceri, P.; Wodicka, L.M.; Pallares, G.; Hocker, M.; Treiber, D.K.; Zarrinkar, P.P. Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol., 2011, 29(11), 1046-1051.
[http://dx.doi.org/10.1038/nbt.1990] [PMID: 22037378]
[48]
Knight, Z.A.; Shokat, K.M. Features of selective kinase inhibitors. Chem. Biol., 2005, 12(6), 621-637.
[http://dx.doi.org/10.1016/j.chembiol.2005.04.011] [PMID: 15975507]
[49]
Force, T.; Kolaja, K.L. Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nat. Rev. Drug Discov., 2011, 10(2), 111-126.
[http://dx.doi.org/10.1038/nrd3252] [PMID: 21283106]
[50]
Hasinoff, B.B. The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity. Toxicol. Appl. Pharmacol., 2010, 244(2), 190-195.
[http://dx.doi.org/10.1016/j.taap.2009.12.032] [PMID: 20045709]
[51]
Cutolo, M. The kinase inhibitor tofacitinib in patients with rheumatoid arthritis: latest findings and clinical potential. Ther. Adv. Musculoskelet. Dis., 2013, 5(1), 3-11.
[http://dx.doi.org/10.1177/1759720X12470753] [PMID: 23515130]
[52]
Zuccotto, F.; Ardini, E.; Casale, E.; Angiolini, M. Through the “gatekeeper door”: exploiting the active kinase conformation. J. Med. Chem., 2010, 53(7), 2681-2694.
[http://dx.doi.org/10.1021/jm901443h] [PMID: 20000735]
[53]
Kufareva, I.; Abagyan, R. Type-II kinase inhibitor docking, screening, and profiling using modified structures of active kinase states. J. Med. Chem., 2008, 51(24), 7921-7932.
[http://dx.doi.org/10.1021/jm8010299] [PMID: 19053777]
[54]
Davies, S.P.; Reddy, H.; Caivano, M.; Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J., 2000, 351(Pt 1), 95-105.
[http://dx.doi.org/10.1042/bj3510095] [PMID: 10998351]
[55]
Liu, Y.; Gray, N.S. Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol., 2006, 2(7), 358-364.
[http://dx.doi.org/10.1038/nchembio799] [PMID: 16783341]
[56]
Wise, D.R.; Thompson, C.B. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci., 2010, 35(8), 427-433.
[http://dx.doi.org/10.1016/j.tibs.2010.05.003] [PMID: 20570523]
[57]
Nagar, B.; Bornmann, W.G.; Pellicena, P.; Schindler, T.; Veach, D.R.; Miller, W.T.; Clarkson, B.; Kuriyan, J. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res., 2002, 62(15), 4236-4243.
[PMID: 12154025]
[58]
Schindler, T.; Bornmann, W.; Pellicena, P.; Miller, W.T.; Clarkson, B.; Kuriyan, J. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science, 2000, 289(5486), 1938-1942.
[http://dx.doi.org/10.1126/science.289.5486.1938] [PMID: 10988075]
[59]
Pargellis, C.; Tong, L.; Churchill, L.; Cirillo, P.F.; Gilmore, T.; Graham, A.G.; Grob, P.M.; Hickey, E.R.; Moss, N.; Pav, S.; Regan, J. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat. Struct. Biol., 2002, 9(4), 268-272.
[http://dx.doi.org/10.1038/nsb770] [PMID: 11896401]
[60]
Wan, P.T.; Garnett, M.J.; Roe, S.M.; Lee, S.; Niculescu-Duvaz, D.; Good, V.M.; Jones, C.M.; Marshall, C.J.; Springer, C.J.; Barford, D.; Marais, R.; Cancer Genome, P. Cancer Genome Project. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell, 2004, 116(6), 855-867.
[http://dx.doi.org/10.1016/S0092-8674(04)00215-6] [PMID: 15035987]
[61]
Manley, P.W.; Bold, G.; Brüggen, J.; Fendrich, G.; Furet, P.; Mestan, J.; Schnell, C.; Stolz, B.; Meyer, T.; Meyhack, B.; Stark, W.; Strauss, A.; Wood, J. Advances in the structural biology, design and clinical development of VEGF-R kinase inhibitors for the treatment of angiogenesis. Biochim. Biophys. Acta, 2004, 1697(1-2), 17-27.
[http://dx.doi.org/10.1016/j.bbapap.2003.11.010] [PMID: 15023347]
[62]
Ohren, J.F.; Chen, H.; Pavlovsky, A.; Whitehead, C.; Zhang, E.; Kuffa, P.; Yan, C.; McConnell, P.; Spessard, C.; Banotai, C.; Mueller, W.T.; Delaney, A.; Omer, C.; Sebolt-Leopold, J.; Dudley, D.T.; Leung, I.K.; Flamme, C.; Warmus, J.; Kaufman, M.; Barrett, S.; Tecle, H.; Hasemann, C.A. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat. Struct. Mol. Biol., 2004, 11(12), 1192-1197.
[http://dx.doi.org/10.1038/nsmb859] [PMID: 15543157]
[63]
Allen, L.F.; Sebolt-Leopold, J.; Meyer, M.B. CI-1040 (PD184352), a targeted signal transduction inhibitor of MEK (MAPKK). Semin. Oncol., 2003, 30(5)(Suppl. 16), 105-116.
[http://dx.doi.org/10.1053/j.seminoncol.2003.08.012] [PMID: 14613031]
[64]
Eglen, R.; Reisine, T. Drug discovery and the human kinome: recent trends. Pharmacol. Ther., 2011, 130(2), 144-156.
[http://dx.doi.org/10.1016/j.pharmthera.2011.01.007] [PMID: 21256157]
[65]
Adrián, F.J.; Ding, Q.; Sim, T.; Velentza, A.; Sloan, C.; Liu, Y.; Zhang, G.; Hur, W.; Ding, S.; Manley, P.; Mestan, J.; Fabbro, D.; Gray, N.S. Allosteric inhibitors of Bcr-abl-dependent cell proliferation. Nat. Chem. Biol., 2006, 2(2), 95-102.
[http://dx.doi.org/10.1038/nchembio760] [PMID: 16415863]
[66]
Dong, Q.; Dougan, D.R.; Gong, X.; Halkowycz, P.; Jin, B.; Kanouni, T.; O’Connell, S.M.; Scorah, N.; Shi, L.; Wallace, M.B.; Zhou, F. Discovery of TAK-733, a potent and selective MEK allosteric site inhibitor for the treatment of cancer. Bioorg. Med. Chem. Lett., 2011, 21(5), 1315-1319.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.071] [PMID: 21310613]
[67]
Schadendorf, D.; Amonkar, M.M.; Milhem, M.; Grotzinger, K.; Demidov, L.V.; Rutkowski, P.; Garbe, C.; Dummer, R.; Hassel, J.C.; Wolter, P.; Mohr, P.; Trefzer, U.; Lefeuvre-Plesse, C.; Rutten, A.; Steven, N.; Ullenhag, G.; Sherman, L.; Wu, F.S.; Patel, K.; Casey, M.; Robert, C. Functional and symptom impact of trametinib versus chemotherapy in BRAF V600E advanced or metastatic melanoma: quality-of-life analyses of the METRIC study. Ann. Oncol., 2014, 25(3), 700-706.
[http://dx.doi.org/10.1093/annonc/mdt580] [PMID: 24504441]
[68]
Grimsby, J.; Sarabu, R.; Corbett, W.L.; Haynes, N.E.; Bizzarro, F.T.; Coffey, J.W.; Guertin, K.R.; Hilliard, D.W.; Kester, R.F.; Mahaney, P.E.; Marcus, L.; Qi, L.; Spence, C.L.; Tengi, J.; Magnuson, M.A.; Chu, C.A.; Dvorozniak, M.T.; Matschinsky, F.M.; Grippo, J.F. Allosteric activators of glucokinase: potential role in diabetes therapy. Science, 2003, 301(5631), 370-373.
[http://dx.doi.org/10.1126/science.1084073] [PMID: 12869762]
[69]
Guertin, K.R.; Grimsby, J. Small molecule glucokinase activators as glucose lowering agents: a new paradigm for diabetes therapy. Curr. Med. Chem., 2006, 13(15), 1839-1843.
[http://dx.doi.org/10.2174/092986706777452551] [PMID: 16787225]
[70]
Cohen, M.S.; Zhang, C.; Shokat, K.M.; Taunton, J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science, 2005, 308(5726), 1318-1321.
[http://dx.doi.org/10.1126/science1108367] [PMID: 15919995]
[71]
Kwak, E.L.; Sordella, R.; Bell, D.W.; Godin-Heymann, N.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Driscoll, D.R.; Fidias, P.; Lynch, T.J.; Rabindran, S.K.; McGinnis, J.P.; Wissner, A.; Sharma, S.V.; Isselbacher, K.J.; Settleman, J.; Haber, D.A. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc. Natl. Acad. Sci. USA, 2005, 102(21), 7665-7670.
[http://dx.doi.org/10.1073/pnas.0502860102] [PMID: 15897464]
[72]
Blanc, J.; Geney, R.; Menet, C. Type II kinase inhibitors: an opportunity in cancer for rational design. Anticancer. Agents Med. Chem., 2013, 13(5), 731-747.
[http://dx.doi.org/10.2174/1871520611313050008] [PMID: 23094911]
[73]
Leproult, E.; Barluenga, S.; Moras, D.; Wurtz, J.M.; Winssinger, N. Cysteine mapping in conformationally distinct kinase nucleotide binding sites: application to the design of selective covalent inhibitors. J. Med. Chem., 2011, 54(5), 1347-1355.
[http://dx.doi.org/10.1021/jm101396q] [PMID: 21322567]
[74]
Liu, Q.; Sabnis, Y.; Zhao, Z.; Zhang, T.; Buhrlage, S.J.; Jones, L.H.; Gray, N.S. Developing irreversible inhibitors of the protein kinase cysteinome. Chem. Biol., 2013, 20(2), 146-159.
[http://dx.doi.org/10.1016/j.chembiol.2012.12.006] [PMID: 23438744]
[75]
Singh, J.; Petter, R.C.; Baillie, T.A.; Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug Discov., 2011, 10(4), 307-317.
[http://dx.doi.org/10.1038/nrd3410] [PMID: 21455239]
[76]
Barf, T.; Kaptein, A. Irreversible protein kinase inhibitors: balancing the benefits and risks. J. Med. Chem., 2012, 55(14), 6243-6262.
[http://dx.doi.org/10.1021/jm3003203] [PMID: 22621397]
[77]
Zhao, Z.; Liu, Q.; Bliven, S.; Xie, L.; Bourne, P.E. Determining cysteines available for covalent inhibition across the human kinome. J. Med. Chem., 2017, 60(7), 2879-2889.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01815] [PMID: 28326775]
[78]
Rabindran, S.K.; Discafani, C.M.; Rosfjord, E.C.; Baxter, M.; Floyd, M.B.; Golas, J.; Hallett, W.A.; Johnson, B.D.; Nilakantan, R.; Overbeek, E.; Reich, M.F.; Shen, R.; Shi, X.; Tsou, H.R.; Wang, Y.F.; Wissner, A. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res., 2004, 64(11), 3958-3965.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2868] [PMID: 15173008]
[79]
Kobayashi, S.; Ji, H.; Yuza, Y.; Meyerson, M.; Wong, K.K.; Tenen, D.G.; Halmos, B. An alternative inhibitor overcomes resistance caused by a mutation of the epidermal growth factor receptor. Cancer Res., 2005, 65(16), 7096-7101.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1346] [PMID: 16103058]
[80]
Liao, B.C.; Lin, C.C.; Yang, J.C. Second and third-generation epidermal growth factor receptor tyrosine kinase inhibitors in advanced nonsmall cell lung cancer. Curr. Opin. Oncol., 2015, 27(2), 94-101.
[http://dx.doi.org/10.1097/CCO.0000000000000164] [PMID: 25611025]
[81]
Wang, A.; Yan, X.E.; Wu, H.; Wang, W.; Hu, C.; Chen, C.; Zhao, Z.; Zhao, P.; Li, X.; Wang, L.; Wang, B.; Ye, Z.; Wang, J.; Wang, C.; Zhang, W.; Gray, N.S.; Weisberg, E.L.; Chen, L.; Liu, J.; Yun, C.H.; Liu, Q. Ibrutinib targets mutant-EGFR kinase with a distinct binding conformation. Oncotarget, 2016, 7(43), 69760-69769.
[http://dx.doi.org/10.18632/oncotarget.11951] [PMID: 27626175]
[82]
Akué-Gédu, R.; Rossignol, E.; Azzaro, S.; Knapp, S.; Filippakopoulos, P.; Bullock, A.N.; Bain, J.; Cohen, P.; Prudhomme, M.; Anizon, F.; Moreau, P. Synthesis, kinase inhibitory potencies, and in vitro antiproliferative evaluation of new Pim kinase inhibitors. J. Med. Chem., 2009, 52(20), 6369-6381.
[http://dx.doi.org/10.1021/jm901018f] [PMID: 19788246]
[83]
Akué-Gédu, R.; Nauton, L.; Théry, V.; Bain, J.; Cohen, P.; Anizon, F.; Moreau, P. Synthesis, Pim kinase inhibitory potencies and in vitro antiproliferative activities of diversely substituted pyrrolo[2,3-a]carbazoles. Bioorg. Med. Chem., 2010, 18(18), 6865-6873.
[http://dx.doi.org/10.1016/j.bmc.2010.07.036] [PMID: 20728368]
[84]
Giraud, F.; Akué-Gédu, R.; Nauton, L.; Candelon, N.; Debiton, E.; Théry, V.; Anizon, F.; Moreau, P. Synthesis and biological activities of 4-substituted pyrrolo[2,3-a]carbazole Pim kinase inhibitors. Eur. J. Med. Chem., 2012, 56, 225-236.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.029] [PMID: 22982527]
[85]
Akué-Gédu, R.; Letribot, B.; Saugues, E.; Debiton, E.; Anizon, F.; Moreau, P. Kinase inhibitory potencies and in vitro antiproliferative activities of N-10 substituted pyrrolo[2,3-a]carbazole derivatives. Bioorg. Med. Chem. Lett., 2012, 22(11), 3807-3809.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.098] [PMID: 22543026]
[86]
Letribot, B.; Akué-Gédu, R.; Santio, N.M.; El-Ghozzi, M.; Avignant, D.; Cisnetti, F.; Koskinen, P.J.; Gautier, A.; Anizon, F.; Moreau, P. Use of copper(I) catalyzed azide alkyne cycloaddition (CuAAC) for the preparation of conjugated pyrrolo[2,3-a]carbazole Pim kinase inhibitors. Eur. J. Med. Chem., 2012, 50, 304-310.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.009] [PMID: 22386260]
[87]
Suchaud, V.; Gavara, L.; Saugues, E.; Nauton, L.; Théry, V.; Anizon, F.; Moreau, P. Identification of 1,6-dihydropyrazolo[4,3-c]carbazoles and 3,6-dihydropyrazolo[3,4-c]carbazoles as new Pim kinase inhibitors. Bioorg. Med. Chem., 2013, 21(14), 4102-4111.
[http://dx.doi.org/10.1016/j.bmc.2013.05.011] [PMID: 23735828]
[88]
Hénon, H.; Anizon, F.; Golsteyn, R.M.; Léonce, S.; Hofmann, R.; Pfeiffer, B.; Prudhomme, M. Synthesis and biological evaluation of new dipyrrolo[3,4-a:3,4-c]carbazole-1,3,4,6-tetraones, substituted with various saturated and unsaturated side chains via palladium catalyzed cross-coupling reactions. Bioorg. Med. Chem., 2006, 14(11), 3825-3834.
[http://dx.doi.org/10.1016/j.bmc.2006.01.030] [PMID: 16460946]
[89]
Hénon, H.; Messaoudi, S.; Anizon, F.; Aboab, B.; Kucharczyk, N.; Léonce, S.; Golsteyn, R.M.; Pfeiffer, B.; Prudhomme, M. Bis-imide granulatimide analogues as potent Checkpoint 1 kinase inhibitors. Eur. J. Pharmacol., 2007, 554(2-3), 106-112.
[http://dx.doi.org/10.1016/j.ejphar.2006.10.022] [PMID: 17134696]
[90]
Conchon, E.; Anizon, F.; Aboab, B.; Prudhomme, M. Synthesis and biological activities of new checkpoint kinase 1 inhibitors structurally related to granulatimide. J. Med. Chem., 2007, 50(19), 4669-4680.
[http://dx.doi.org/10.1021/jm070664k] [PMID: 17722905]
[91]
Conchon, E.; Anizon, F.; Aboab, B.; Golsteyn, R.M.; Léonce, S.; Pfeiffer, B.; Prudhomme, M. Synthesis, in vitro antiproliferative activities, and Chk1 inhibitory properties of pyrrolo[3,4-a]carbazole-1,3-diones, pyrrolo[3,4-c]carbazole-1,3-diones, and 2-aminopyridazino[3,4-a]pyrrolo[3,4-c]carbazole-1,3,4,7-tetraone. Eur. J. Med. Chem., 2008, 43(2), 282-292.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.026] [PMID: 17502122]
[92]
Conchon, E.; Anizon, F.; Aboab, B.; Golsteyn, R.M.; Léonce, S.; Pfeiffer, B.; Prudhomme, M. Synthesis, checkpoint kinase 1 inhibitory properties and in vitro antiproliferative activities of new pyrrolocarbazoles. Bioorg. Med. Chem., 2008, 16(8), 4419-4430.
[http://dx.doi.org/10.1016/j.bmc.2008.02.061] [PMID: 18321713]
[93]
Smaill, J.B.; Lee, H.H.; Palmer, B.D.; Thompson, A.M.; Squire, C.J.; Baker, E.N.; Booth, R.J.; Kraker, A.; Hook, K.; Denny, W.A. Synthesis and structure-activity relationships of soluble 8-substituted 4-(2-chlorophenyl)-9-hydroxypyrrolo[3,4-c]carbazole-1,3(2H,6H)-diones as inhibitors of the Wee1 and Chk1 checkpoint kinases. Bioorg. Med. Chem. Lett., 2008, 18(3), 929-933.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.046] [PMID: 18191399]
[94]
Lefoix, M.; Coudert, G.; Routier, S.; Pfeiffer, B.; Caignard, D.H.; Hickman, J.; Pierré, A.; Golsteyn, R.M.; Léonce, S.; Bossard, C.; Mérour, J.Y. Novel 5-azaindolocarbazoles as cytotoxic agents and Chk1 inhibitors. Bioorg. Med. Chem., 2008, 16(9), 5303-5321.
[http://dx.doi.org/10.1016/j.bmc.2008.02.086] [PMID: 18342518]
[95]
Conchon, E.; Anizon, F.; Golsteyn, R.M.; Leonce, S.; Pfeiffer, B.; Prudhomme, M. Synthesis, in vitro antiproliferative activities, and Chk1 inhibitory properties of dipyrrolo[3,4-a:3,4-c]carbazole-triones. Tetrahedron, 2006, 62(48), 11136-11144.
[http://dx.doi.org/10.1016/j.tet.2006.09.027]
[96]
Shah, N.; Pang, B.; Yeoh, K.G.; Thorn, S.; Chen, C.S.; Lilly, M.B.; Salto-Tellez, M. Potential roles for the PIM1 kinase in human cancer - a molecular and therapeutic appraisal. Eur. J. Cancer, 2008, 44(15), 2144-2151.
[http://dx.doi.org/10.1016/j.ejca.2008.06.044] [PMID: 18715779]
[97]
Morishita, D.; Katayama, R.; Sekimizu, K.; Tsuruo, T.; Fujita, N. Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res., 2008, 68(13), 5076-5085.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0634] [PMID: 18593906]
[98]
Fox, C.J.; Hammerman, P.S.; Cinalli, R.M.; Master, S.R.; Chodosh, L.A.; Thompson, C.B. The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor. Genes Dev., 2003, 17(15), 1841-1854.
[http://dx.doi.org/10.1101/gad.1105003] [PMID: 12869584]
[99]
Aho, T.L.; Sandholm, J.; Peltola, K.J.; Mankonen, H.P.; Lilly, M.; Koskinen, P.J. Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett., 2004, 571(1-3), 43-49.
[http://dx.doi.org/10.1016/j.febslet.2004.06.050] [PMID: 15280015]
[100]
Zheng, H.C.; Tsuneyama, K.; Takahashi, H.; Miwa, S.; Sugiyama, T.; Popivanova, B.K.; Fujii, C.; Nomoto, K.; Mukaida, N.; Takano, Y. Aberrant Pim-3 expression is involved in gastric adenoma-adenocarcinoma sequence and cancer progression. J. Cancer Res. Clin. Oncol., 2008, 134(4), 481-488.
[http://dx.doi.org/10.1007/s00432-007-0310-1] [PMID: 17876606]
[101]
Li, Y.Y.; Wu, Y.; Tsuneyama, K.; Baba, T.; Mukaida, N. Essential contribution of Ets-1 to constitutive Pim-3 expression in human pancreatic cancer cells. Cancer Sci., 2009, 100(3), 396-404.
[http://dx.doi.org/10.1111/j.1349-7006.2008.01059.x] [PMID: 19154409]
[102]
Popivanova, B.K.; Li, Y.Y.; Zheng, H.; Omura, K.; Fujii, C.; Tsuneyama, K.; Mukaida, N. Proto-oncogene, Pim-3 with serine/threonine kinase activity, is aberrantly expressed in human colon cancer cells and can prevent Bad-mediated apoptosis. Cancer Sci., 2007, 98(3), 321-328.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00390.x] [PMID: 17270021]
[103]
Bartek, J.; Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell, 2003, 3(5), 421-429.
[http://dx.doi.org/10.1016/S1535-6108(03)00110-7] [PMID: 12781359]
[104]
Zhang, Y.; Hunter, T. Roles of Chk1 in cell biology and cancer therapy. Int. J. Cancer, 2014, 134(5), 1013-1023.
[http://dx.doi.org/10.1002/ijc.28226] [PMID: 23613359]
[105]
Merry, C.; Fu, K.; Wang, J.; Yeh, I.J.; Zhang, Y. Targeting the checkpoint kinase Chk1 in cancer therapy. Cell Cycle, 2010, 9(2), 279-283.
[http://dx.doi.org/10.4161/cc.9.2.10445] [PMID: 20023404]
[106]
Jiang, X.; Zhao, B.; Britton, R.; Lim, L.Y.; Leong, D.; Sanghera, J.S.; Zhou, B.B.; Piers, E.; Andersen, R.J.; Roberge, M. Inhibition of Chk1 by the G2 DNA damage checkpoint inhibitor isogranulatimide. Mol. Cancer Ther., 2004, 3(10), 1221-1227.
[PMID: 15486189]
[107]
Zhao, B.; Bower, M.J.; McDevitt, P.J.; Zhao, H.; Davis, S.T.; Johanson, K.O.; Green, S.M.; Concha, N.O.; Zhou, B.B. Structural basis for Chk1 inhibition by UCN-01. J. Biol. Chem., 2002, 277(48), 46609-46615.
[http://dx.doi.org/10.1074/jbc.M201233200] [PMID: 12244092]
[108]
Smaill, J.B.; Baker, E.N.; Booth, R.J.; Bridges, A.J.; Dickson, J.M.; Dobrusin, E.M.; Ivanovic, I.; Kraker, A.J.; Lee, H.H.; Lunney, E.A.; Ortwine, D.F.; Palmer, B.D.; Quin, J., III; Squire, C.J.; Thompson, A.M.; Denny, W.A. Synthesis and structure-activity relationships of N-6 substituted analogues of 9-hydroxy-4-phenylpyrrolo[3,4-c]carbazole-1,3(2H,6H)-diones as inhibitors of Wee1 and Chk1 checkpoint kinases. Eur. J. Med. Chem., 2008, 43(6), 1276-1296.
[http://dx.doi.org/10.1016/j.ejmech.2007.07.016] [PMID: 17869387]
[109]
Gingrich, D.E.; Reddy, D.R.; Iqbal, M.A.; Singh, J.; Aimone, L.D.; Angeles, T.S.; Albom, M.; Yang, S.; Ator, M.A.; Meyer, S.L.; Robinson, C.; Ruggeri, B.A.; Dionne, C.A.; Vaught, J.L.; Mallamo, J.P.; Hudkins, R.L. A new class of potent vascular endothelial growth factor receptor tyrosine kinase inhibitors: structure-activity relationships for a series of 9-alkoxymethyl-12-(3-hydroxypropyl)indeno[2,1-a]pyrrolo[3,4-c]carbazole-5-ones and the identification of CEP-5214 and its dimethylglycine ester prodrug clinical candidate CEP-7055. J. Med. Chem., 2003, 46(25), 5375-5388.
[http://dx.doi.org/10.1021/jm0301641] [PMID: 14640546]
[110]
Becknell, N.C.; Zulli, A.L.; Angeles, T.S.; Yang, S.; Albom, M.S.; Aimone, L.D.; Robinson, C.; Chang, H.; Hudkins, R.L. Novel C-3 N-urea, amide, and carbamate dihydroindazolo[5,4-a]pyrrolo[3,4-c]carbazole analogs as potent TIE-2 and VEGF-R2 dual inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(20), 5368-5372.
[http://dx.doi.org/10.1016/j.bmcl.2006.07.066] [PMID: 16890434]
[111]
Underiner, T.L.; Ruggeri, B.; Aimone, L.; Albom, M.; Angeles, T.; Chang, H.; Hudkins, R.L.; Hunter, K.; Josef, K.; Robinson, C.; Weinberg, L.; Yang, S.; Zulli, A. TIE-2/VEGF-R2 SAR and in vitro activity of C3-acyl dihydroindazolo[5,4-a]pyrrolo[3,4-c]carbazole analogs. Bioorg. Med. Chem. Lett., 2008, 18(7), 2368-2372.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.069] [PMID: 18343109]
[112]
Dandu, R.; Zulli, A.L.; Bacon, E.R.; Underiner, T.; Robinson, C.; Chang, H.; Miknyoczki, S.; Grobelny, J.; Ruggeri, B.A.; Yang, S.; Albom, M.S.; Angeles, T.S.; Aimone, L.D.; Hudkins, R.L. Design and synthesis of dihydroindazolo[5,4-a]pyrrolo[3,4-c]carbazole oximes as potent dual inhibitors of TIE-2 and VEGF-R2 receptor tyrosine kinases. Bioorg. Med. Chem. Lett., 2008, 18(6), 1916-1921.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.001] [PMID: 18308565]
[113]
Ma, H.; Nguyen, B.; Li, L.; Greenblatt, S.; Williams, A.; Zhao, M.; Levis, M.; Rudek, M.; Duffield, A.; Small, D. TTT-3002 is a novel FLT3 tyrosine kinase inhibitor with activity against FLT3-associated leukemias in vitro and in vivo. Blood, 2014, 123(10), 1525-1534.
[http://dx.doi.org/10.1182/blood-2013-08-523035] [PMID: 24408321]
[114]
Jiang, X.; Zhou, J.; Ai, J.; Song, Z.; Peng, X.; Xing, L.; Xi, Y.; Guo, J.; Yao, Q.; Ding, J.; Geng, M.; Zhang, A. Novel tetracyclic benzo[b]carbazolones as highly potent and orally bioavailable ALK inhibitors: design, synthesis, and structure-activity relationship study. Eur. J. Med. Chem., 2015, 105, 39-56.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.005] [PMID: 26476749]
[115]
Organization, W.H. Global Health Observatory., www.who.int/gho/database/en/
[116]
Gross, S.; Rahal, R.; Stransky, N.; Lengauer, C.; Hoeflich, K.P. Targeting cancer with kinase inhibitors. J. Clin. Invest., 2015, 125(5), 1780-1789.
[http://dx.doi.org/10.1172/JCI76094] [PMID: 25932675]
[117]
Shchemelinin, I.; Sefc, L.; Necas, E. Protein kinases, their function and implication in cancer and other diseases. Folia Biol. (Praha), 2006, 52(3), 81-100.
[PMID: 17089919]
[118]
Chen, X.W.; Sun, J.; Zhou, S.F. Protein Kinase Inhibitors for Clinical Targeted Cancer Treatment. Clin. Pharmacol. Biopharm., 2013, 2(1), 1000-1112.
[http://dx.doi.org/10.4172/2167-065X.1000e112]
[119]
Sinha, S.; Pal, B.C.; Jagadeesh, S.; Banerjee, P.P.; Bandyopadhaya, A.; Bhattacharya, S. Mahanine inhibits growth and induces apoptosis in prostate cancer cells through the deactivation of Akt and activation of caspases. Prostate, 2006, 66(12), 1257-1265.
[http://dx.doi.org/10.1002/pros.20415] [PMID: 16683271]
[120]
Chatterjee, P.; Seal, S.; Mukherjee, S.; Kundu, R.; Bhuyan, M.; Barua, N.C.; Baruah, P.K.; Babu, S.P.; Bhattacharya, S. A carbazole alkaloid deactivates mTOR through the suppression of rictor and that induces apoptosis in lung cancer cells. Mol. Cell. Biochem., 2015, 405(1-2), 149-158.
[http://dx.doi.org/10.1007/s11010-015-2406-2] [PMID: 25893736]
[121]
Liu, Q.; Batt, D.G.; Lippy, J.S.; Surti, N.; Tebben, A.J.; Muckelbauer, J.K.; Chen, L.; An, Y.; Chang, C.; Pokross, M.; Yang, Z.; Wang, H.; Burke, J.R.; Carter, P.H.; Tino, J.A. Design and synthesis of carbazole carboxamides as promising inhibitors of Bruton’s tyrosine kinase (BTK) and Janus kinase 2 (JAK2). Bioorg. Med. Chem. Lett., 2015, 25(19), 4265-4269.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.102] [PMID: 26320619]