An Efficient Synthesis of Benzimidazole and Benzothiazole Derivatives Using a Nickel(II) Metal-Organic Framework

Page: [109 - 116] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: The benzimidazoles and benzothiazoles have shown relatively high pharmaceutical and biological activities. In recent years, numerous methods have been developed for synthesis of benzimidazole and benzothiazole derivatives using different catalysts. However, only some of the reported procedures are quite satisfactory and most of them have drawbacks. Herein, we report a convenient method for synthesis of benzimidazole and benzothiazole derivatives using a nickel (II) metal-organic framework (Ni- MOF) as a novel and reusable catalyst. The presence of unsaturated metal centers makes metal-organic frameworks to be used as Lewis acid catalysts.

Objective: The primary objective of this study was to describe an efficient method for synthesis of benzimidazole and benzothiazole derivatives.

Method: Ni-MOF was prepared using the modified evaporation method and was characterized by FE-SEM, FT-IR, TGA, and XRD techniques.The catalyst was then used to test the synthesis of some benzimidazole and benzothiazole derivatives. The benzimidazoles and benzothiazoles were characterized by Elemental analyses, HNMR and IR techniques.

Result: A variety of aromatic aldehydes bearing electron donating groups or electron-withdrawing were reacted with 1,2-phenylenediamine or 2-aminothiophenol using Ni-MOF in good to excellent yields.

Conclusion: In summary, a new and highly efficient method was developed and reported for the synthesis of benzimidazole and benzothiazole derivatives using nickel(II) metal-organic framework. The advantages are short reaction times, good to excellent yields, the environmentally benign and simple procedure, stability, nontoxicity, recyclability, and easy separation of the catalyst.

Keywords: Benzimidazole, benzothiazole, metal-organic framework, heterogeneous catalyst, 1, 2-phenylenediamine, 2-aminothiophenol.

Graphical Abstract

[1]
Ye, Y.; Xiong, S.; Wu, X.; Zhang, L.; Li, Z.; Wang, L.; Ma, X.; Chen, Q.H.; Zhang, Z.; Xiang, S. Microporous metal–organic framework stabilized by balanced multiple host–couteranion hydrogen-bonding interactions for high-density CO2 capture at ambient conditions. Inorg. Chem., 2016, 55(1), 292-299. Available at
[http://dx.doi.org/10.1021/acs.inorgchem.5b02316] [PMID: 26653758]
[2]
Long, J.R.; Yaghi, O.M. The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev., 2009, 38(5), 1213-1214. Available at
[http://dx.doi.org/10.1039/b903811f] [PMID: 19384431]
[3]
Azhdari Tehrani, A.; Esrafili, L.; Abedi, S.; Morsali, A.; Carlucci, L.; Proserpio, D.M.; Wang, J.; Junk, P.C.; Liu, T. Urea metal–organic frameworks for nitro-substituted compounds sensing. Inorg. Chem., 2017, 56(3), 1446-1454. Available at
[http://dx.doi.org/10.1021/acs.inorgchem.6b02518] [PMID: 28085264]
[4]
Uemura, K.; Saito, K.; Kitagawa, S.; Kita, H. Hydrogen-bonded porous coordination polymers: structural transformation, sorption properties, and particle size from kinetic studies. J. Am. Chem. Soc., 2006, 128(50), 16122-16130. Available at
[http://dx.doi.org/10.1021/ja064152r] [PMID: 17165765]
[5]
Gao, Y.; Broersen, R.; Hageman, W.; Yan, N.; Mittelmeijer-Hazeleger, M.C.; Rothenberg, G.; Tanase, S. High proton conductivity in cyanide-bridged metal–organic frameworks: Understanding the role of water. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 22347-322352. Available at
[http://dx.doi.org/10.1039/C5TA05280G]
[6]
Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev., 2012, 112(2), 1232-1268. Available at
[http://dx.doi.org/10.1021/cr200256v] [PMID: 22168547]
[7]
Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. Engl., 2006, 45(36), 5974-5978. Available at
[http://dx.doi.org/10.1002/anie.200601878] [PMID: 16897793]
[8]
Dhakshinamoorthy, A.; Opanasenko, M.; Čejka, J.; Garcia, H. Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups. Adv. Synth. Catal., 2013, 355, 247-268. Available at
[http://dx.doi.org/10.1002/adsc.201200618]
[9]
Kardanpour, R.; Tangestaninejad, S.; Mirkhani, V.; Moghadam, M.; Mohammadpoor-Baltork, I.; Zadehahmadi, F. Anchoring of Cu (II) onto surface of porous metal-organic framework through post-synthesis modification for the synthesis of benzimidazoles and benzothiazoles. J. Solid State Chem., 2016, 235, 145-153. Available at
[http://dx.doi.org/10.1016/j.jssc.2015.11.019]
[10]
Karimi, M.; Hajiashrafi, T.; Heydari, A.; Azhdari Tehrani, A. Terbium– organic framework as heterogeneous Lewis acid catalyst for β-aminoalcohol synthesis: Efficient, reusable and green catalytic method. Appl. Organomet. Chem., 2017. 31e3866 Available at
[http://dx.doi.org/10.1002/aoc.3866]
[11]
Cook, T.R.; Zheng, Y-R.; Stang, P.J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev., 2013, 113(1), 734-777. Available at
[http://dx.doi.org/10.1021/cr3002824] [PMID: 23121121]
[12]
Chughtai, A.H.; Ahmad, N.; Younus, H.A.; Laypkov, A.; Verpoort, F. Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev., 2015, 44(19), 6804-6849. Available at
[http://dx.doi.org/10.1039/C4CS00395K] [PMID: 25958955]
[13]
Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402, 276. Available at
[http://dx.doi.org/10.1038/46248]
[14]
Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Commercial metal-organic frameworks as heterogeneous catalysts. Chem. Commun. (Camb.), 2012, 48(92), 11275-11288. Available at
[http://dx.doi.org/10.1039/c2cc34329k] [PMID: 23044896]
[15]
Doan, T.L.; Dao, T.Q.; Tran, H.N.; Tran, P.H.; Le, T.N. An efficient combination of Zr-MOF and microwave irradiation in catalytic Lewis acid Friedel-Crafts benzoylation. Dalton Trans., 2016, 45(18), 7875-7880. Available at
[http://dx.doi.org/10.1039/C6DT00827E] [PMID: 27064371]
[16]
Ji, P.; Drake, T.; Murakami, A.; Oliveres, P.; Skone, J.H.; Lin, W. acidity of metal–organic frameworks via perfluorination of bridging ligands: Spectroscopic, theoretical, and catalytic studies. J. Am. Chem. Soc., 2018, 140(33), 10553-10561. Available at
[http://dx.doi.org/10.1021/jacs.8b05765] [PMID: 30045623]
[17]
Hu, Z.; Zhao, D. Synthesis, characterization, and catalytic applications. CrystEngComm, 2017, 19, 4066-4081. Available at
[http://dx.doi.org/10.1039/C6CE02660E]
[18]
Banie, H.; Sinha, A.; Thomas, R.J.; Sircar, J.C.; Richards, M.L. 2-phenylimidazopyridines, a new series of Golgi compounds with potent antiviral activity. J. Med. Chem., 2007, 50(24), 5984-5993. Available at
[http://dx.doi.org/10.1021/jm0704907] [PMID: 17973358]
[19]
Maxwell, W.A.; Brody, G. Antifungal activity of selected benzimidazole compounds. Appl. Microbiol., 1971, 21(5), 944-945. Available at
[http://dx.doi.org/10.1128/AEM.21.5.944-945.1971] [PMID: 5103344]
[20]
Hutchinson, I.; Jennings, S.A.; Vishnuvajjala, B.R.; Westwell, A.D.; Stevens, M.F. Antitumor benzothiazoles. 16. Synthesis and pharmaceutical properties of antitumor 2-(4-aminophenyl)benzothiazole amino acid prodrugs. J. Med. Chem., 2002, 45(3), 744-747. Available at
[http://dx.doi.org/10.1021/jm011025r] [PMID: 11806726]
[21]
Kim, J.S.; Gatto, B.; Yu, C.; Liu, A.; Liu, L.F.; LaVoie, E.J. Substituted 2,5′-Bi-1H-benzimidazoles: topoisomerase I inhibition and cytotoxicity. J. Med. Chem., 1996, 39(4), 992-998. Available at
[http://dx.doi.org/10.1021/jm950412w] [PMID: 8632422]
[22]
Orjales, A.; Rubio, V.; Bordell, M. Benzimidazole derivatives with antihistaminic activity; Patent: US, 1999, p. 5877187.
[23]
Yao, H.; So, M.K.; Rao, J. A bioluminogenic substrate for in vivo imaging of β-lactamase activity. Angew. Chem. Int. Ed. Engl., 2007, 46(37), 7031-7034. Available at
[http://dx.doi.org/10.1002/anie.200701931] [PMID: 17676567]
[24]
Van Zandt, M.C.; Jones, M.L.; Gunn, D.E.; Geraci, L.S.; Jones, J.H.; Sawicki, D.R.; Sredy, J.; Jacot, J.L.; Dicioccio, A.T.; Petrova, T.; Mitschler, A.; Podjarny, A.D. Discovery of 3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]indole-N-acetic acid (lidorestat) and congeners as highly potent and selective inhibitors of aldose reductase for treatment of chronic diabetic complications. J. Med. Chem., 2005, 48(9), 3141-3152. Available at
[http://dx.doi.org/10.1021/jm0492094] [PMID: 15857120]
[25]
Ahmad, K.W.; Majid, S.A.; Radha, T. Synthesis of benzimidazole derivatives by condensation reaction using H-alpha zeolite as catalyst. Res. J. Chem. Environ., 2013, 17, 40-45.
[26]
Wang, Z.g.; Zhu, J.; Zhu, Z.S.; Xu, J.; Lu, M. A green and efficient method for synthesis of benzimidazoles using nano-Fe3O4 in PEG-400/H2O aqueous system under ambient conditions at room temperature. Appl. Organomet. Chem., 2014, 28, 436-440. Available at
[http://dx.doi.org/10.1002/aoc.3145]
[27]
Ma, D.; Xie, S.; Xue, P.; Zhang, X.; Dong, J.; Jiang, Y. Efficient and economical access to substituted benzothiazoles: copper-catalyzed coupling of 2-haloanilides with metal sulfides and subsequent condensation. Angew. Chem. Int. Ed. Engl., 2009, 48(23), 4222-4225. Available at
[http://dx.doi.org/10.1002/anie.200900486] [PMID: 19425042]
[28]
Kidwai, M.; Jahan, A.; Bhatnagar, D. A recyclable solvent system for the synthesis of benzimidazole derivatives using CAN as catalyst. J. Chem. Sci., 2010, 122, 607-612. Available at
[http://dx.doi.org/10.1007/s12039-010-0095-7]
[29]
Rekha, M.; Hamza, A.; Venugopal, B.; Nagaraju, N. Synthesis of 2-substituted benzimidazoles and 1, 5-disubstituted benzodiazepines on alumina and zirconia catalysts. Chin. J. Catal., 2012, 33, 438-446. Available at
[http://dx.doi.org/10.1016/S1872-2067(11)60338-0]
[30]
Bharathi, M.; Indira, S.; Vinoth, G.; Bharathi, K.S. Immobilized Ni-Schiff-base metal complex on MCM-41 as a heterogeneous catalyst for the green synthesis of benzimidazole derivatives using glycerol as a solvent. J. Porous Mater., 2019, 26, 1377-1390. Available at
[http://dx.doi.org/10.1007/s10934-019-00736-8]
[31]
Mobinikhaledi, A.; Zendehdel, M.; Goudarzi, F.; Bardajee, G.-R. Nano-Ni (II)/Y zeolite catalyzed synthesis of 2-aryl-and 2-alkyl benzimidazoles under solvent-free conditions Synth. React. Inorg., M, 2016, 46, 1526-1531. Available at
[http://dx.doi.org/10.1080/15533174.2015.1137020]
[32]
Momeni-Isfahani, T.; Mohamadi, B. Synthesis and characterization of an organic-metal framework (MOF) of nickel and its application for removal of Rhodamine B dye using response surface methodology. Appl. Organomet. Chem., 2020. Submitted
[33]
Dey, C.; Kundu, T.; Biswal, B.P.; Mallick, A.; Banerjee, R. Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater., 2014, 70(1), 3-10. Available at
[http://dx.doi.org/10.1107/S2052520613029557] [PMID: 24441122]
[34]
Keshavarz, M.; Abdoli-Senejani, M.; Hojati, S.; Moosavifar, M. Novel and highly efficient heteropoly acids for one-pot mild and green synthesis of xanthene derivatives. Org. Prep. Proced. Int., 2017, 49, 549-556. Available at
[http://dx.doi.org/10.1080/00304948.2017.1384258]
[35]
Keshavarz, M.; Abdoli-Senejani, M.; Hojati, S.F.; Askari, S. Fe3O 4 magnetic nanoparticles coated with a copolymer: A novel reusable catalyst for one-pot three-component synthesis of 2-amino-4H-chromene. React. Kinet. Mech. Catal., 2018, 124, 757-766. Available at
[http://dx.doi.org/10.1007/s11144-018-1361-9]
[36]
Azizi, N.; Abbasi, F.; Abdoli-Senejani, M. Thiamine immobilized on silane-functionalized magnetic nanoparticles for catalytic synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones in water. Mater. Chem. Phys., 2017, 196, 118-125. Available at
[http://dx.doi.org/10.1016/j.matchemphys.2017.04.041]
[37]
Abdoli, M.; Foruzan, N.; Bahmani, M. Momeni Isfahani, T.; Dustepour, S. Oxidative aromatization of some 1, 4-dihydropyridine derivatives using NaBrO3. Iran. Chem. Commun., 2016, 4, 309-317.
[38]
Nayak, B.B.; Vitta, S.; Nigam, A.K.; Bahadur, D. Ni and Ni–nickel oxide nanoparticles with different shapes and a core-shell structure. Thin Solid Films, 2006, 505, 109-112. Available at
[http://dx.doi.org/10.1016/j.tsf.2005.10.018]
[39]
Mahesh, D.; Sadhu, P.; Punniyamurthy, T. Copper (ii)-catalyzed oxidative cross-coupling of anilines, primary alkyl amines, and sodium azide using TBHP: A route to 2-substituted benzimidazoles. J. Org. Chem., 2016, 81(8), 3227-3234. Available at
[http://dx.doi.org/10.1021/acs.joc.6b00186] [PMID: 26991254]
[40]
Sontakke, V.A.; Ghosh, S.; Lawande, P.P.; Chopade, B.A.; Shinde, V.S. A simple, efficient synthesis of 2-aryl benzimidazoles using silica supported periodic Acid catalyst and evaluation of anticancer activity. ISRN Org. Chem., 2013, 2013, 453-682. Available at
[http://dx.doi.org/10.1155/2013/453682] [PMID: 24052861]
[41]
Shaikh, K.A.; Chaudhar, U.N.; Ningdale, V.B. A facile and rapid access towards the synthesis of 2-aryl benzothiazoles using succinimide-N-sulphonic acid: A reusable catalyst. Can. Chem. Trans., 2016, 4, 133-142.
[42]
Yang, X.L.; Xu, C.M.; Lin, S.M.; Chen, J.X.; Ding, J.C.; Wu, H.Y.; Su, W.K. Eco-friendly synthesis of 2-substituted benzothiazoles catalyzed by cetyltrimethyl ammonium bromide (CTAB) in water. J. Braz. Chem. Soc., 2010, 21, 37-42. Available at
[http://dx.doi.org/10.1590/S0103-50532010000100007]
[43]
Shaikh, K.A.; Chaudhar, U.N. Lanthanum (III) nitrate hexahydrate catalyzed one-pot synthesis of 2-arylbenzothiazoles under mild reaction conditions. Org. Commun., 2017, 10, 288-297. Available at
[http://dx.doi.org/10.25135/acg.oc.29.17.08.044]
[44]
Soleimani, E.; Khodaei, M.M.; Yazdani, H.; Saei, P.; Reza, J.Z. Synthesis of 2-substituted benzimidazoles and benzothiazoles using Ag2CO3/Celite as an efficient solid catalyst. J. Iran. Chem. Soc., 2015, 12, 1281-1285. Available at
[http://dx.doi.org/10.1007/s13738-015-0592-1]