Abnormalities of Cortical Thickness in Pediatric Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis

Page: [1095 - 1104] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Objective: Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is the most common intractable seizure type of pediatric epilepsy, with alterations in the cortex across the whole brain. The aim of this study is to investigate the abnormalities of cortical thickness in pediatric MTLE-HS.

Methods: Subjects were recruited from Shenzhen Children’s Hospital between September 2015 and December 2016. MTLE was confirmed by the experienced neurological physician based on International League Against Epilepsy (ILAE) diagnosis criteria, and structural magnetic resonance imaging (MRI) was performed at 3T for quantitative assessment of cortical thickness. A general linear model with age and gender as covariates was used to examine the vertex-wise differences in cortical thickness between 1) left MTLE-HS (LMTLE-HS) and healthy controls (HC), and 2) right MTLE-HS (RMTLE-HS) and HC. The family-wise error corrected significance threshold was set at P < 0.05. Through a combination of probability and cluster-size thresholding, cluster-wise P values were obtained for the resulting clusters.

Results: 13 LMTLE-HS, 6 RMTLE-HS, and 20 age-matched HC were finally enrolled in the study. No significant difference in the mean age (LMTLE-HS vs. HC, p=0.57; RMTLE-HS vs. HC, p=0.39) and gender ratio (LMTLE-HS vs. HC, p=0.24; RMTLE-HS vs. HC, p=0.72) was found between MTLE-HS and HC. In LMTLE-HS, cortical thickness was found significantly decreased in the ipsilateral caudal middle frontal gyrus (p=0.012) and increased in the contralateral inferior temporal gyrus (p=0.020). In RMTLE-HS, cortical thickness significantly decreased in the ipsilateral posterior parietal lobe (superior, p<0.001 and inferior parietal gyrus, p=0.03), the anterior parietal lobe (postcentral gyrus, p=0.006), the posterior frontal lobe (precentral gyrus, p=0.04 and the lateral occipital gyrus, p<0.001), and the contralateral lateral occipital gyrus, middle frontal (p<0.0001) and superior frontal gyrus (p<0.001), and pericalcarine cortex (p=0.020).

Conclusion: We detected significant cortical abnormalities in pediatric MTLE-HS patients compared with HC. These cortical abnormalities could be explained by specific pathogenesis in MTLE-HS, and may finally contribute to understanding the intrinsic mechanism of MTLE-HS.

Keywords: Cortical thickness, pediatric, mesial temporal lobe epilepsy, hippocampal sclerosis, structural magnetic resonance imaging (SMRI).

Graphical Abstract

[1]
Allone C, Lo Buono V, Corallo F, et al. Neuroimaging and cognitive functions in temporal lobe epilepsy: A review of the literature. J Neurol Sci 2017; 381: 7-15.
[http://dx.doi.org/10.1016/j.jns.2017.08.007] [PMID: 28991719]
[2]
Berg AT. The natural history of mesial temporal lobe epilepsy. Curr Opin Neurol 2008; 21(2): 173-8.
[http://dx.doi.org/10.1097/WCO.0b013e3282f36ccd] [PMID: 18317276]
[3]
Malmgren K, Thom M. Hippocampal sclerosis-Origins and imaging Epilepsia 2012.; 53 Suppl 4(Suppl 4): 19-33.
[4]
Vargha-Khadem F, Isaacs E, Muter V. A review of cognitive outcome after unilateral lesions sustained during childhood. J Child Neurol 1994; 9Suppl 2(9 Suppl 2): 67-73..
[http://dx.doi.org/10.1177/0883073894009002101]
[5]
Wieser HG. ILAE Commission on Neurosurgery of Epilepsy. ILAE Commission Report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 2004; 45(6): 695-714.
[http://dx.doi.org/10.1111/j.0013-9580.2004.09004.x] [PMID: 15144438]
[6]
Alhusaini S, Doherty CP, Scanlon C, et al. A cross-sectional MRI study of brain regional atrophy and clinical characteristics of temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Res 2012; 99(1-2): 156-66.
[http://dx.doi.org/10.1016/j.eplepsyres.2011.11.005] [PMID: 22197033]
[7]
Pail M. BrAzdil M. An optimized voxel-based morphometric study of gray matter changes in patients with left-sided and right-sided mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE/HS). Epilepsia 2010; 51(4): 511-8.
[8]
Cormack F, Gadian DG, Vargha-Khadem F, Cross JH, Connelly A, Baldeweg T. Extra-hippocampal grey matter density abnormalities in paediatric mesial temporal sclerosis. Neuroimage 2005; 27(3): 635-43.
[http://dx.doi.org/10.1016/j.neuroimage.2005.05.023] [PMID: 16006149]
[9]
Martin P, Bender B, Focke NK. Post-processing of structural MRI for individualized diagnostics. Quant Imaging Med Surg 2015; 5(2): 188-203.
[PMID: 25853079]
[10]
Clarkson MJ, Cardoso MJ, Ridgway GR, et al. A comparison of voxel and surface based cortical thickness estimation methods. Neuroimage 2011; 57(3): 856-65.
[http://dx.doi.org/10.1016/j.neuroimage.2011.05.053] [PMID: 21640841]
[11]
Falco-Walter J, Owen C, Sharma M, et al. Magnetoencephalography and new imaging modalities in epilepsy. Neurotherapeutics 2017; 14(1): 4-10.
[http://dx.doi.org/10.1007/s13311-016-0506-7] [PMID: 28054328]
[12]
Thesen T, Quinn BT, Carlson C, et al. Detection of epileptogenic cortical malformations with surface-based MRI morphometry. PLoS One 2011; 6(2)e16430
[http://dx.doi.org/10.1371/journal.pone.0016430] [PMID: 21326599]
[13]
Hong SJ, Kim H, Schrader D, Bernasconi N, Bernhardt BC, Bernasconi A. Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology 2014; 83(1): 48-55.
[http://dx.doi.org/10.1212/WNL.0000000000000543] [PMID: 24898923]
[14]
Alhusaini S, Whelan CD, Doherty CP, Delanty N, Fitzsimons M, Cavalleri GL. Temporal cortex morphology in mesial temporal lobe epilepsy patients and their asymptomatic siblings. Cereb Cortex 2016; 26(3): 1234-41.
[http://dx.doi.org/10.1093/cercor/bhu315] [PMID: 25576532]
[15]
] BlA1/4mcke I, Thom M, Aronica E, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: A task force report from the ILAE Commission on diagnostic methods.Epilepsia 2013; 54(7): 1315-29..
[http://dx.doi.org/10.1111/epi.12220] [PMID: 23692496]
[16]
Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 1999; 9(2): 195-207.
[http://dx.doi.org/10.1006/nimg.1998.0396] [PMID: 9931269]
[17]
Desikan RS, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006; 31(3): 968-80.
[http://dx.doi.org/10.1016/j.neuroimage.2006.01.021] [PMID: 16530430]
[18]
Wood JN, Grafman J. Human prefrontal cortex: Processing and representational perspectives. Nat Rev Neurosci 2003; 4(2): 139-47.
[http://dx.doi.org/10.1038/nrn1033] [PMID: 12563285]
[19]
Lieb JP, Dasheiff RM, Engel J Jr. Role of the frontal lobes in the propagation of mesial temporal lobe seizures. Epilepsia 1991; 32(6): 822-37.
[http://dx.doi.org/10.1111/j.1528-1157.1991.tb05539.x] [PMID: 1743154]
[20]
Schacher M, Winkler R, Grunwald T, et al. Mesial temporal lobe epilepsy impairs advanced social cognition. Epilepsia 2006; 47(12): 2141-6.
[http://dx.doi.org/10.1111/j.1528-1167.2006.00857.x] [PMID: 17201715]
[21]
Giovagnoli AR. Relation of sorting impairment to hippocampal damage in temporal lobe epilepsy. Neuropsychologia 2001; 39(2): 140-50.
[http://dx.doi.org/10.1016/S0028-3932(00)00104-4]
[22]
Keller SS, Roberts N. Voxel-based morphometry of temporal lobe epilepsy: An introduction and review of the literature. Epilepsia 2008; 49(5): 741-57.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01485.x] [PMID: 18177358]
[23]
Koenigs M, Barbey AK, Postle BR, Grafman J. Superior parietal cortex is critical for the manipulation of information in working memory. J Neurosci 2009; 29(47): 14980-6.
[http://dx.doi.org/10.1523/JNEUROSCI.3706-09.2009] [PMID: 19940193]
[24]
Satoh M, Terada S, Onouchi K, Takeda K, Kuzuhara S. Somatosensory and skin temperature disturbances caused by infarction of the postcentral gyrus: A case report. J Neurol 2002; 249(10): 1404-8.
[http://dx.doi.org/10.1007/s00415-002-0853-7] [PMID: 12382157]
[25]
Freund HJ. Somatosensory and motor disturbances in patients with parietal lobe lesions. Adv Neurol 2003; 93: 179-93.
[PMID: 12894408]
[26]
Galeano Weber EM, Hahn T, Hilger K, Fiebach CJ. Distributed patterns of occipito-parietal functional connectivity predict the precision of visual working memory. Neuroimage 2017; 146: 404-18.
[http://dx.doi.org/10.1016/j.neuroimage.2016.10.006] [PMID: 27721028]
[27]
Scott RC, King MD, Gadian DG, Neville BG, Connelly A. Hippocampal abnormalities after prolonged febrile convulsion: A longitudinal MRI study. Brain 2003; 126(Pt 11): 2551-7.
[http://dx.doi.org/10.1093/brain/awg262] [PMID: 12937081]
[28]
Kadom N, Tsuchida T, Gaillard WD. Hippocampal sclerosis in children younger than 2 years. Pediatr Radiol 2011; 41(10): 1239-45.
[http://dx.doi.org/10.1007/s00247-011-2166-4] [PMID: 21735179]
[29]
Creem SH, Proffitt DR. Defining the cortical visual systems: “What”, “Where”, and “How”. Acta Psychol (Amst) 2001; 107(1-3): 43-68.
[http://dx.doi.org/10.1016/S0001-6918(01)00021-X] [PMID: 11388142]
[30]
Alessio A, Pereira FR, Sercheli MS, et al. Brain plasticity for verbal and visual memories in patients with mesial temporal lobe epilepsy and hippocampal sclerosis: An fMRI study. Hum Brain Mapp 2013; 34(1): 186-99.
[http://dx.doi.org/10.1002/hbm.21432] [PMID: 22038783]
[31]
Vilberg KL, Davachi L. Perirhinal-hippocampal connectivity during reactivation is a marker for object-based memory consolidation. Neuron 2013; 79(6): 1232-42.
[http://dx.doi.org/10.1016/j.neuron.2013.07.013] [PMID: 23993700]
[32]
Tamnes CK, Ostby Y, Fjell AM, Westlye LT, Due-Tønnessen P, Walhovd KB. Brain maturation in adolescence and young adulthood: Regional age-related changes in cortical thickness and white matter volume and microstructure. Cereb Cortex 2010; 20(3): 534-48.
[http://dx.doi.org/10.1093/cercor/bhp118] [PMID: 19520764]