Current Nanoparticle Approaches in Nose to Brain Drug Delivery and Anticancer Therapy - A Review

Page: [1128 - 1137] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Nanoparticles (NPs) are unique may be organic or inorganic, play a vital role in the development of drug delivery targeting the central nervous system (CNS). Intranasal drug delivery has shown to be an efficient strategy with attractive application for drug delivery to the CNS related diseases, such as Parkinson's disease, Alzheimer 's disease and brain solid tumors. Blood brain barrier (BBB) and blood-cerebrospinal fluid barriers are natural protective hindrances for entry of drug molecules into the CNS. Nanoparticles exhibit excellent intruding capacity for therapeutic agents and overcome protective barriers. By using nanotechnology based NPs targeted, drug delivery can be improved across BBB with discharge drugs in a controlled manner. NPs confer safe from degradation phenomenon. Several kinds of NPs are used for nose to the brain (N2B) enroute, such as lipidemic nanoparticles, polymeric nanoparticles, inorganic NPs, solid lipid NPs, dendrimers. Among them, popular lipidemic and polymeric NPs are discussed, and their participation in anti-cancer activity has also been highlighted in this review.

Keywords: Nanoparticles, polymeric, anticancer, nose to brain drug delivery, therapeutic agents, intranasal drug delivery.

[1]
Agrawal M, Saraf S, Saraf S, et al. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release 2018; 281: 139-77.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.011] [PMID: 29772289]
[2]
Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine (Lond) 2012; 8(2): 147-66.
[http://dx.doi.org/10.1016/j.nano.2011.05.016] [PMID: 21703993]
[3]
Gänger S, Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: a review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics 2018; 10(3): 116.
[http://dx.doi.org/10.3390/pharmaceutics10030116] [PMID: 30081536]
[4]
Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res Int 2014; 2014869269
[5]
Dong X. Current strategies for brain drug delivery. Theranostics 2018; 8(6): 1481-93.
[http://dx.doi.org/10.7150/thno.21254] [PMID: 29556336]
[6]
Oves M, Qari HA, Felemban NM, et al. Exosomes: a paradigm in drug development against cancer and infectious diseases. J Nanomater 2018; 2018
[http://dx.doi.org/10.1155/2018/6895464]
[7]
Bergmann S, Lawler SE, Qu Y, et al. Blood-brain-barrier organoids for investigating the permeability of CNS therapeutics. Nat Protoc 2018; 13(12): 2827-43.
[http://dx.doi.org/10.1038/s41596-018-0066-x] [PMID: 30382243]
[8]
Erdő F, Bors LA, Farkas D, Bajza Á, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull 2018; 143: 155-70.
[http://dx.doi.org/10.1016/j.brainresbull.2018.10.009] [PMID: 30449731]
[9]
Pulliam L, Sun B, Rempel H, et al. Intranasal tat alters gene expression in the mouse brain. J Neuroimmune Pharmacol 2007; 2(1): 87-92.
[http://dx.doi.org/10.1007/s11481-006-9053-z] [PMID: 18040830]
[10]
Jin K, Xie L, Childs J, et al. Cerebral neurogenesis is induced by intranasal administration of growth factors. Ann Neurol 2003; 53(3): 405-9.
[http://dx.doi.org/10.1002/ana.10506] [PMID: 12601711]
[11]
Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater 2019; 2019
[http://dx.doi.org/10.1155/2019/3702518]
[12]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[13]
Barkat MA, Harshita , Ahmad I, et al. Nanosuspension-based aloe vera gel of silver sulfadiazine with improved wound healing activity. AAPS PharmSciTech 2017; 18(8): 3274-85.
[http://dx.doi.org/10.1208/s12249-017-0817-y] [PMID: 28584900]
[14]
Grama C, Ankola D, Kumar MR. Poly (lactide-co-glycolide) nanoparticles for peroral delivery of bioactives. Curr Opin Colloid Interface Sci 2011; 16: 238-45.
[http://dx.doi.org/10.1016/j.cocis.2010.11.005]
[15]
Kumar H, Mishra G, Sharma AK, Gothwal A, Kesharwani P, Gupta U. Intranasal drug delivery: A non-invasive approach for the better delivery of neurotherapeutics. Pharm Nanotechnol 2017; 5(3): 203-14.
[PMID: 28521670]
[16]
Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 2007; 24(1): 1-16.
[http://dx.doi.org/10.1007/s11095-006-9132-0] [PMID: 17109211]
[17]
Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol 2015; 7(1)a020412
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[18]
Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G. Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol 2018; 135(3): 311-36.
[http://dx.doi.org/10.1007/s00401-018-1815-1] [PMID: 29411111]
[19]
Santaguida S, Janigro D, Hossain M, Oby E, Rapp E, Cucullo L. Side by side comparison between dynamic versus static models of blood-brain barrier in vitro: a permeability study. Brain Res 2006; 1109(1): 1-13.
[http://dx.doi.org/10.1016/j.brainres.2006.06.027] [PMID: 16857178]
[20]
Rabanel JM, Aoun V, Elkin I, Mokhtar M, Hildgen P. Drug-loaded nanocarriers: passive targeting and crossing of biological barriers. Curr Med Chem 2012; 19(19): 3070-102.
[http://dx.doi.org/10.2174/092986712800784702] [PMID: 22612696]
[21]
Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm 2007; 337(1-2): 1-24.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.025] [PMID: 17475423]
[22]
Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci 2018; 195: 44-52.
[http://dx.doi.org/10.1016/j.lfs.2017.12.025] [PMID: 29277310]
[23]
Mainardes RM, Urban MC, Cinto PO, Chaud MV, Evangelista RC, Gremião MP. Liposomes and micro/nanoparticles as colloidal carriers for nasal drug delivery. Curr Drug Deliv 2006; 3(3): 275-85.
[http://dx.doi.org/10.2174/156720106777731019] [PMID: 16848729]
[24]
Li L, Nandi I, Kim KH. Development of an ethyl laurate-based microemulsion for rapid-onset intranasal delivery of diazepam. Int J Pharm 2002; 237(1-2): 77-85.
[http://dx.doi.org/10.1016/S0378-5173(02)00029-7] [PMID: 11955806]
[25]
Vyas TK, Babbar AK, Sharma RK, Singh S, Misra A. Intranasal mucoadhesive microemulsions of clonazepam: preliminary studies on brain targeting. J Pharm Sci 2006; 95(3): 570-80.
[http://dx.doi.org/10.1002/jps.20480] [PMID: 16419051]
[26]
Yih TC, Al-Fandi M. Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 2006; 97(6): 1184-90.
[http://dx.doi.org/10.1002/jcb.20796] [PMID: 16440317]
[27]
Nazarov G, Galan S, Nazarova E, Karkishchenko N, Muradov M, Stepanov V. Nanosized forms of drugs (a review). Pharm Chem J 2009; 43: 163-70.
[http://dx.doi.org/10.1007/s11094-009-0259-2]
[28]
Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Blood-brain delivery methods using nanotechnology. Pharmaceutics 2018; 10(4): 269.
[http://dx.doi.org/10.3390/pharmaceutics10040269] [PMID: 30544966]
[29]
Mirza AZ, Siddiqui FA. Nanomedicine and drug delivery: a mini review. Int Nano Lett 2014; 4: 94.
[http://dx.doi.org/10.1007/s40089-014-0094-7]
[30]
Zhang N, Yan F, Liang X, et al. Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound-targeted microbubble destruction for improved Parkinson’s disease therapy. Theranostics 2018; 8(8): 2264-77.
[http://dx.doi.org/10.7150/thno.23734] [PMID: 29721078]
[31]
Rahme K, Dagher N. Chemistry routes for copolymer synthesis containing PEG for targeting, imaging, and drug delivery purposes. Pharmaceutics 2019; 11(7): 327.
[http://dx.doi.org/10.3390/pharmaceutics11070327] [PMID: 31336703]
[32]
Calvo P, Gouritin B, Chacun H, et al. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res 2001; 18(8): 1157-66.
[http://dx.doi.org/10.1023/A:1010931127745] [PMID: 11587488]
[33]
Chen CC, Liu L, Ma F, et al. Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell Mol Bioeng 2016; 9(4): 509-29.
[http://dx.doi.org/10.1007/s12195-016-0458-3] [PMID: 28392840]
[34]
Thorne RG, Pronk GJ, Padmanabhan V, Frey WH II. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 2004; 127(2): 481-96.
[http://dx.doi.org/10.1016/j.neuroscience.2004.05.029] [PMID: 15262337]
[35]
Bourganis V, Kammona O, Alexopoulos A, Kiparissides C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm 2018; 128: 337-62.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.009] [PMID: 29733950]
[36]
Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001; 53(2): 283-318.
[PMID: 11356986]
[37]
Provenzale JM, Mukundan S, Dewhirst M. The role of blood-brain barrier permeability in brain tumor imaging and therapeutics. Am J Roentgenol 2005; 185(3): 763-7.
[http://dx.doi.org/10.2214/ajr.185.3.01850763] [PMID: 16120931]
[38]
Qian ZM, Li H, Sun H, Ho K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 2002; 54(4): 561-87.
[http://dx.doi.org/10.1124/pr.54.4.561] [PMID: 12429868]
[39]
Kumar P, Wu H, McBride JL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007; 448(7149): 39-43.
[http://dx.doi.org/10.1038/nature05901] [PMID: 17572664]
[40]
Maria Mendes JJS. Alberto Pais, and Carla Vitorino. Targeted theranostic nanoparticles for brain tumor treatment. Pharmaceutics 2018; 10: 181.
[http://dx.doi.org/10.3390/pharmaceutics10040181]
[41]
Cui Y, Xu Q, Chow PK-H, Wang D, Wang C-H. Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials 2013; 34(33): 8511-20.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.075] [PMID: 23932498]
[42]
Pang Z, Lu W, Gao H, et al. Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. J Control Release 2008; 128(2): 120-7.
[http://dx.doi.org/10.1016/j.jconrel.2008.03.007] [PMID: 18436327]
[43]
Kim S-S, Rait A, Kim E, et al. A nanoparticle carrying the p53 gene targets tumors including cancer stem cells, sensitizes glioblastoma to chemotherapy and improves survival. ACS Nano 2014; 8(6): 5494-514.
[http://dx.doi.org/10.1021/nn5014484] [PMID: 24811110]
[44]
Salvati E, Re F, Sesana S, et al. Liposomes functionalized to overcome the blood-brain barrier and to target amyloid-β peptide: the chemical design affects the permeability across an in vitro model. Int J Nanomedicine 2013; 8: 1749-58.
[PMID: 23674890]
[45]
Pulgar VM. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front Neurosci 2019; 12: 1019.
[PMID: 30686985]
[46]
Dieu L-H, Wu D, Palivan CG, Balasubramanian V, Huwyler J. Polymersomes conjugated to 83-14 monoclonal antibodies: in vitro targeting of brain capillary endothelial cells. Eur J Pharm Biopharm 2014; 88(2): 316-24.
[http://dx.doi.org/10.1016/j.ejpb.2014.05.021] [PMID: 24929212]
[47]
Hu K, Shi Y, Jiang W, Han J, Huang S, Jiang X. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson’s disease. Int J Pharm 2011; 415(1-2): 273-83.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.062] [PMID: 21651967]
[48]
Zhan C, Li B, Hu L, et al. Micelle-based brain-targeted drug delivery enabled by a nicotine acetylcholine receptor ligand. Angew Chem Int Ed Engl 2011; 50(24): 5482-5.
[http://dx.doi.org/10.1002/anie.201100875] [PMID: 21542074]
[49]
Kuang Y, An S, Guo Y, et al. T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting. Int J Pharm 2013; 454(1): 11-20.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.019] [PMID: 23867728]
[50]
Dixit S, Novak T, Miller K, Zhu Y, Kenney ME, Broome A-M. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale 2015; 7(5): 1782-90.
[http://dx.doi.org/10.1039/C4NR04853A] [PMID: 25519743]
[51]
Cheng C, Chen YH, Lennox KA, Behlke MA, Davidson BL. In vivo SELEX for identification of brain-penetrating aptamers. Mol Ther Nucleic Acids 2013; 2e67
[http://dx.doi.org/10.1038/mtna.2012.59] [PMID: 23299833]
[52]
Gaillard PJ, Visser CC, Appeldoorn CC, Rip J. Enhanced brain drug delivery: safely crossing the blood-brain barrier. Drug Discov Today Technol 2012; 9(2): e71-e174.
[http://dx.doi.org/10.1016/j.ddtec.2011.12.002] [PMID: 24064276]
[53]
Rip J, Chen L, Hartman R, et al. Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood-brain barrier in rats. J Drug Target 2014; 22(5): 460-7.
[http://dx.doi.org/10.3109/1061186X.2014.888070] [PMID: 24524555]
[54]
Ross JSSD, Schenkein DP, Pietrusko R, et al. Targeted therapies for cancer 2004. Am J Clin Pathol 2004; 122(4): 598-609.
[http://dx.doi.org/10.1309/5CWPU41AFR1VYM3F] [PMID: 15487459]
[55]
Hahn H. Gas phase synthesis of nanocrystalline materials. Nanostruct Mater 1997; 9: 3-12.
[http://dx.doi.org/10.1016/S0965-9773(97)00013-5]
[56]
Kumar M, Ando Y. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 2010; 10(6): 3739-58.
[http://dx.doi.org/10.1166/jnn.2010.2939] [PMID: 20355365]
[57]
Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull 2017; 7(3): 339-48.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[58]
Chakraborty C, Sharma AR, Sharma G, Sarkar BK, Lee S-S. The novel strategies for next-generation cancer treatment: miRNA combined with chemotherapeutic agents for the treatment of cancer. Oncotarget 2018; 9(11): 10164-74.
[http://dx.doi.org/10.18632/oncotarget.24309] [PMID: 29515800]
[59]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[60]
Chen ZG. Small-molecule delivery by nanoparticles for anticancer therapy. Trends Mol Med 2010; 16(12): 594-602.
[http://dx.doi.org/10.1016/j.molmed.2010.08.001] [PMID: 20846905]
[61]
Foroozandeh P, Aziz AA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett 2018; 13(1): 339.
[http://dx.doi.org/10.1186/s11671-018-2728-6] [PMID: 30361809]
[62]
Bharali DJ, Mousa SA. Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise. Pharmacol Ther 2010; 128(2): 324-35.
[http://dx.doi.org/10.1016/j.pharmthera.2010.07.007] [PMID: 20705093]
[63]
Ahmad A. Nanotechnology as a next generation therapeutics: hope for cancer treatment. Modern technology: present and future of cancer. 1st ed. OMICS group eBooks. 2015.
[64]
Alexis F, Pridgen EM, Langer R, Farokhzad OC. Nanoparticle technologies for cancer therapy Drug delivery. Springer 2010; pp. 55-86.
[http://dx.doi.org/10.1007/978-3-642-00477-3_2]
[65]
Markman M. Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary. Expert Opin Pharmacother 2006; 7(11): 1469-74.
[http://dx.doi.org/10.1517/14656566.7.11.1469] [PMID: 16859430]
[66]
Sokolov K, Follen M, Aaron J, et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 2003; 63(9): 1999-2004.
[PMID: 12727808]
[67]
El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 2005; 5(5): 829-34.
[http://dx.doi.org/10.1021/nl050074e] [PMID: 15884879]
[68]
Rezvantalab S, Drude NI, Moraveji MK, et al. PLGA-based nanoparticles in cancer treatment. Front Pharmacol 2018; 9: 1260.
[http://dx.doi.org/10.3389/fphar.2018.01260] [PMID: 30450050]
[69]
Ahmad A, Khan JM, Haque S. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. Biochimie 2019; 160: 61-75.
[http://dx.doi.org/10.1016/j.biochi.2019.02.012] [PMID: 30797879]
[70]
Gref R, Lück M, Quellec P, et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 2000; 18(3-4): 301-13.
[http://dx.doi.org/10.1016/S0927-7765(99)00156-3] [PMID: 10915952]
[71]
Swider E, Koshkina O, Tel J, Cruz LJ, de Vries IJM, Srinivas M. Customizing poly(lactic-co-glycolic acid) particles for biomedical applications. Acta Biomater 2018; 73: 38-51.
[http://dx.doi.org/10.1016/j.actbio.2018.04.006] [PMID: 29653217]
[72]
Gregoriadis G, Florence AT. Liposomes in drug delivery. Clinical, diagnostic and ophthalmic potential. Drugs 1993; 45(1): 15-28.
[http://dx.doi.org/10.2165/00003495-199345010-00003] [PMID: 7680982]
[73]
Sood P, Thurmond KB II, Jacob JE, et al. Synthesis and characterization of AP5346, a novel polymer-linked diaminocyclohexyl platinum chemotherapeutic agent. Bioconjug Chem 2006; 17(5): 1270-9.
[http://dx.doi.org/10.1021/bc0600517] [PMID: 16984138]
[74]
Gradishar WJ. Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 2006; 7(8): 1041-53.
[http://dx.doi.org/10.1517/14656566.7.8.1041] [PMID: 16722814]
[75]
Discher BM, Won Y-Y, Ege DS, et al. Polymersomes: tough vesicles made from diblock copolymers. Science 1999; 284(5417): 1143-6.
[http://dx.doi.org/10.1126/science.284.5417.1143] [PMID: 10325219]
[76]
Dalpiaz A, Ferraro L, Perrone D, et al. Brain uptake of a Zidovudine prodrug after nasal administration of solid lipid microparticles. Mol Pharm 2014; 11(5): 1550-61.
[http://dx.doi.org/10.1021/mp400735c] [PMID: 24717116]
[77]
Sharma D, Sharma RK, Sharma N, et al. Nose-to-brain delivery of PLGA-diazepam nanoparticles. AAPS PharmSciTech 2015; 16(5): 1108-21.
[http://dx.doi.org/10.1208/s12249-015-0294-0] [PMID: 25698083]
[78]
Zeng Q, Li H, Jiang H, et al. Tailoring polymeric hybrid micelles with lymph node targeting ability to improve the potency of cancer vaccines. Biomaterials 2017; 122: 105-13.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.010] [PMID: 28110170]
[79]
Huo M, Zhao Y, Satterlee AB, Wang Y, Xu Y, Huang L. Tumor-targeted delivery of sunitinib base enhances vaccine therapy for advanced melanoma by remodeling the tumor microenvironment. J Control Release 2017; 245: 81-94.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.013] [PMID: 27863995]
[80]
Luo M, Wang H, Wang Z, et al. A STING-activating nanovaccine for cancer immunotherapy. Nat Nanotechnol 2017; 12(7): 648-54.
[http://dx.doi.org/10.1038/nnano.2017.52] [PMID: 28436963]
[81]
Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology 2011; 9: 55.
[http://dx.doi.org/10.1186/1477-3155-9-55] [PMID: 22123084]
[82]
Banskota S, Yousefpour P, Chilkoti A. Cell-based biohybrid drug delivery systems: the best of the synthetic and natural worlds. Macromol Biosci 2017; 17(1)1600361
[http://dx.doi.org/10.1002/mabi.201600361] [PMID: 27925398]
[83]
Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev 2007; 59(6): 491-504.
[http://dx.doi.org/10.1016/j.addr.2007.04.008] [PMID: 17532091]
[84]
Bayón-Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel) 2019; 9(3): 474.
[http://dx.doi.org/10.3390/nano9030474] [PMID: 30909401]
[85]
Brioschi A, Zenga F, Zara GP, Gasco MR, Ducati A, Mauro A. Solid lipid nanoparticles: could they help to improve the efficacy of pharmacologic treatments for brain tumors? Neurol Res 2007; 29(3): 324-30.
[http://dx.doi.org/10.1179/016164107X187017] [PMID: 17509234]
[86]
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009; 30(11): 592-9.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[87]
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics 2017; 9(2): 12.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[88]
Vemuri S, Rhodes CT. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helv 1995; 70(2): 95-111.
[http://dx.doi.org/10.1016/0031-6865(95)00010-7] [PMID: 7651973]
[89]
Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008; 14(5): 1310-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1441] [PMID: 18316549]
[90]
Morgillo F, Lee H-Y. Resistance to epidermal growth factor receptor-targeted therapy. Drug Resist Updat 2005; 8(5): 298-310.
[http://dx.doi.org/10.1016/j.drup.2005.08.004] [PMID: 16172017]
[91]
Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006; 1(3): 297-315.
[PMID: 17717971]
[92]
Hong MS, Lim SJ, Oh YK, Kim CK. pH-sensitive, serum-stable and long-circulating liposomes as a new drug delivery system. J Pharm Pharmacol 2002; 54(1): 51-8.
[http://dx.doi.org/10.1211/0022357021771913] [PMID: 11829129]
[93]
Lasic DD. Novel applications of liposomes. Trends Biotechnol 1998; 16(7): 307-21.
[http://dx.doi.org/10.1016/S0167-7799(98)01220-7] [PMID: 9675915]
[94]
Allen TM, Martin FJ. Advantages of liposomal delivery systems for anthracyclines. Seminars in oncology. Elsevier 2004; 5-15.
[http://dx.doi.org/10.1053/j.seminoncol.2004.08.001]
[95]
Leonard RC, Williams S, Tulpule A, Levine AM, Oliveros S. Improving the therapeutic index of anthracycline chemotherapy: focus on liposomal doxorubicin (Myocet). Breast 2009; 18(4): 218-24.
[http://dx.doi.org/10.1016/j.breast.2009.05.004] [PMID: 19656681]
[96]
Park JW. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res 2002; 4(3): 95-9.
[http://dx.doi.org/10.1186/bcr432] [PMID: 12052251]
[97]
Semple SC, Leone R, Wang J, et al. Optimization and characterization of a sphingomyelin/cholesterol liposome formulation of vinorelbine with promising antitumor activity. J Pharm Sci 2005; 94(5): 1024-38.
[http://dx.doi.org/10.1002/jps.20332] [PMID: 15793796]
[98]
Seiden MV, Muggia F, Astrow A, et al. A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer. Gynecol Oncol 2004; 93(1): 229-32.
[http://dx.doi.org/10.1016/j.ygyno.2003.12.037] [PMID: 15047241]
[99]
Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 1999; 51(4): 691-743.
[PMID: 10581328]
[100]
García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, et al. Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials (Basel) 2019; 9(4): 638.
[http://dx.doi.org/10.3390/nano9040638] [PMID: 31010180]
[101]
James ND, Coker RJ, Tomlinson D, et al. Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi’s sarcoma in AIDS. Clin Oncol (R Coll Radiol) 1994; 6(5): 294-6.
[http://dx.doi.org/10.1016/S0936-6555(05)80269-9] [PMID: 7530036]
[102]
Gibbs DD, Pyle L, Allen M, et al. A phase I dose-finding study of a combination of pegylated liposomal doxorubicin (Doxil), carboplatin and paclitaxel in ovarian cancer. Br J Cancer 2002; 86(9): 1379-84.
[http://dx.doi.org/10.1038/sj.bjc.6600250] [PMID: 11986767]
[103]
Kim ES, Lu C, Khuri FR, et al. A phase II study of STEALTH cisplatin (SPI-77) in patients with advanced non-small cell lung cancer. Lung Cancer 2001; 34(3): 427-32.
[http://dx.doi.org/10.1016/S0169-5002(01)00278-1] [PMID: 11714540]