Recent Advances on Antitumor Agents-loaded Polymeric and Lipid-based Nanocarriers for the Treatment of Brain Cancer

Page: [1316 - 1330] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

In 2016, there were 17.2 million cancer cases, which caused 8.9 million deaths worldwide. Of all cancers, ranked by absolute years of life lost, brain and central nervous system cancers were classified in the nine positions between 2006 and 2016. Glioblastoma is the most common malignant primary brain tumor and comprises 80% of malignant tumours. The therapeutic approach usually involves the combination of surgery and radiotherapy, which present a high risk for the patient and are not always effective in the most aggressive cases. Chemotherapy commonly includes a specific number of cycles given over a set period of time, in which patients receive one drug or a combination of different compounds. The difficulty of access for the neurosurgeon to remove the tumor, the limitation of the penetration of the antitumor agents caused by the blood-brain barrier and the serious adverse effects of these drugs significantly compromise the therapeutic success in these patients. To solve these problems and improve the effectiveness of existing treatments, as well as new molecules, the use of nanotechnology is arousing much interest in the last decades in this field. The use of polymeric and lipid-based nanosystems is one of the best alternatives for the central delivery of drugs due to their versatility, easy manufacturing, biocompatibility, biodegradability and drug targeting, among other virtues. Thus, in this review, we will explore the recent advances in the latest anticancer agent’s development associated with polymeric and lipid-based nanocarriers as a novel tools for the management of brain tumors.

Keywords: Polymeric nanoparticles, lipid nanoparticles, tumor targeting, brain cancer, antitumor agents, cancer nanomedicine.

[1]
What are neurological disorders? 2019.Available at:. https://www.who.int/features/qa/55/en/
[2]
Feigin VL, Abajobir AA, Abate KH, et al. GBD 2015 Neurological Disorders Collaborator Group.Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol 2017; 16(11): 877-97.
[http://dx.doi.org/10.1016/S1474-4422(17)30299-5] [PMID: 28931491]
[3]
Fitzmaurice C, Akinyemiju TF, Al Lami FH, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016 - A systematic analysis of global burden of disease study. JAMA Oncol 2018; 98121(11): 1553-68.
[4]
Gould J. Breaking down the epidemiology of brain cancer. Nature 2018; 561(7724): S40-1.
[http://dx.doi.org/10.1038/d41586-018-06704-7] [PMID: 30258156]
[5]
Aldape K, Brindle KM, Chesler L, et al. Challenges to curing primary brain tumours. Nat Rev Clin Oncol 2019; 16(8): 509-20.
[http://dx.doi.org/10.1038/s41571-019-0177-5] [PMID: 30733593]
[6]
GBD 2016 Brain and Other CNS Cancer Collaborators. Global, regional, and national burden of brain and other CNS cancer, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18(4): 376-93.
[http://dx.doi.org/10.1016/S1474-4422(18)30468-X] [PMID: 30797715]
[7]
de Robles P, Fiest KM, Frolkis AD, et al. The worldwide incidence and prevalence of primary brain tumors: a systematic review and meta-analysis. Neuro-oncol 2015; 17(6): 776-83.
[http://dx.doi.org/10.1093/neuonc/nou283] [PMID: 25313193]
[8]
Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre JY. Primary brain tumours in adults. Lancet 2012; 379(9830): 1984-96.
[http://dx.doi.org/10.1016/S0140-6736(11)61346-9] [PMID: 22510398]
[9]
Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 2017; 264: 306-32.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.033] [PMID: 28844756]
[10]
Laub CK, Stefanik J, Doherty L. Approved treatments for patients with recurrent high-grade gliomas. Semin Oncol Nurs 2018; 34(5): 486-93.
[http://dx.doi.org/10.1016/j.soncn.2018.10.005] [PMID: 30392759]
[11]
Kazazi-Hyseni F, Beijnen JH, Schellens JHM. Bevacizumab. Oncologist 2010; 15(8): 819-25.
[http://dx.doi.org/10.1634/theoncologist.2009-0317] [PMID: 20688807]
[12]
Hadidi S, Shiri F, Norouzibazaz M. Conversion mechanism and isomeric preferences of the cis and trans isomers of anti-cancer medicine carmustine: A double hybrid DFT calculation. Chem Phys 2019; 522: 39-43.
[http://dx.doi.org/10.1016/j.chemphys.2019.02.013]
[13]
Temerk Y, Ibrahim M, Ibrahim H, Kotb M. Interactions of an anticancer drug lomustine with single and double stranded DNA at physiological conditions analyzed by electrochemical and spectroscopic methods. J Electroanal Chem 2016; 769: 62-71.
[http://dx.doi.org/10.1016/j.jelechem.2016.03.020]
[14]
Bailly C. Irinotecan: 25 years of cancer treatment. Pharmacol Res 2019; 148: 104398
[http://dx.doi.org/10.1016/j.phrs.2019.104398] [PMID: 31415916]
[15]
Oliveira L, Caquito JM Jr, Rocha MS. Carboplatin as an alternative to Cisplatin in chemotherapies: New insights at single molecule level. Biophys Chem 2018; 241: 8-14.
[http://dx.doi.org/10.1016/j.bpc.2018.07.004] [PMID: 30064098]
[16]
Zhang J, Stevens MFG, Bradshaw TD. Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol 2012; 5(1): 102-14.
[http://dx.doi.org/10.2174/1874467211205010102] [PMID: 22122467]
[17]
Ogawa K, Hiraku Y, Oikawa S, et al. Molecular mechanisms of DNA damage induced by procarbazine in the presence of Cu(II). Mutat Res 2003; 539(1-2): 145-55.
[http://dx.doi.org/10.1016/S1383-5718(03)00157-8] [PMID: 12948823]
[19]
Mendes M, Sousa JJ, Pais A, Vitorino C. Targeted theranostic nanoparticles for brain tumor treatment. Pharmaceutics 2018; 10(4): 1-47.
[http://dx.doi.org/10.3390/pharmaceutics10040181] [PMID: 30304861]
[20]
Karim R, Palazzo C, Evrard B, Piel G. Nanocarriers for the treatment of glioblastoma multiforme: Current state-of-the-art. J Control Release 2016; 227: 23-37.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.026] [PMID: 26892752]
[21]
Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer 2020; 20(1): 26-41.
[http://dx.doi.org/10.1038/s41568-019-0205-x] [PMID: 31601988]
[22]
Osswald M, Blaes J, Liao Y, et al. Impact of blood-brain barrier integrity on tumor growth and therapy response in brain metastases. Clin Cancer Res 2016; 22(24): 6078-87.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1327] [PMID: 27521448]
[23]
Duwa R, Emami F, Lee S, Jeong J, Yook S. Polymeric and lipidbased drug delivery systems for treatment of glioblastoma multiforme. J Ind Eng Chem; 79: 261-73.
[http://dx.doi.org/10.1016/j.jiec.2019.06.050]
[24]
Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nat Rev Neurosci 2007; 8(8): 610-22.
[http://dx.doi.org/10.1038/nrn2175] [PMID: 17643088]
[25]
Qiao L, Liang N, Zhang J, et al. Advanced research on vasculogenic mimicry in cancer. J Cell Mol Med 2015; 19(2): 315-26.
[http://dx.doi.org/10.1111/jcmm.12496] [PMID: 25598425]
[26]
Hisada Y, Yasunaga M, Hanaoka S, et al. Discovery of an uncovered region in fibrin clots and its clinical significance. Sci Rep 2013; 3: 2604.
[http://dx.doi.org/10.1038/srep02604] [PMID: 24008368]
[27]
Miranda A, Blanco-Prieto MJ, Sousa J, Pais A, Vitorino C. Breaching barriers in glioblastoma. Part II: Targeted drug delivery and lipid nanoparticles. Int J Pharm 2017; 531(1): 389-410.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.049] [PMID: 28801108]
[28]
Aldea M, Florian IA, Kacso G, et al. Nanoparticles for targeting intratumoral hypoxia: exploiting a potential weakness of glioblastoma. Pharm Res 2016; 33(9): 2059-77.
[http://dx.doi.org/10.1007/s11095-016-1947-8] [PMID: 27230936]
[29]
Lei C, Davoodi P, Zhan W, Chow PK, Wang CH. Development of nanoparticles for drug delivery to brain tumor: the effect of surface materials on penetration into brain tissue. J Pharm Sci 2019; 108(5): 1736-45.
[http://dx.doi.org/10.1016/j.xphs.2018.12.002] [PMID: 30552956]
[30]
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010; 75(1): 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[31]
Nagavarma BVN, Yadav HKS, Ayaz A, Vasudha LS, Shivakumar HG. Different techniques for preparation of polymeric nanoparticles- a review. Asian J Pharm Clin Res 2012; 5(3): 16-23.
[32]
Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm 2008; 364(2): 298-327.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.042] [PMID: 18621492]
[33]
Ramos Yacasi GR, García López ML, Espina García M, Parra Coca A, Calpena Campmany AC. Influence of freeze-drying and γ-irradiation in preclinical studies of flurbiprofen polymeric nanoparticles for ocular delivery using d-(+)-trehalose and polyethylene glycol. Int J Nanomedicine 2016; 11: 4093-106.
[http://dx.doi.org/10.2147/IJN.S105606] [PMID: 27601897]
[34]
Andrieux K, Garcia-Garcia E, Kim H, Couvreur P. Colloidal carriers: a promising way to treat central nervous system diseases. J Neurosci 2009; 1: 17-34.
[35]
Bolhassani A, Javanzad S, Saleh T, Hashemi M, Aghasadeghi MR, Sadat SM. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccin Immunother 2014; 10(2): 321-32.
[http://dx.doi.org/10.4161/hv.26796] [PMID: 24128651]
[36]
Tajes M, Ramos-Fernández E, Weng-Jiang X, et al. The blood-brain barrier: structure, function and therapeutic approaches to cross it. Mol Membr Biol 2014; 31(5): 152-67.
[http://dx.doi.org/10.3109/09687688.2014.937468] [PMID: 25046533]
[37]
Koukourakis MI, Koukouraki S, Fezoulidis I, et al. High intratumoural accumulation of stealth liposomal doxorubicin (Caelyx) in glioblastomas and in metastatic brain tumours. Br J Cancer 2000; 83(10): 1281-6.
[http://dx.doi.org/10.1054/bjoc.2000.1459] [PMID: 11044350]
[38]
Sharma A, Sharma US. Liposomes in drug delivery: progress and limitations. Int J Pharm 1997; 154: 123-40.
[http://dx.doi.org/10.1016/S0378-5173(97)00135-X]
[39]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[40]
Tiwari A, Rashi S, Anand S. Solid lipid nanoparticles as carriers in drug delivery. World J Pharm Pharm Sci 2015; 4(8): 337-55.
[41]
Attama AA, Momoh MA, Builders PF. Lipid nanoparticulate drug delivery systems : a revolution in dosage form design and development.recent advances in novel drug carrier systems. 2012; 107-40.
[42]
Iqbal MA, Md S, Sahni JK, Baboota S, Dang S, Ali J. Nanostructured lipid carriers system: recent advances in drug delivery. J Drug Target 2012; 20(10): 813-30.
[http://dx.doi.org/10.3109/1061186X.2012.716845] [PMID: 22931500]
[43]
Souto E, Müller R. Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. In: Drug Delivery Handbook of Experimental Pharmacology. 2010. 197: 115-41.
[44]
Zhao Y, Huang L. Lipid nanoparticles for gene delivery. Adv Genet 2014; 88: 13-36.
[http://dx.doi.org/10.1016/B978-0-12-800148-6.00002-X] [PMID: 25409602]
[45]
Guo Q, Zhu Q, Miao T, et al. LRP1-upregulated nanoparticles for efficiently conquering the blood-brain barrier and targetedly suppressing multifocal and infiltrative brain metastases. J Control Release 2019; 303: 117-29.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.031] [PMID: 31026546]
[46]
Zhang C, Nance EA, Mastorakos P, et al. Convection enhanced delivery of cisplatin-loaded brain penetrating nanoparticles cures malignant glioma in rats. J Control Release 2017; 263: 112-9.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.007] [PMID: 28279797]
[47]
Young JS, Bernal G, Polster SP, et al. Convection-enhanced delivery of polymeric nanoparticles encapsulating chemotherapy in canines with spontaneous supratentorial tumors. World Neurosurg 2018; 117: e698-704.
[http://dx.doi.org/10.1016/j.wneu.2018.06.114] [PMID: 29960096]
[48]
Ganipineni lakshmi P, Ucakar B, Joudiou N, Bianco J, Danhier P, Zhao M. Dual-targeting magnetic plga nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. Applied Materials and Interfaces 2018; 8: 32159-69.
[49]
Cui Y, Zhang M, Zeng F, Jin H, Xu Q, Huang Y. Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl Mater Interfaces 2016; 8(47): 32159-69.
[http://dx.doi.org/10.1021/acsami.6b10175] [PMID: 27808492]
[50]
Baksi R, Singh DP, Borse SP, Rana R, Sharma V, Nivsarkar M. In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed Pharmacother 2018; 106: 1513-26.
[http://dx.doi.org/10.1016/j.biopha.2018.07.106] [PMID: 30119227]
[51]
Chen EM, Quijano AR, Seo YE, et al. Biodegradable PEG-poly(ω-pentadecalactone-co-p-dioxanone) nanoparticles for enhanced and sustained drug delivery to treat brain tumors. Biomaterials 2018; 178: 193-203.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.024] [PMID: 29936153]
[52]
Kozielski KL, Ruiz-Valls A, Tzeng SY, et al. Cancer-selective nanoparticles for combinatorial siRNA delivery to primary human GBM in vitro and in vivo. Biomaterials 2019; 209: 79-87.
[http://dx.doi.org/10.1016/j.biomaterials.2019.04.020] [PMID: 31026613]
[53]
Mastorakos P, Zhang C, Song E, et al. Biodegradable brain-penetrating DNA nanocomplexes and their use to treat malignant brain tumors. J Control Release 2017; 262: 37-46.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.009] [PMID: 28694032]
[54]
Cui L, Wang Y, Liang M, et al. Dual-modified natural high density lipoprotein particles for systemic glioma-targeting drug delivery. Drug Deliv 2018; 25(1): 1865-76.
[http://dx.doi.org/10.1080/10717544.2018.1519002] [PMID: 30474437]
[55]
Lakkadwala S, Singh J. Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model. Colloids Surf B Biointerfaces 2019; 173: 27-35.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.047] [PMID: 30261346]
[56]
Jain P, Pandey V, Soni V. Surface modified solid lipid nanoparticles for brain cancer treatment. Asian J Pharm 2019; 13(2): 119-24.
[57]
Zhao P, Astruc D. Docetaxel nanotechnology in anticancer therapy. ChemMedChem 2012; 7(6): 952-72.
[http://dx.doi.org/10.1002/cmdc.201200052] [PMID: 22517723]
[58]
Singh I, Swami R, Jeengar MK, Khan W, Sistla R. p-Aminophenyl-α-D-mannopyranoside engineered lipidic nanoparticles for effective delivery of docetaxel to brain. Chem Phys Lipids 2015; 188: 1-9.
[http://dx.doi.org/10.1016/j.chemphyslip.2015.03.003] [PMID: 25819559]
[59]
Kadari A, Pooja D, Gora RH, et al. Design of multifunctional peptide collaborated and docetaxel loaded lipid nanoparticles for antiglioma therapy. Eur J Pharm Biopharm 2018; 132: 168-79.
[http://dx.doi.org/10.1016/j.ejpb.2018.09.012] [PMID: 30244167]
[60]
Muntoni E, Martina K, Marini E, et al. Methotrexate-loaded solid lipid nanoparticles: protein functionalization to improve brain biodistribution. Pharmaceutics 2019; 11(2): 1-18.
[http://dx.doi.org/10.3390/pharmaceutics11020065] [PMID: 30717376]
[61]
Kuo YC, Lee CH. Dual targeting of solid lipid nanoparticles grafted with 83-14 MAb and anti-EGF receptor for malignant brain tumor therapy. Life Sci 2016; 146: 222-31.
[http://dx.doi.org/10.1016/j.lfs.2016.01.025] [PMID: 26784850]
[62]
Gordaliza M, García PA, del Corral JM, Castro MA, Gómez-Zurita MA. Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 2004; 44(4): 441-59.
[http://dx.doi.org/10.1016/j.toxicon.2004.05.008] [PMID: 15302526]
[63]
Maiti P, Scott J, Sengupta D, Al-Gharaibeh A, Dunbar GL. Curcumin and solid lipid curcumin particles induce autophagy, but inhibit mitophagy and the PI3K-Akt/mTOR pathway in cultured glioblastoma cells. Int J Mol Sci 2019; 20(2): 1-20.
[http://dx.doi.org/10.3390/ijms20020399] [PMID: 30669284]
[64]
Shanmugam MK, Rane G, Kanchi MM, et al. The multifaceted role of curcumin in cancer prevention and treatment. Molecules 2015; 20(2): 2728-69.
[http://dx.doi.org/10.3390/molecules20022728] [PMID: 25665066]
[65]
Cuervo AM, Bergamini E, Brunk UT, Dröge W, Ffrench M, Terman A. Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 2005; 1(3): 131-40.
[http://dx.doi.org/10.4161/auto.1.3.2017] [PMID: 16874025]
[66]
Zhang T, Lip H, He C, et al. Multitargeted nanoparticles deliver synergistic drugs across the blood-brain barrier to brain metastases of triple negative breast cancer cells and tumor-associated macrophages. Adv Healthc Mater 2019; 8(18) e1900543
[http://dx.doi.org/10.1002/adhm.201900543] [PMID: 31348614]
[67]
Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv Drug Deliv Rev 2017; 108: 25-38.
[http://dx.doi.org/10.1016/j.addr.2016.04.025] [PMID: 27137110]
[68]
Hua S, de Matos MBC, Metselaar JM, Storm G, Hua S. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol 2018; 9: 790.
[http://dx.doi.org/10.3389/fphar.2018.00790] [PMID: 30065653]
[69]
Accomasso L, Cristallini C, Giachino C. Risk assessment and risk minimization in nanomedicine: a need for predictive, alternative, and 3Rs strategies. Front Pharmacol 2018; 9: 228.
[http://dx.doi.org/10.3389/fphar.2018.00228] [PMID: 29662451]
[70]
Narang AS, Chang RK, Hussain MA. Pharmaceutical development and regulatory considerations for nanoparticles and nanoparticulate drug delivery systems. J Pharm Sci 2013; 102(11): 3867-82.
[http://dx.doi.org/10.1002/jps.23691] [PMID: 24037829]
[71]
Gaspar R. Regulatory issues surrounding nanomedicines: setting the scene for the next generation of nanopharmaceuticals. Nanomedicine (Lond) 2007; 2(2): 143-7.
[http://dx.doi.org/10.2217/17435889.2.2.143] [PMID: 17716116]
[72]
Hafner A, Lovrić J, Lakoš GP, Pepić I. Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomedicine 2014; 9: 1005-23.
[PMID: 24600222]
[73]
Kraft JC, Freeling JP, Wang Z, Ho RJ. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 2014; 103(1): 29-52.
[http://dx.doi.org/10.1002/jps.23773] [PMID: 24338748]
[74]
Teli MK, Mutalik S, Rajanikant GK. Nanotechnology and nanomedicine: going small means aiming big. Curr Pharm Des 2010; 16(16): 1882-92.
[http://dx.doi.org/10.2174/138161210791208992] [PMID: 20222866]
[75]
Sainz V, Conniot J, Matos AI, et al. Regulatory aspects on nanomedicines. Biochem Biophys Res Commun 2015; 468(3): 504-10.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.023] [PMID: 26260323]