Antimicrobial peptides (AMPs) have been found in all organism taxa and may play an essential role as a host defense system. AMPs are organized in various conformations, such as linear peptides, disulfide bond-linked peptides, backbone-linked peptides and circular peptides. AMPs apparently act primarily on the plasma membrane, although an increasing number of works have shown that they may also target various intracellular sites. Spider venoms are rich sources of biomolecules that show several activities, including modulation or blockage of ion channels, anti-insect, anti-cancer, antihypertensive and antimicrobial activities, among others. In spider venoms from the Lycosidae family there are many linear AMPs with a wide range of activities against several microorganisms. Due to these singular activities, some Lycosidae AMPs have been modified to improve or decrease desirable or undesirable effects, respectively. Such modifications, especially with the aim of increasing their antibiotic activity, have led to the filing of many patent applications. This review explores the abundance of Lycosidae venom AMPs and some of their derivatives, and their use as new drug models.
Keywords: Lycosidae, antimicrobial peptides, AMPs, Lycosa, anticancer peptides, spiders.