1-Deoxynojirimycin and its Derivatives: A Mini Review of the Literature

Page: [628 - 643] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

1-Deoxynojirimycin (1-DNJ) is a naturally occurring sugar analogue with unique bioactivities. It is found in mulberry leaves and silkworms, as well as in the metabolites of certain microorganisms, including Streptomyces and Bacillus. 1-DNJ is a potent α-glucosidase inhibitor and it possesses anti-hyperglycemic, anti-obese, anti-viral and anti-tumor properties. Some derivatives of 1-DNJ, like miglitol, miglustat and migalastat, were applied clinically to treat diseases such as diabetes and lysosomal storage disorders. The present review focused on the extraction, determination, pharmacokinetics and bioactivity of 1-DNJ, as well as the clinical application of 1-DNJ derivatives.

Keywords: 1-deoxynojirimycin, metabolites, miglitol, miglustat, imino sugars, glucosidase inhibitors.

[1]
Inouye, S.; Tsuruoka, T.; Nida, T. The structure of nojirimycin, a piperidinose sugar antibiotic. J. Antibiot. (Tokyo), 1966, 19(6), 288-292.
[PMID: 6013242]
[2]
Li, Y-G.; Ji, D-F.; Zhong, S.; Lin, T-B.; Lv, Z-Q.; Hu, G-Y.; Wang, X. 1-deoxynojirimycin inhibits glucose absorption and accelerates glucose metabolism in streptozotocin-induced diabetic mice. Sci. Rep., 2013, 3, 1377.
[http://dx.doi.org/10.1038/srep01377] [PMID: 23536174]
[3]
Liu, Q.; Li, X.; Li, C.; Zheng, Y.; Peng, G. 1-deoxy-nojirimycin alleviates insulin resistance via activation of insulin signaling PI3K/AKT pathway in skeletal muscle of db/db mice. Molecules, 2015, 20(12), 21700-21714.
[http://dx.doi.org/10.3390/molecules201219794] [PMID: 26690098]
[4]
Zheng, Y.; Scow, J.S.; Duenes, J.A.; Sarr, M.G. Mechanisms of glucose uptake in intestinal cell lines: role of GLUT2. Surgery, 2012, 151(1), 13-25.
[http://dx.doi.org/10.1016/j.surg.2011.07.010] [PMID: 21943636]
[5]
Kojima, Y.; Kimura, T.; Nakagawa, K.; Asai, A.; Hasumi, K.; Oikawa, S.; Miyazawa, T. Effects of mulberry leaf extract rich in 1-deoxynojirimycin on blood lipid profiles in humans. J. Clin. Biochem. Nutr., 2010, 47(2), 155-161.
[http://dx.doi.org/10.3164/jcbn.10-53] [PMID: 20838571]
[6]
Kong, W.H.; Oh, S.H.; Ahn, Y.R.; Kim, K.W.; Kim, J.H.; Seo, S.W. Antiobesity effects and improvement of insulin sensitivity by 1-deoxynojirimycin in animal models. J. Agric. Food Chem., 2008, 56(8), 2613-2619.
[http://dx.doi.org/10.1021/jf073223i] [PMID: 18363357]
[7]
Fleet, G.W.; Karpas, A.; Dwek, R.A.; Fellows, L.E.; Tyms, A.S.; Petursson, S.; Namgoong, S.K.; Ramsden, N.G.; Smith, P.W.; Son, J.C. Inhibition of HIV replication by amino-sugar derivatives. FEBS Lett., 1988, 237(1-2), 128-132.
[http://dx.doi.org/10.1016/0014-5793(88)80185-6] [PMID: 3169233]
[8]
Pal, R.; Kalyanaraman, V.S.; Hoke, G.M.; Sarngadharan, M.G. Processing and secretion of envelope glycoproteins of human immunodeficiency virus type 1 in the presence of trimming glucosidase inhibitor deoxynojirimycin. Intervirology, 1989, 30(1), 27-35.
[http://dx.doi.org/10.1159/000150073] [PMID: 2542177]
[9]
Tsuruoka, T.; Fukuyasu, H.; Ishii, M.; Usui, T.; Shibahara, S.; Inouye, S. Inhibition of mouse tumor metastasis with nojirimycin-related compounds. J. Antibiot. (Tokyo), 1996, 49(2), 155-161.
[http://dx.doi.org/10.7164/antibiotics.49.155] [PMID: 8621356]
[10]
Wang, R.J.; Yang, C.H.; Hu, M.L. 1-Deoxynojirimycin inhibits metastasis of B16F10 melanoma cells by attenuating the activity and expression of matrix metalloproteinases-2 and -9 and altering cell surface glycosylation. J. Agric. Food Chem., 2010, 58(16), 8988-8993.
[http://dx.doi.org/10.1021/jf101401b] [PMID: 23654233]
[11]
Yagi, M.; Kouno, T.; Aoyagi, Y.; Murai, H. The structure of moranoline, a piperidine alkaloid from Morus species. Nippon Nogeikagaku Kaishi, 1976, •••, 571-572.
[http://dx.doi.org/10.1271/nogeikagaku1924.50.11_571]
[12]
Tomotake, H.; Katagiri, M.; Yamato, M. Silkworm pupae (Bombyx mori) are new sources of high quality protein and lipid. J. Nutr. Sci. Vitaminol. (Tokyo), 2010, 56(6), 446-448.
[http://dx.doi.org/10.3177/jnsv.56.446] [PMID: 21422715]
[13]
Yin, H.; Shi, X.Q.; Sun, B.; Ye, J.J.; Duan, Z.A.; Zhou, X.L.; Cui, W.Z.; Wu, X.F. Accumulation of 1-deoxynojirimycin in silkworm, Bombyx mori L. J. Zhejiang Univ. Sci. B, 2010, 11(4), 286-291.
[http://dx.doi.org/10.1631/jzus.B0900344] [PMID: 20349525]
[14]
Ezure, Y.; Ojima, N.; Konno, K.; Miyazaki, K.; Yamada, N.; Sugiyama, M.; Itoh, M.; Nakamura, T. Isolation of 1,5-dideoxy-1,5-imino-D-mannitol from culture broth of Streptomyces species. J. Antibiot. (Tokyo), 1988, 41(8), 1142-1144.
[http://dx.doi.org/10.7164/antibiotics.41.1142] [PMID: 2971640]
[15]
Onose, S.; Ikeda, R.; Nakagawa, K.; Kimura, T.; Yamagishi, K.; Higuchi, O.; Miyazawa, T. Production of the α-glycosidase inhibitor 1-deoxynojirimycin from Bacillus species. Food Chem., 2013, 138(1), 516-523.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.012] [PMID: 23265519]
[16]
Islam, B.; Khan, S.N.; Haque, I.; Alam, M.; Mushfiq, M.; Khan, A.U. Novel anti-adherence activity of mulberry leaves: inhibition of Streptococcus mutans biofilm by 1-deoxynojirimycin isolated from Morus alba. J. Antimicrob. Chemother., 2008, 62(4), 751-757.
[http://dx.doi.org/10.1093/jac/dkn253] [PMID: 18565974]
[17]
Wang, T.; Li, C.Q.; Zhang, H.; Li, J.W. Response surface optimized extraction of 1-deoxynojirimycin from mulberry leaves (Morus alba L.) and preparative separation with resins. Molecules, 2014, 19(6), 7040-7056.
[http://dx.doi.org/10.3390/molecules19067040] [PMID: 24886934]
[18]
Vichasilp, C.; Nakagawa, K.; Sookwong, P.; Suzuki, Y.; Kimura, F.; Higuchi, O.; Miyazawa, T. Optimization of 1-deoxynojirimycin extraction from mulberry leaves by using response surface methodology. Biosci. Biotechnol. Biochem., 2009, 73(12), 2684-2689.
[http://dx.doi.org/10.1271/bbb.90543] [PMID: 19966480]
[19]
Jiang, Y.G.; Wang, C.Y.; Jin, C.; Jia, J.Q.; Guo, X.; Zhang, G.Z.; Gui, Z.Z. Improved 1-deoxynojirimycin (DNJ) production in mulberry leaves fermented by microorganism. Braz. J. Microbiol., 2014, 45(2), 721-729.
[http://dx.doi.org/10.1590/S1517-83822014000200048] [PMID: 25242964]
[20]
Kim, J.W.; Kim, S.U.; Lee, H.S.; Kim, I.; Ahn, M.Y.; Ryu, K.S. Determination of 1-deoxynojirimycin in Morus alba L. leaves by derivatization with 9-fluorenylmethyl chloroformate followed by reversed-phase high-performance liquid chromatography. J. Chromatogr. A, 2003, 1002(1-2), 93-99.
[http://dx.doi.org/10.1016/S0021-9673(03)00728-3] [PMID: 12885082]
[21]
Xie, H.; Wu, F.; Yang, Y.; Liu, J. Determination of 1-deoxynojirimycin in Morus alba L. leaves using reversed-phase high performance liquid chromatography fluorescence detection with pre-column derivatization. Se Pu, 2008, 26(5), 634-636.
[PMID: 19160768]
[22]
Nuengchamnong, N.; Ingkaninan, K.; Kaewruang, W.; Wongareonwanakij, S.; Hongthongdaeng, B. Quantitative determination of 1-deoxynojirimycin in mulberry leaves using liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal., 2007, 44(4), 853-858.
[http://dx.doi.org/10.1016/j.jpba.2007.03.031] [PMID: 17512690]
[23]
Dai, K.J.; Hou, L.B.; Luo, Q.Z. Quantitative determination of 1-deoxynojirimycin in mulberry leaves by high-performance liquid chromatographic-tandem mass/mass spectrometry. Zhong Yao Cai, 2009, 32(3), 375-377.
[PMID: 19565715]
[24]
Kimura, T.; Nakagawa, K.; Saito, Y.; Yamagishi, K.; Suzuki, M.; Yamaki, K.; Shinmoto, H.; Miyazawa, T. Determination of 1-deoxynojirimycin in mulberry leaves using hydrophilic interaction chromatography with evaporative light scattering detection. J. Agric. Food Chem., 2004, 52(6), 1415-1418.
[http://dx.doi.org/10.1021/jf0306901] [PMID: 15030188]
[25]
Xu, B.; Zhang, D.Y.; Liu, Z.Y.; Zhang, Y.; Liu, L.; Li, L.; Liu, C.C.; Wu, G.H. Rapid determination of 1-deoxynojirimycin in Morus alba L. leaves by direct analysis in real time (DART) mass spectrometry. J. Pharm. Biomed. Anal., 2015, 114, 447-454.
[http://dx.doi.org/10.1016/j.jpba.2015.06.010] [PMID: 26133103]
[26]
Liang, T.; Liu, S.; Wang, F.; Gu, J.; Lu, Y.; Chen, W.; Li, C.; Zheng, Y.; Peng, G.A. UPLC-MS/MS method for simultaneous determination of 1-deoxynojirimycin and N-methyl-1-deoxynojirimycin in rat plasma and its application in pharmacokinetic and absolute bioavailability studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1072, 205-210.
[http://dx.doi.org/10.1016/j.jchromb.2017.10.055] [PMID: 29179061]
[27]
Nakagawa, K.; Kubota, H.; Kimura, T.; Yamashita, S.; Tsuzuki, T.; Oikawa, S.; Miyazawa, T. Occurrence of orally administered mulberry 1-deoxynojirimycin in rat plasma. J. Agric. Food Chem., 2007, 55(22), 8928-8933.
[http://dx.doi.org/10.1021/jf071559m] [PMID: 17914870]
[28]
Kim, J.Y.; Kwon, H.J.; Jung, J.Y.; Kwon, H.Y.; Baek, J.G.; Kim, Y.S.; Kwon, O. Comparison of absorption of 1-deoxynojirimycin from mulberry water extract in rats. J. Agric. Food Chem., 2010, 58(11), 6666-6671.
[http://dx.doi.org/10.1021/jf100322y] [PMID: 20450200]
[29]
Wang, L.; Peng, J.; Wang, X.; Zhu, X.; Cheng, B.; Gao, J.; Jiang, M.; Bai, G.; Hou, Y. Carboxymethylcellulose sodium improves the pharmacodynamics of 1-deoxy-nojirimycin by changing its absorption characteristics and pharmacokinetics in rats. Pharmazie, 2012, 67(2), 168-173.
[PMID: 22512088]
[30]
Vichasilp, C.; Nakagawa, K.; Sookwong, P.; Higuchi, O.; Kimura, F.; Miyazawa, T. A novel gelatin crosslinking method retards release of mulberry 1-deoxynojirimycin providing a prolonged hypoglycaemic effect. Food Chem., 2012, 134(4), 1823-1830.
[http://dx.doi.org/10.1016/j.foodchem.2012.03.086] [PMID: 23442626]
[31]
Sun, Z.; Yuan, S.; Zhao, H.; Wang, Z.; Liu, Z. Preparation and evaluation of 1-deoxynojirimycin sustained-release pellets vs. conventional immediate-release tablets. J. Microencapsul., 2017, 34(3), 293-298.
[http://dx.doi.org/10.1080/02652048.2017.1321694] [PMID: 28425304]
[32]
Wild, G.E.; Turner, R.; Chao, L.; Faria, J.; Keelan, M.; Clandinin, M.T.; Abr, T. Dietary lipid modulation of Na+/glucose co-transporter (SGLT1), Na+/K+ ATPase, and ornithine decarboxylase gene expression in the rat small intestine in diabetes mellitus. J. Nutr. Biochem., 1997, 8(12), 673-680.
[http://dx.doi.org/10.1016/S0955-2863(97)00118-6]
[33]
Tsuduki, T.; Nakamura, Y.; Honma, T.; Nakagawa, K.; Kimura, T.; Ikeda, I.; Miyazawa, T. Intake of 1-deoxynojirimycin suppresses lipid accumulation through activation of the beta-oxidation system in rat liver. J. Agric. Food Chem., 2009, 57(22), 11024-11029.
[http://dx.doi.org/10.1021/jf903132r] [PMID: 19863049]
[34]
Tsuduki, T.; Kikuchi, I.; Kimura, T.; Nakagawa, K.; Miyazawa, T. Intake of mulberry 1-deoxynojirimycin prevents diet-induced obesity through increases in adiponectin in mice. Food Chem., 2013, 139(1-4), 16-23.
[http://dx.doi.org/10.1016/j.foodchem.2013.02.025] [PMID: 23561072]
[35]
Berg, A.H.; Combs, T.P.; Scherer, P.E. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol. Metab., 2002, 13(2), 84-89.
[http://dx.doi.org/10.1016/S1043-2760(01)00524-0] [PMID: 11854024]
[36]
Kadowaki, T.; Yamauchi, T.; Kubota, N.; Hara, K.; Ueki, K.; Tobe, K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest., 2006, 116(7), 1784-1792.
[http://dx.doi.org/10.1172/JCI29126] [PMID: 16823476]
[37]
Lee, S.M.; Do, H.J.; Shin, M.J.; Seong, S.I.; Hwang, K.Y.; Lee, J.Y.; Kwon, O.; Jin, T.; Chung, J.H. 1-Deoxynojirimycin isolated from a Bacillus subtilis stimulates adiponectin and GLUT4 expressions in 3T3-L1 adipocytes. J. Microbiol. Biotechnol., 2013, 23(5), 637-643.
[http://dx.doi.org/10.4014/jmb.1209.09043] [PMID: 23648852]
[38]
Mehta, A.; Rudd, P.M.; Block, T.M.; Dwek, R.A. A strategy for anti-viral intervention: the use of alpha-glucosidase inhibitors to prevent chaperone-mediated folding of viral envelope glycoproteins. Biochem. Soc. Trans., 1997, 25(4), 1188-1193.
[http://dx.doi.org/10.1042/bst0251188] [PMID: 9449973]
[39]
Mehta, A.; Zitzmann, N.; Rudd, P.M.; Block, T.M.; Dwek, R.A. Alpha-glucosidase inhibitors as potential broad based anti-viral agents. FEBS Lett., 1998, 430(1-2), 17-22.
[http://dx.doi.org/10.1016/S0014-5793(98)00525-0] [PMID: 9678587]
[40]
Chang, J.; Block, T.M.; Guo, J.T. Antiviral therapies targeting host ER alpha-glucosidases: current status and future directions. Antiviral Res., 2013, 99(3), 251-260.
[http://dx.doi.org/10.1016/j.antiviral.2013.06.011] [PMID: 23816430]
[41]
Howe, J.D.; Smith, N.; Lee, M.J.; Ardes-Guisot, N.; Vauzeilles, B.; Désiré, J.; Baron, A.; Blériot, Y.; Sollogoub, M.; Alonzi, D.S.; Butters, T.D. Novel imino sugar α-glucosidase inhibitors as antiviral compounds. Bioorg. Med. Chem., 2013, 21(16), 4831-4838.
[http://dx.doi.org/10.1016/j.bmc.2013.03.014] [PMID: 23582447]
[42]
Li, Y.; Luo, L.; Rasool, N.; Kang, C.Y. Glycosylation is necessary for the correct folding of human immunodeficiency virus gp120 in CD4 binding. J. Virol., 1993, 67(1), 584-588.
[http://dx.doi.org/10.1128/JVI.67.1.584-588.1993] [PMID: 8416385]
[43]
Wilhelm, D.; Behnken, H.N.; Meyer, B. Glycosylation assists binding of HIV protein gp120 to human CD4 receptor. ChemBioChem, 2012, 13(4), 524-527.
[http://dx.doi.org/10.1002/cbic.201100740] [PMID: 22266649]
[44]
Fuhrmann, U.; Bause, E.; Ploegh, H. Inhibitors of oligosaccharide processing. Biochim. Biophys. Acta, 1985, 825(2), 95-110.
[http://dx.doi.org/10.1016/0167-4781(85)90095-8] [PMID: 3159432]
[45]
Fenouillet, E.; Gluckman, J.C. Effect of a glucosidase inhibitor on the bioactivity and immunoreactivity of human immunodeficiency virus type 1 envelope glycoprotein. J. Gen. Virol., 1991, 72(Pt 8), 1919-1926.
[http://dx.doi.org/10.1099/0022-1317-72-8-1919] [PMID: 1678778]
[46]
Montefiori, D.C.; Robinson, W.E. Jr.; Mitchell, W.M. Role of protein N-glycosylation in pathogenesis of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA, 1988, 85(23), 9248-9252.
[http://dx.doi.org/10.1073/pnas.85.23.9248] [PMID: 3264072]
[47]
Simsek, E.; Lu, X.; Ouzounov, S.; Block, T.M.; Mehta, A.S. Alpha-glucosidase inhibitors have a prolonged antiviral effect against hepatitis B virus through the sustained inhibition of the large and middle envelope glycoproteins. Antivir. Chem. Chemother., 2006, 17(5), 259-267.
[http://dx.doi.org/10.1177/095632020601700503] [PMID: 17176630]
[48]
Chapel, C.; Garcia, C.; Bartosch, B.; Roingeard, P.; Zitzmann, N.; Cosset, F.L.; Dubuisson, J.; Dwek, R.A.; Trépo, C.; Zoulim, F.; Durantel, D. Reduction of the infectivity of hepatitis C virus pseudoparticles by incorporation of misfolded glycoproteins induced by glucosidase inhibitors. J. Gen. Virol., 2007, 88(Pt 4), 1133-1143.
[http://dx.doi.org/10.1099/vir.0.82465-0] [PMID: 17374756]
[49]
Jordan, R.; Nikolaeva, O.V.; Wang, L.; Conyers, B.; Mehta, A.; Dwek, R.A.; Block, T.M. Inhibition of host ER glucosidase activity prevents Golgi processing of virion-associated bovine viral diarrhea virus E2 glycoproteins and reduces infectivity of secreted virions. Virology, 2002, 295(1), 10-19.
[http://dx.doi.org/10.1006/viro.2002.1370] [PMID: 12033761]
[50]
Nakahara, S.; Raz, A. Biological modulation by lectins and their ligands in tumor progression and metastasis. Anticancer. Agents Med. Chem., 2008, 8(1), 22-36.
[http://dx.doi.org/10.2174/187152008783330833] [PMID: 18220503]
[51]
Tsukamoto, K.; Uno, A.; Kubota, Y.; Shimada, S.; Hori, Y.; Imokawa, G. Role of asparagine-linked carbohydrates in pulmonary metastasis of B16-F10 murine melanoma cells: implication through glycosylation inhibition by nojirimycin. Melanoma Res., 1992, 2(1), 33-39.
[http://dx.doi.org/10.1097/00008390-199205000-00005] [PMID: 1643422]
[52]
Guerrera, M.; Ladisch, S. N-butyldeoxynojirimycin inhibits murine melanoma cell ganglioside metabolism and delays tumor onset. Cancer Lett., 2003, 201(1), 31-40.
[http://dx.doi.org/10.1016/S0304-3835(03)00459-2] [PMID: 14580684]
[53]
Zhao, Y.; Liu, W.; Zhou, Y.; Zhang, X.; Murphy, P.V.N.N. -(8-(3-ethynylphenoxy)octyl-1-deoxynojirimycin suppresses growth and migration of human lung cancer cells. Bioorg. Med. Chem. Lett., 2010, 20(24), 7540-7543.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.065] [PMID: 21036045]
[54]
Lukas, J.; Pockrandt, A.M.; Seemann, S.; Sharif, M.; Runge, F.; Pohlers, S.; Zheng, C.; Gläser, A.; Beller, M.; Rolfs, A.; Giese, A.K. Enzyme enhancers for the treatment of Fabry and Pompe disease. Mol. Ther., 2015, 23(3), 456-464.
[http://dx.doi.org/10.1038/mt.2014.224] [PMID: 25409744]
[55]
Flanagan, J.J.; Rossi, B.; Tang, K.; Wu, X.; Mascioli, K.; Donaudy, F.; Tuzzi, M.R.; Fontana, F.; Cubellis, M.V.; Porto, C.; Benjamin, E.; Lockhart, D.J.; Valenzano, K.J.; Andria, G.; Parenti, G.; Do, H.V. The pharmacological chaperone 1-deoxynojirimycin increases the activity and lysosomal trafficking of multiple mutant forms of acid alpha-glucosidase. Hum. Mutat., 2009, 30(12), 1683-1692.
[http://dx.doi.org/10.1002/humu.21121] [PMID: 19862843]
[56]
Khanna, R.; Powe, A.C. Jr.; Lun, Y.; Soska, R.; Feng, J.; Dhulipala, R.; Frascella, M.; Garcia, A.; Pellegrino, L.J.; Xu, S.; Brignol, N.; Toth, M.J.; Do, H.V.; Lockhart, D.J.; Wustman, B.A.; Valenzano, K.J. The pharmacological chaperone AT2220 increases the specific activity and lysosomal delivery of mutant acid alpha-glucosidase, and promotes glycogen reduction in a transgenic mouse model of Pompe disease. PLoS One, 2014, 9(7)e102092
[http://dx.doi.org/10.1371/journal.pone.0102092] [PMID: 25036864]
[57]
Kishnani, P.; Tarnopolsky, M.; Roberts, M.; Sivakumar, K.; Dasouki, M.; Dimachkie, M.M.; Finanger, E.; Goker-Alpan, O.; Guter, K.A.; Mozaffar, T.; Pervaiz, M.A.; Laforet, P.; Levine, T.; Adera, M.; Lazauskas, R.; Sitaraman, S.; Khanna, R.; Benjamin, E.; Feng, J.; Flanagan, J.J.; Barth, J.; Barlow, C.; Lockhart, D.J.; Valenzano, K.J.; Boudes, P.; Johnson, F.K.; Byrne, B. Duvoglustat HCl increases systemic and tissue exposure of active acid α-glucosidase in pompe patients co-administered with alglucosidase α. Mol. Ther., 2017, 25(5), 1199-1208.
[http://dx.doi.org/10.1016/j.ymthe.2017.02.017] [PMID: 28341561]
[58]
Bullard, K.M.; Cowie, C.C.; Lessem, S.E.; Saydah, S.H.; Menke, A.; Geiss, L.S.; Orchard, T.J.; Rolka, D.B.; Imperatore, G. Prevalence of diagnosed diabetes in adults by diabetes type - United States, 2016. MMWR Morb. Mortal. Wkly. Rep., 2018, 67(12), 359-361.
[http://dx.doi.org/10.15585/mmwr.mm6712a2] [PMID: 29596402]
[59]
Joubert, P.H.; Bam, W.J.; Manyane, N. Effect of an alpha-glucosidase inhibitor (BAY m 1099) on post-prandial blood glucose and insulin in type II diabetics. Eur. J. Clin. Pharmacol., 1986, 30(2), 253-255.
[http://dx.doi.org/10.1007/BF00614315] [PMID: 3519244]
[60]
Pagano, G.; Marena, S.; Corgiat-Mansin, L.; Cravero, F.; Giorda, C.; Bozza, M.; Rossi, C.M. Comparison of miglitol and glibenclamide in diet-treated type 2 diabetic patients. Diabete Metab., 1995, 21(3), 162-167.
[PMID: 7556806]
[61]
Segal, P.; Feig, P.U.; Schernthaner, G.; Ratzmann, K.P.; Rybka, J.; Petzinna, D.; Berlin, C. The efficacy and safety of miglitol therapy compared with glibenclamide in patients with NIDDM inadequately controlled by diet alone. Diabetes Care, 1997, 20(5), 687-691.
[http://dx.doi.org/10.2337/diacare.20.5.687] [PMID: 9135927]
[62]
Standl, E.; Schernthaner, G.; Rybka, J.; Hanefeld, M.; Raptis, S.A.; Naditch, L. Improved glycaemic control with miglitol in inadequately-controlled type 2 diabetics. Diabetes Res. Clin. Pract., 2001, 51(3), 205-213.
[http://dx.doi.org/10.1016/S0168-8227(00)00231-X] [PMID: 11269893]
[63]
Hsieh, S-H.; Shih, K-C.; Chou, C-W.; Chu, C-H. Evaluation of the efficacy and tolerability of miglitol in Chinese patients with type 2 diabetes mellitus inadequately controlled by diet and sulfonylureas. Acta Diabetol., 2011, 48(1), 71-77.
[http://dx.doi.org/10.1007/s00592-010-0220-6] [PMID: 20963449]
[64]
Madar, Z. The effect of acarbose and miglitol (BAY-M-1099) on postprandial glucose levels following ingestion of various sources of starch by nondiabetic and streptozotocin-induced diabetic rats. J. Nutr., 1989, 119(12), 2023-2029.
[http://dx.doi.org/10.1093/jn/119.12.2023] [PMID: 2695605]
[65]
Joubert, P.H.; Venter, H.L.; Foukaridis, G.N. The effect of miglitol and acarbose after an oral glucose load: a novel hypoglycaemic mechanism? Br. J. Clin. Pharmacol., 1990, 30(3), 391-396.
[http://dx.doi.org/10.1111/j.1365-2125.1990.tb03789.x] [PMID: 2223417]
[66]
Tsujino, D.; Nishimura, R.; Taki, K.; Morimoto, A.; Tajima, N.; Utsunomiya, K. Comparing the efficacy of α-glucosidase inhibitors in suppressing postprandial hyperglycemia using continuous glucose monitoring: a pilot study-the MAJOR study. Diabetes Technol. Ther., 2011, 13(3), 303-308.
[http://dx.doi.org/10.1089/dia.2010.0099] [PMID: 21291335]
[67]
DeLeon, M.J.; Chandurkar, V.; Albert, S.G.; Mooradian, A.D. Glucagon-like peptide-1 response to acarbose in elderly type 2 diabetic subjects. Diabetes Res. Clin. Pract., 2002, 56(2), 101-106.
[http://dx.doi.org/10.1016/S0168-8227(01)00359-X] [PMID: 11891017]
[68]
Hücking, K.; Kostic, Z.; Pox, C.; Ritzel, R.; Holst, J.J.; Schmiegel, W.; Nauck, M.A. alpha-glucosidase inhibition (acarbose) fails to enhance secretion of glucagon-like peptide 1 (7-36 amide) and to delay gastric emptying in Type 2 diabetic patients. Diabet. Med., 2005, 22(4), 470-476.
[http://dx.doi.org/10.1111/j.1464-5491.2005.01451.x] [PMID: 15787675]
[69]
Lee, E.Y.; Kaneko, S.; Jutabha, P.; Zhang, X.; Seino, S.; Jomori, T.; Anzai, N.; Miki, T. Distinct action of the α-glucosidase inhibitor miglitol on SGLT3, enteroendocrine cells, and GLP1 secretion. J. Endocrinol., 2015, 224(3), 205-214.
[http://dx.doi.org/10.1530/JOE-14-0555] [PMID: 25486965]
[70]
Scott, L.J.; Spencer, C.M. Miglitol: a review of its therapeutic potential in type 2 diabetes mellitus. Drugs, 2000, 59(3), 521-549.
[http://dx.doi.org/10.2165/00003495-200059030-00012] [PMID: 10776834]
[71]
Komatsu, M.; Tanaka, N.; Kimura, T.; Fujimori, N.; Sano, K.; Horiuchi, A.; Sugiura, A.; Yamazaki, T.; Shibata, S.; Joshita, S.; Umemura, T.; Matsumoto, A.; Tanaka, E. Miglitol attenuates non-alcoholic steatohepatitis in diabetic patients. Hepatol. Res., 2018, 48(13), 1092-1098.
[http://dx.doi.org/10.1111/hepr.13223] [PMID: 29935004]
[72]
Minatoguchi, S.; Arai, M.; Uno, Y.; Kariya, T.; Nishida, Y.; Hashimoto, K.; Kawasaki, M.; Takemura, G.; Fujiwara, T.; Fujiwara, H. A novel anti-diabetic drug, miglitol, markedly reduces myocardial infarct size in rabbits. Br. J. Pharmacol., 1999, 128(8), 1667-1672.
[http://dx.doi.org/10.1038/sj.bjp.0702970] [PMID: 10588921]
[73]
Wang, N.; Minatoguchi, S.; Chen, X.; Uno, Y.; Arai, M.; Lu, C.; Takemura, G.; Fujiwara, T.; Fujiwara, H. Antidiabetic drug miglitol inhibits myocardial apoptosis involving decreased hydroxyl radical production and Bax expression in an ischaemia/reperfusion rabbit heart. Br. J. Pharmacol., 2004, 142(6), 983-990.
[http://dx.doi.org/10.1038/sj.bjp.0705863] [PMID: 15210576]
[74]
Minatoguchi, S.; Wang, N.; Uno, Y.; Arai, M.; Hashimoto, K.; Hashimoto, Y.; Chen, X.H.; Takemura, G.; Fujiwara, H. Combination of miglitol, an anti-diabetic drug, and nicorandil markedly reduces myocardial infarct size through opening the mitochondrial K(ATP) channels in rabbits. Br. J. Pharmacol., 2001, 133(7), 1041-1046.
[http://dx.doi.org/10.1038/sj.bjp.0704166] [PMID: 11487514]
[75]
Iwasa, M.; Yamada, Y.; Kobayashi, H.; Yasuda, S.; Kawamura, I.; Sumi, S.; Shiraki, T.; Yamaki, T.; Ushikoshi, H.; Hattori, A.; Aoyama, T.; Nishigaki, K.; Takemura, G.; Fujiwara, H.; Minatoguchi, S. Both stimulation of GLP-1 receptors and inhibition of glycogenolysis additively contribute to a protective effect of oral miglitol against ischaemia-reperfusion injury in rabbits. Br. J. Pharmacol., 2011, 164(1), 119-131.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01357.x] [PMID: 21426318]
[76]
Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M. WHO Leishmaniasis Control Team. Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 2012, 7(5)e35671
[http://dx.doi.org/10.1371/journal.pone.0035671] [PMID: 22693548]
[77]
Chávez-Fumagalli, M.A.; Lage, D.P.; Tavares, G.S.V.; Mendonça, D.V.C.; Dias, D.S.; Ribeiro, P.A.F.; Ludolf, F.; Costa, L.E.; Coelho, V.T.S.; Coelho, E.A.F. In silico Leishmania proteome mining applied to identify drug target potential to be used to treat against visceral and tegumentary leishmaniasis. J. Mol. Graph. Model., 2019, 87, 89-97.
[http://dx.doi.org/10.1016/j.jmgm.2018.11.014] [PMID: 30522092]
[78]
Platt, F.M.; Neises, G.R.; Dwek, R.A.; Butters, T.D. N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J. Biol. Chem., 1994, 269(11), 8362-8365.
[PMID: 8132559]
[79]
Cox, T.; Lachmann, R.; Hollak, C.; Aerts, J.; van Weely, S.; Hrebícek, M.; Platt, F.; Butters, T.; Dwek, R.; Moyses, C.; Gow, I.; Elstein, D.; Zimran, A. Novel oral treatment of Gaucher’s disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet, 2000, 355(9214), 1481-1485.
[http://dx.doi.org/10.1016/S0140-6736(00)02161-9] [PMID: 10801168]
[80]
Elstein, D.; Hollak, C.; Aerts, J.M.; van Weely, S.; Maas, M.; Cox, T.M.; Lachmann, R.H.; Hrebicek, M.; Platt, F.M.; Butters, T.D.; Dwek, R.A.; Zimran, A. Sustained therapeutic effects of oral miglustat (Zavesca, N-butyldeoxy-nojirimycin, OGT 918) in type I Gaucher disease. J. Inherit. Metab. Dis., 2004, 27(6), 757-766.
[http://dx.doi.org/10.1023/B:BOLI.0000045756.54006.17] [PMID: 15505381]
[81]
Giraldo, P.; Latre, P.; Alfonso, P.; Acedo, A.; Alonso, D.; Barez, A.; Corrales, A.; Franco, R.; Roldan, V.; Serrano, S.; Pocovi, M. Short-term effect of miglustat in every day clinical use in treatment-naïve or previously treated patients with type 1 Gaucher’s disease. Haematologica, 2006, 91(5), 703-706.
[PMID: 16627252]
[82]
Elstein, D.; Dweck, A.; Attias, D.; Hadas-Halpern, I.; Zevin, S.; Altarescu, G.; Aerts, J.F.; van Weely, S.; Zimran, A. Oral maintenance clinical trial with miglustat for type I Gaucher disease: switch from or combination with intravenous enzyme replacement. Blood, 2007, 110(7), 2296-2301.
[http://dx.doi.org/10.1182/blood-2007-02-075960] [PMID: 17609429]
[83]
Giraldo, P.; Alfonso, P.; Atutxa, K.; Fernández-Galán, M.A.; Barez, A.; Franco, R.; Alonso, D.; Martin, A.; Latre, P.; Pocovi, M. Real-world clinical experience with long-term miglustat maintenance therapy in type 1 Gaucher disease: the ZAGAL project. Haematologica, 2009, 94(12), 1771-1775.
[http://dx.doi.org/10.3324/haematol.2009.008078] [PMID: 19608672]
[84]
Machaczka, M.; Hast, R.; Dahlman, I.; Lerner, R.; Klimkowska, M.; Engvall, M.; Hägglund, H. Substrate reduction therapy with miglustat for type 1 Gaucher disease: a retrospective analysis from a single institution. Ups. J. Med. Sci., 2012, 117(1), 28-34.
[http://dx.doi.org/10.3109/03009734.2011.641609] [PMID: 22247978]
[85]
Kuter, D.J.; Mehta, A.; Hollak, C.E.; Giraldo, P.; Hughes, D.; Belmatoug, N.; Brand, M.; Muller, A.; Schaaf, B.; Giorgino, R.; Zimran, A. Miglustat therapy in type 1 Gaucher disease: clinical and safety outcomes in a multicenter retrospective cohort study. Blood Cells Mol. Dis., 2013, 51(2), 116-124.
[http://dx.doi.org/10.1016/j.bcmd.2013.04.005] [PMID: 23683771]
[86]
Weinreb, N.J.; Barranger, J.A.; Charrow, J.; Grabowski, G.A.; Mankin, H.J.; Mistry, P. Guidance on the use of miglustat for treating patients with type 1 Gaucher disease. Am. J. Hematol., 2005, 80(3), 223-229.
[http://dx.doi.org/10.1002/ajh.20504] [PMID: 16247743]
[87]
Zervas, M.; Somers, K.L.; Thrall, M.A.; Walkley, S.U. Critical role for glycosphingolipids in Niemann-Pick disease type C. Curr. Biol., 2001, 11(16), 1283-1287.
[http://dx.doi.org/10.1016/S0960-9822(01)00396-7] [PMID: 11525744]
[88]
Patterson, M.C.; Vecchio, D.; Prady, H.; Abel, L.; Wraith, J.E. Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol., 2007, 6(9), 765-772.
[http://dx.doi.org/10.1016/S1474-4422(07)70194-1] [PMID: 17689147]
[89]
Patterson, M.C.; Vecchio, D.; Jacklin, E.; Abel, L.; Chadha-Boreham, H.; Luzy, C.; Giorgino, R.; Wraith, J.E. Long-term miglustat therapy in children with Niemann-Pick disease type C. J. Child Neurol., 2010, 25(3), 300-305.
[http://dx.doi.org/10.1177/0883073809344222] [PMID: 19822772]
[90]
Wraith, J.E.; Vecchio, D.; Jacklin, E.; Abel, L.; Chadha-Boreham, H.; Luzy, C.; Giorgino, R.; Patterson, M.C. Miglustat in adult and juvenile patients with Niemann-Pick disease type C: long-term data from a clinical trial. Mol. Genet. Metab., 2010, 99(4), 351-357.
[http://dx.doi.org/10.1016/j.ymgme.2009.12.006] [PMID: 20045366]
[91]
Héron, B.; Valayannopoulos, V.; Baruteau, J.; Chabrol, B.; Ogier, H.; Latour, P.; Dobbelaere, D.; Eyer, D.; Labarthe, F.; Maurey, H.; Cuisset, J.M.; de Villemeur, T.B.; Sedel, F.; Vanier, M.T. Miglustat therapy in the French cohort of paediatric patients with Niemann-Pick disease type C. Orphanet J. Rare Dis., 2012, 7, 36.
[http://dx.doi.org/10.1186/1750-1172-7-36] [PMID: 22676771]
[92]
Fecarotta, S.; Romano, A.; Della Casa, R.; Del Giudice, E.; Bruschini, D.; Mansi, G.; Bembi, B.; Dardis, A.; Fiumara, A.; Di Rocco, M.; Uziel, G.; Ardissone, A.; Roccatello, D.; Alpa, M.; Bertini, E.; D’Amico, A.; Dionisi-Vici, C.; Deodato, F.; Caviglia, S.; Federico, A.; Palmeri, S.; Gabrielli, O.; Santoro, L.; Filla, A.; Russo, C.; Parenti, G.; Andria, G. Long term follow-up to evaluate the efficacy of miglustat treatment in Italian patients with Niemann-Pick disease type C. Orphanet J. Rare Dis., 2015, 10, 22.
[http://dx.doi.org/10.1186/s13023-015-0240-y] [PMID: 25888393]
[93]
Pineda, M.; Walterfang, M.; Patterson, M.C. Miglustat in Niemann-Pick disease type C patients: a review. Orphanet J. Rare Dis., 2018, 13(1), 140.
[http://dx.doi.org/10.1186/s13023-018-0844-0] [PMID: 30111334]
[94]
Dedera, D.; Vander Heyden, N.; Ratner, L. Attenuation of HIV-1 infectivity by an inhibitor of oligosaccharide processing. AIDS Res. Hum. Retroviruses, 1990, 6(6), 785-794.
[http://dx.doi.org/10.1089/aid.1990.6.785] [PMID: 2364019]
[95]
Ratner, L.; Heyden, N.V. Mechanism of action of N-butyl deoxynojirimycin in inhibiting HIV-1 infection and activity in combination with nucleoside analogs. AIDS Res. Hum. Retroviruses, 1993, 9(4), 291-297.
[http://dx.doi.org/10.1089/aid.1993.9.291] [PMID: 8390276]
[96]
Fischer, P.B.; Collin, M.; Karlsson, G.B.; James, W.; Butters, T.D.; Davis, S.J.; Gordon, S.; Dwek, R.A.; Platt, F.M. The alpha-glucosidase inhibitor N-butyldeoxynojirimycin inhibits human immunodeficiency virus entry at the level of post-CD4 binding. J. Virol., 1995, 69(9), 5791-5797.
[http://dx.doi.org/10.1128/JVI.69.9.5791-5797.1995] [PMID: 7543588]
[97]
Fischer, P.B.; Karlsson, G.B.; Butters, T.D.; Dwek, R.A.; Platt, F.M. N-butyldeoxynojirimycin-mediated inhibition of human immunodeficiency virus entry correlates with changes in antibody recognition of the V1/V2 region of gp120. J. Virol., 1996, 70(10), 7143-7152.
[http://dx.doi.org/10.1128/JVI.70.10.7143-7152.1996] [PMID: 8794361]
[98]
Tierney, M.; Pottage, J.; Kessler, H.; Fischl, M.; Richman, D.; Merigan, T.; Powderly, W.; Smith, S.; Karim, A.; Sherman, J. The AIDS Clinical Trials Group (ACTG) of the National Institute of Allergy and Infectious Diseases. The tolerability and pharmacokinetics of N-butyl-deoxynojirimycin in patients with advanced HIV disease (ACTG 100). J. Acquir. Immune Defic. Syndr. Hum. Retrovirol., 1995, 10(5), 549-553.
[http://dx.doi.org/10.1097/00042560-199510050-00008] [PMID: 8548334]
[99]
Pollock, S.; Dwek, R.A.; Burton, D.R.; Zitzmann, N. N-Butyldeoxynojirimycin is a broadly effective anti-HIV therapy significantly enhanced by targeted liposome delivery. AIDS, 2008, 22(15), 1961-1969.
[http://dx.doi.org/10.1097/QAD.0b013e32830efd96] [PMID: 18753929]
[100]
Lazar, C.; Durantel, D.; Macovei, A.; Zitzmann, N.; Zoulim, F.; Dwek, R.A.; Branza-Nichita, N. Treatment of hepatitis B virus-infected cells with alpha-glucosidase inhibitors results in production of virions with altered molecular composition and infectivity. Antiviral Res., 2007, 76(1), 30-37.
[http://dx.doi.org/10.1016/j.antiviral.2007.04.004] [PMID: 17548120]
[101]
Ouzounov, S.; Mehta, A.; Dwek, R.A.; Block, T.M.; Jordan, R. The combination of interferon alpha-2b and n-butyl deoxynojirimycin has a greater than additive antiviral effect upon production of infectious bovine viral diarrhea virus (BVDV) in vitro: implications for hepatitis C virus (HCV) therapy. Antiviral Res., 2002, 55(3), 425-435.
[http://dx.doi.org/10.1016/S0166-3542(02)00075-X] [PMID: 12206880]
[102]
Miller, J.L.; Lachica, R.; Sayce, A.C.; Williams, J.P.; Bapat, M.; Dwek, R.; Beatty, P.R.; Harris, E.; Zitzmann, N. Liposome-mediated delivery of iminosugars enhances efficacy against dengue virus in vivo. Antimicrob. Agents Chemother., 2012, 56(12), 6379-6386.
[http://dx.doi.org/10.1128/AAC.01554-12] [PMID: 23070155]
[103]
Fan, J.Q.; Ishii, S.; Asano, N.; Suzuki, Y. Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat. Med., 1999, 5(1), 112-115.
[http://dx.doi.org/10.1038/4801] [PMID: 9883849]
[104]
Johnson, F.K.; Mudd, P.N. Jr.; DiMino, T.; Vosk, J.; Sitaraman, S.; Boudes, P.; France, N.; Barlow, C. An open-label study to determine the pharmacokinetics and safety of migalastat HCl in subjects with impaired renal function and healthy subjects with normal renal function. Clin. Pharmacol. Drug Dev., 2015, 4(4), 256-261.
[http://dx.doi.org/10.1002/cpdd.149] [PMID: 27136905]
[105]
Ishii, S.; Chang, H.H.; Yoshioka, H.; Shimada, T.; Mannen, K.; Higuchi, Y.; Taguchi, A.; Fan, J.Q. Preclinical efficacy and safety of 1-deoxygalactonojirimycin in mice for Fabry disease. J. Pharmacol. Exp. Ther., 2009, 328(3), 723-731.
[http://dx.doi.org/10.1124/jpet.108.149054] [PMID: 19106170]
[106]
Gaggl, M.; Sunder-Plassmann, G. Fabry disease: a pharmacological chaperone on the horizon. Nat. Rev. Nephrol., 2016, 12(11), 653-654.
[http://dx.doi.org/10.1038/nrneph.2016.138] [PMID: 27665929]
[107]
Germain, D.P.; Giugliani, R.; Hughes, D.A.; Mehta, A.; Nicholls, K.; Barisoni, L.; Jennette, C.J.; Bragat, A.; Castelli, J.; Sitaraman, S.; Lockhart, D.J.; Boudes, P.F. Safety and pharmacodynamic effects of a pharmacological chaperone on α-galactosidase A activity and globotriaosylceramide clearance in Fabry disease: report from two phase 2 clinical studies. Orphanet J. Rare Dis., 2012, 7, 91.
[http://dx.doi.org/10.1186/1750-1172-7-91] [PMID: 23176611]
[108]
Hughes, D.A.; Nicholls, K.; Shankar, S.P.; Sunder-Plassmann, G.; Koeller, D.; Nedd, K.; Vockley, G.; Hamazaki, T.; Lachmann, R.; Ohashi, T.; Olivotto, I.; Sakai, N.; Deegan, P.; Dimmock, D.; Eyskens, F.; Germain, D.P.; Goker-Alpan, O.; Hachulla, E.; Jovanovic, A.; Lourenco, C.M.; Narita, I.; Thomas, M.; Wilcox, W.R.; Bichet, D.G.; Schiffmann, R.; Ludington, E.; Viereck, C.; Kirk, J.; Yu, J.; Johnson, F.; Boudes, P.; Benjamin, E.R.; Lockhart, D.J.; Barlow, C.; Skuban, N.; Castelli, J.P.; Barth, J.; Feldt-Rasmussen, U. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J. Med. Genet., 2017, 54(4), 288-296.
[http://dx.doi.org/10.1136/jmedgenet-2016-104178] [PMID: 27834756]
[109]
Germain, D.P.; Hughes, D.A.; Nicholls, K.; Bichet, D.G.; Giugliani, R.; Wilcox, W.R.; Feliciani, C.; Shankar, S.P.; Ezgu, F.; Amartino, H.; Bratkovic, D.; Feldt-Rasmussen, U.; Nedd, K.; Sharaf El Din, U.; Lourenco, C.M.; Banikazemi, M.; Charrow, J.; Dasouki, M.; Finegold, D.; Giraldo, P.; Goker-Alpan, O.; Longo, N.; Scott, C.R.; Torra, R.; Tuffaha, A.; Jovanovic, A.; Waldek, S.; Packman, S.; Ludington, E.; Viereck, C.; Kirk, J.; Yu, J.; Benjamin, E.R.; Johnson, F.; Lockhart, D.J.; Skuban, N.; Castelli, J.; Barth, J.; Barlow, C.; Schiffmann, R. Treatment of Fabry’s disease with the pharmacologic chaperone migalastat. N. Engl. J. Med., 2016, 375(6), 545-555.
[http://dx.doi.org/10.1056/NEJMoa1510198] [PMID: 27509102]
[110]
Schiffmann, R.; Warnock, D.G.; Banikazemi, M.; Bultas, J.; Linthorst, G.E.; Packman, S.; Sorensen, S.A.; Wilcox, W.R.; Desnick, R.J. Fabry disease: progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrol. Dial. Transplant., 2009, 24(7), 2102-2111.
[http://dx.doi.org/10.1093/ndt/gfp031] [PMID: 19218538]
[111]
Wanner, C.; Oliveira, J.P.; Ortiz, A.; Mauer, M.; Germain, D.P.; Linthorst, G.E.; Serra, A.L.; Maródi, L.; Mignani, R.; Cianciaruso, B.; Vujkovac, B.; Lemay, R.; Beitner-Johnson, D.; Waldek, S.; Warnock, D.G. Prognostic indicators of renal disease progression in adults with Fabry disease: natural history data from the Fabry registry. Clin. J. Am. Soc. Nephrol., 2010, 5(12), 2220-2228.
[http://dx.doi.org/10.2215/CJN.04340510] [PMID: 20813854]
[112]
Belmatoug, N.; Burlina, A.; Giraldo, P.; Hendriksz, C.J.; Kuter, D.J.; Mengel, E.; Pastores, G.M. Gastrointestinal disturbances and their management in miglustat-treated patients. J. Inherit. Metab. Dis., 2011, 34(5), 991-1001.
[http://dx.doi.org/10.1007/s10545-011-9368-7] [PMID: 21779792]
[113]
Amiri, M.; Naim, H.Y. Miglustat-induced intestinal carbohydrate malabsorption is due to the inhibition of α-glucosidases, but not β-galactosidases. J. Inherit. Metab. Dis., 2012, 35(6), 949-954.
[http://dx.doi.org/10.1007/s10545-012-9523-9] [PMID: 22976762]
[114]
van der Spoel, A.C.; Mott, R.; Platt, F.M. Differential sensitivity of mouse strains to an N-alkylated imino sugar: glycosphingolipid metabolism and acrosome formation. Pharmacogenomics, 2008, 9(6), 717-731.
[http://dx.doi.org/10.2217/14622416.9.6.717] [PMID: 18518850]
[115]
Reuser, A.J.; Wisselaar, H.A. An evaluation of the potential side-effects of alpha-glucosidase inhibitors used for the management of diabetes mellitus. Eur. J. Clin. Invest., 1994, 24(Suppl. 3), 19-24.
[http://dx.doi.org/10.1111/j.1365-2362.1994.tb02251.x] [PMID: 8001622]
[116]
Tan, K.; Tesar, C.; Wilton, R.; Jedrzejczak, R.P.; Joachimiak, A. Interaction of antidiabetic α-glucosidase inhibitors and gut bacteria α-glucosidase. Protein Sci., 2018, 27(8), 1498-1508.
[http://dx.doi.org/10.1002/pro.3444] [PMID: 29761590]