Inhibition of β-amyloid Aggregation of Ugni molinae Extracts

Page: [1365 - 1376] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

The β-amyloid peptide (1-42) is a molecule capable of aggregating into neurotoxic structures that have been implicated as potential etiological factors of Alzheimer’s Disease. The aim of this study was to evaluate the inhibition of β-amyloid aggregation of ethyl acetate and ethanolic extracts obtained from Ugni molinae leaves on neurotoxic actions of β-amyloid aggregates. Chemical analyses were carried out with the extracts in order to determine their phenolic profile and its quantification. Both extracts showed a tendency to reduce neuronal deaths caused by β-amyloid. This tendency was inversely proportional to the evaluated concentrations. Moreover, the effect of EAE and ETE on β-amyloid aggregation was studied by fluorimetric T Thioflavin assay and transmission electronic microscopy (TEM); the extracts showed a modulation in the aggregation process. Partly, it is believed that these effects can be attributed to the polyphenolic compounds present in the extracts.

Keywords: Ugni molinae, β-amyloid aggregation, T Thioflavin, polyphenols, β-amyloid disaggregation, fluorimetric.

[1]
Wilhelm de Mosbach E. In Botánica indígena de Chile 1999. 94-5
[2]
Timmermann GMRBN. Chile nuestra flora útil: guía de plantas de uso apícola, en medicina folklórica, artesanal y ornamental 2002. 260-7
[3]
Aguirre MC, Delporte C, Backhouse N, et al. Topical anti-inflammatory activity of 2α-hydroxy pentacyclic triterpene acids from the leaves of Ugni molinae. Bioorg Med Chem 2006; 14(16): 5673-7.
[http://dx.doi.org/10.1016/j.bmc.2006.04.021] [PMID: 16697209]
[4]
Goity LE, Queupil M-J, Jara D, et al. An HPLC-UV and HPLC-ESI-MS based method for identification of anti-inflammatory triterpenoids from the extracts of Ugni molinae. Bol Latinoam Caribe Plantas Med Aromat 2013; 12: 108-16.
[5]
Junqueira-Gonçalves MP, Yáñez L, Morales C, Navarro M, A Contreras R, Zúñiga GE. Isolation and characterization of phenolic compounds and anthocyanins from Murta (Ugni molinae Turcz.) fruits. Assessment of antioxidant and antibacterial activity. Molecules 2015; 20(4): 5698-713.
[http://dx.doi.org/10.3390/molecules20045698] [PMID: 25838172]
[6]
Peña-Cerda M, Arancibia-Radich J, Valenzuela-Bustamante P, et al. Phenolic composition and antioxidant capacity of Ugni molinae Turcz. leaves of different genotypes. Food Chem 2017; 215: 219-27.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.159] [PMID: 27542470]
[7]
Rubilar M, Jara C, Poo Y, et al. Extracts of Maqui ( Aristotelia chilensis ) and Murta ( Ugni molinae Turcz.): sources of antioxidant compounds and α-Glucosidase/α-Amylase inhibitors. J Agric Food Chem 2011; 59(5): 1630-7.
[http://dx.doi.org/10.1021/jf103461k] [PMID: 21294510]
[8]
López J, Vega-Galvez A, Rodríguez A, Uribe E, Bilbao-Sáinz C. Murta (Ugni molinae Turcz.): a review on chemical composition, functional components and biological activities of leaves and fruits. Chil J Agric Anim Sci 2018; 34
[http://dx.doi.org/10.4067/S0719-38902018005000205]
[9]
Corona G, Vauzour D, Amini A, Spencer JPE. Chapter 44 - The Impact of gastrointestinal modifications, blood-brain barrier transport, and intracellular metabolism on polyphenol bioavailability:an overview. In: Watson RR, Preedy VR, Zibadi S, Eds. Polyphenols in Human Health and Disease. Polyphenols in Human Health and Disease 2014; 591-604.
[10]
Agis-Torres A, Sölhuber M, Fernandez M, Sanchez-Montero JM. Multi-target-directed ligands and other therapeutic strategies in the search of a real solution for Alzheimer’s disease. Curr Neuropharmacol 2014; 12(1): 2-36.
[http://dx.doi.org/10.2174/1570159X113116660047] [PMID: 24533013]
[11]
Thal DR, Walter J, Saido TC, Fändrich M. Neuropathology and biochemistry of Aβ and its aggregates in Alzheimer’s disease. Acta Neuropathol 2015; 129(2): 167-82.
[http://dx.doi.org/10.1007/s00401-014-1375-y] [PMID: 25534025]
[12]
Ferreira ST, Klein WL. The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol Learn Mem 2011; 96(4): 529-43.
[http://dx.doi.org/10.1016/j.nlm.2011.08.003] [PMID: 21914486]
[13]
Nichols MR, Colvin BA, Hood EA, Paranjape GS, Osborn DC, Terrill-Usery SE. Biophysical comparison of soluble amyloid-β(1-42) protofibrils, oligomers, and protofilaments. Biochemistry 2015; 54(13): 2193-204.
[http://dx.doi.org/10.1021/bi500957g] [PMID: 25756466]
[14]
Frydman-Marom A, Levin A, Farfara D, et al. Orally administrated cinnamon extract reduces β-amyloid oligomerization and corrects cognitive impairment in Alzheimer’s disease animal models. PLoS One 2011; 6(1)e16564
[http://dx.doi.org/10.1371/journal.pone.0016564] [PMID: 21305046]
[15]
Kumar S, Harris RJ, Seal CJ, Okello EJ. An aqueous extract of Withania somnifera root inhibits amyloid β fibril formation in vitro. Phytother Res 2012; 26(1): 113-7.
[http://dx.doi.org/10.1002/ptr.3512] [PMID: 21567509]
[16]
Brenn A, Grube M, Jedlitschky G, et al. St. John’s Wort reduces beta-amyloid accumulation in a double transgenic Alzheimer’s disease mouse model-role of P-glycoprotein. Brain Pathol 2014; 24(1): 18-24.
[http://dx.doi.org/10.1111/bpa.12069] [PMID: 23701205]
[17]
Xie H, Wang J-R, Yau L-F, et al. Catechins and procyanidins of Ginkgo biloba show potent activities towards the inhibition of β-amyloid peptide aggregation and destabilization of preformed fibrils. Molecules 2014; 19(4): 5119-34.
[http://dx.doi.org/10.3390/molecules19045119] [PMID: 24759072]
[18]
Gray N, Morré J, Kelley J, et al. Centella asiatica Protects against the toxic effects of intracellular beta-amyloid accumulation. Planta Med 2013; 79: PH6.
[http://dx.doi.org/10.1055/s-0033-1348596]
[19]
Fakhoury M. Role of Immunity and Inflammation in the pathophysiology of neurodegenerative diseases. Neurodegener Dis 2015; 15(2): 63-9.
[http://dx.doi.org/10.1159/000369933] [PMID: 25591815]
[20]
López González I, Garcia-Esparcia P, Llorens F, Ferrer I. Genetic and transcriptomic profiles of inflammation in neurodegenerative diseases: Alzheimer, Parkinson, Creutzfeldt-Jakob and Tauopathies. Int J Mol Sci 2016; 17(2): 206.
[http://dx.doi.org/10.3390/ijms17020206] [PMID: 26861289]
[21]
Jara-Moreno D, Castro-Torres RD, Ettcheto M, et al. The ethyl acetate extract of leaves of Ugni molinae Turcz. Improves neuropathological hallmarks of Alzheimer’s disease in female APPswe/PS1dE9 mice fed with a high fat diet. J Alzheimers Dis 2018; 66(3): 1175-91.
[http://dx.doi.org/10.3233/JAD-180174] [PMID: 30400089]
[22]
Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem 2003; 87(1): 172-81.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01976.x] [PMID: 12969264]
[23]
Re F, Airoldi C, Zona C, et al. Beta amyloid aggregation inhibitors: small molecules as candidate drugs for therapy of Alzheimer’s disease. Curr Med Chem 2010; 17(27): 2990-3006.
[http://dx.doi.org/10.2174/092986710791959729] [PMID: 20629631]
[24]
Jiménez-Aliaga K, Bermejo-Bescós P, Benedí J, Martín-Aragón S. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci 2011; 89(25-26): 939-45.
[http://dx.doi.org/10.1016/j.lfs.2011.09.023] [PMID: 22008478]
[25]
Thapa A, Woo E-R, Chi EY, et al. Biflavonoids are superior to monoflavonoids in inhibiting amyloid-β toxicity and fibrillogenesis via accumulation of nontoxic oligomer-like structures. Biochemistry 2011; 50(13): 2445-55.
[http://dx.doi.org/10.1021/bi101731d] [PMID: 21322641]
[26]
Fiori J, Naldi M, Bartolini M, Andrisano V. Disclosure of a fundamental clue for the elucidation of the myricetin mechanism of action as amyloid aggregation inhibitor by mass spectrometry. Electrophoresis 2012; 33(22): 3380-6.
[http://dx.doi.org/10.1002/elps.201200186] [PMID: 22961751]
[27]
Choi S-M, Kim BC, Cho Y-H, et al. Effects of flavonoid compounds on β-amyloid-peptide-induced neuronal death in cultured mouse cortical neurons. Chonnam Med J 2014; 50(2): 45-51.
[http://dx.doi.org/10.4068/cmj.2014.50.2.45] [PMID: 25229015]
[28]
Regitz C, Dußling LM, Wenzel U. Amyloid-beta (Aβ₁₋₄₂)-induced paralysis in Caenorhabditis elegans is inhibited by the polyphenol quercetin through activation of protein degradation pathways. Mol Nutr Food Res 2014; 58(10): 1931-40.
[http://dx.doi.org/10.1002/mnfr.201400014] [PMID: 25066301]
[29]
Godoy JA, Lindsay CB, Quintanilla RA, Carvajal FJ, Cerpa W, Inestrosa NC. Quercetin exerts differential neuroprotective effects against H2O2 and Aβ Aggregates in hippocampal neurons: the role of mitochondria. Mol Neurobiol 2017; 54(9): 7116-28.
[http://dx.doi.org/10.1007/s12035-016-0203-x] [PMID: 27796749]
[30]
Omar SH. Biophenols pharmacology against the amyloidogenic activity in Alzheimer’s disease. Biomed Pharmacother 2017; 89: 396-413.
[http://dx.doi.org/10.1016/j.biopha.2017.02.051] [PMID: 28249241]
[31]
Jew SS, Yoo CH, Lim DY, et al. Structure-activity relationship study of asiatic acid derivatives against beta amyloid (A beta)-induced neurotoxicity. Bioorg Med Chem Lett 2000; 10(2): 119-21.
[http://dx.doi.org/10.1016/S0960-894X(99)00658-7] [PMID: 10673093]
[32]
Patil SP, Maki S, Khedkar SA, Rigby AC, Chan C. Withanolide A and asiatic acid modulate multiple targets associated with amyloid-β precursor protein processing and amyloid-β protein clearance. J Nat Prod 2010; 73(7): 1196-202.
[http://dx.doi.org/10.1021/np900633j] [PMID: 20553006]
[33]
Yoo K-Y, Park S-Y. Terpenoids as potential anti-Alzheimer’s disease therapeutics. Molecules 2012; 17(3): 3524-38.
[http://dx.doi.org/10.3390/molecules17033524] [PMID: 22430119]
[34]
Yang YW, Tsai CW, Mong MC, Yin MC. Maslinic acid protected pc12 cells differentiated by nerve growth factor against β-amyloid-induced apoptosis. J Agric Food Chem 2015; 63(47): 10243-9.
[http://dx.doi.org/10.1021/acs.jafc.5b04156] [PMID: 26477978]
[35]
Liang W, Zhao X, Feng J, Song F, Pan Y. Ursolic acid attenuates beta-amyloid-induced memory impairment in mice. Arq Neuropsiquiatr 2016; 74(6): 482-8.
[http://dx.doi.org/10.1590/0004-282x20160065] [PMID: 27332074]
[36]
Paula-Lima AC, Adasme T, SanMartín C, et al. Amyloid β-peptide oligomers stimulate RyR-mediated Ca2+ release inducing mitochondrial fragmentation in hippocampal neurons and prevent RyR-mediated dendritic spine remodeling produced by BDNF. Antioxid Redox Signal 2011; 14(7): 1209-23.
[http://dx.doi.org/10.1089/ars.2010.3287] [PMID: 20712397]
[37]
Adura C, Guerrero S, Salas E, et al. Stable conjugates of peptides with gold nanorods for biomedical applications with reduced effects on cell viability. ACS Appl Mater Interfaces 2013; 5(10): 4076-85.
[http://dx.doi.org/10.1021/am3028537] [PMID: 23597259]
[38]
LeVine H III. Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 1993; 2(3): 404-10.
[http://dx.doi.org/10.1002/pro.5560020312] [PMID: 8453378]
[39]
Spigno G, Tramelli L, De Faveri DM. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J Food Eng 2007; 81: 200-8.
[http://dx.doi.org/10.1016/j.jfoodeng.2006.10.021]
[40]
Kajdžanoska M, Petreska J, Stefova M. Comparison of different extraction solvent mixtures for characterization of phenolic compounds in strawberries. J Agric Food Chem 2011; 59(10): 5272-8.
[http://dx.doi.org/10.1021/jf2007826] [PMID: 21495681]
[41]
Rubilar M, Pinelo M, Ihl M, Scheuermann E, Sineiro J, Nuñez MJ. Murta leaves (Ugni molinae Turcz) as a source of antioxidant polyphenols. J Agric Food Chem 2006; 54(1): 59-64.
[http://dx.doi.org/10.1021/jf051571j] [PMID: 16390178]
[42]
Srinivasan M, Lahiri DK. Significance of NF-κB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer’s disease and multiple sclerosis. Expert Opin Ther Targets 2015; 19(4): 471-87.
[http://dx.doi.org/10.1517/14728222.2014.989834] [PMID: 25652642]
[43]
Mattson MP. NF-kappaB in the survival and plasticity of neurons. Neurochem Res 2005; 30(6-7): 883-93.
[http://dx.doi.org/10.1007/s11064-005-6961-x] [PMID: 16187223]
[44]
Phan HTT, Samarat K, Takamura Y, Azo-Oussou AF, Nakazono Y. Vestergaard MdC. Polyphenols modulate Alzheimer’s amyloid beta aggregation in a structure-dependent manner. Nutrients 2019; 11: 756.
[45]
Lakey-Beitia J, Berrocal R, Rao KS, Durant AA. Polyphenols as therapeutic molecules in Alzheimer’s disease through modulating amyloid pathways. Mol Neurobiol 2015; 51(2): 466-79.
[http://dx.doi.org/10.1007/s12035-014-8722-9] [PMID: 24826916]
[46]
German-Ponciano LJ, Rosas-Sánchez GU, Rivadeneyra-Domínguez E, Rodríguez-Landa JF. Advances in the preclinical study of some flavonoids as potential antidepressant agents. Scientifica 2018; 2018(14)2963565
[47]
Jäger AK, Saaby L. Flavonoids and the CNS. Molecules 2011; 16: 1471-85.
[48]
Marder M, Viola H, Wasowski C, Fernández S, Medina JH, Paladini AC. 6-methylapigenin and hesperidin: new valeriana flavonoids with activity on the CNS. Pharmacol Biochem Behav 2003; 75(3): 537-45.
[http://dx.doi.org/10.1016/S0091-3057(03)00121-7] [PMID: 12895671]
[49]
Jurikova T, Mlcek J, Skrovankova S, et al. Fruits of black chokeberry aronia melanocarpa in the prevention of chronic diseases 2017; 22(6). pii: E944.
[http://dx.doi.org/10.3390/molecules22060944]
[50]
Boulekbache-Makhlouf L, Meudec E, Mazauric J-P, Madani K, Cheynier V. Qualitative and semi-quantitative analysis of phenolics in Eucalyptus globulus leaves by high-performance liquid chromatography coupled with diode array detection and electrospray ionisation mass spectrometry. Phytochem Anal 2013; 24(2): 162-70.
[http://dx.doi.org/10.1002/pca.2396] [PMID: 22930658]
[51]
Fischer UA, Carle R, Kammerer DR. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MS(n). Food Chem 2011; 127(2): 807-21.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.156] [PMID: 23140740]
[52]
Gordon A, Jungfer E, da Silva BA, Maia JGS, Marx F. Phenolic constituents and antioxidant capacity of four underutilized fruits from the Amazon region. J Agric Food Chem 2011; 59(14): 7688-99.
[http://dx.doi.org/10.1021/jf201039r] [PMID: 21662239]
[53]
Lee JH, Lee SJ, Park S, et al. Characterisation of flavonoids in Orostachys japonicus A. Berger using HPLC-MS/MS: Contribution to the overall antioxidant effect. Food Chem 2011; 124: 1627-33.
[http://dx.doi.org/10.1016/j.foodchem.2010.08.031]
[54]
Kumar N, Bhandari P, Singh B, Bari SS. Antioxidant activity and ultra-performance LC-electrospray ionization-quadrupole time-of-flight mass spectrometry for phenolics-based fingerprinting of Rose species: Rosa damascena, Rosa bourboniana and Rosa brunonii. Food Chem Toxicol 2009; 47(2): 361-7.
[http://dx.doi.org/10.1016/j.fct.2008.11.036] [PMID: 19100811]
[55]
Regueiro J, Sánchez-González C, Vallverdú-Queralt A, Simal-Gándara J, Lamuela-Raventós R, Izquierdo-Pulido M. Comprehensive identification of walnut polyphenols by liquid chromatography coupled to linear ion trap-Orbitrap mass spectrometry. Food Chem 2014; 152: 340-8.
[http://dx.doi.org/10.1016/j.foodchem.2013.11.158] [PMID: 24444946]
[56]
Simirgiotis MJ. Antioxidant capacity and HPLC-DAD-MS profiling of Chilean peumo (Cryptocarya alba) fruits and comparison with German peumo (Crataegus monogyna) from southern Chile. Molecules 2013; 18(2): 2061-80.
[http://dx.doi.org/10.3390/molecules18022061] [PMID: 23385342]
[57]
Singab AN, Ayoub N, Al-Sayed E, Martiskainen O, Sinkkonen J, Pihlaja K. Phenolic constituents of eucalyptus camaldulensis dehnh, with potential antioxidant and cytotoxic activities. Rec Nat Prod 2011; 5: 271-80.