Development and Antimicrobial Evaluation of Eruca Sativa Oil Nanoemulgel with Determination of the Oil Antioxidant, Sun Protection Factor and Elastase Inhibition

Page: [244 - 255] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Objectives: This project aims to develop a bio-natural nano-product with Cosmeceutical and pharmaceutical applications.

Methods: E. sativa oil was evaluated for its anti-oxidant, sun protection factor and elastase inhibition. Then, nanoemulgel formulations were prepared for E. sativa oil through the combination of nanoemulsion with hydrogel. E. sativa nanoemulsion formulations were prepared by the help of a selfemulsification technique. After this, the optimum formulation was mixed with Carbopol to produce the nanoemulgel. Anti-bacterial and anti-fungal activities were evaluated.

Results: Nanoemulsion occurred when the size of the droplets was 195.29 nm with the lowest polydispersibility index 0.207. The results of antioxidant, anti-elastase and SPF activities for E. sativa oil were 2.10 µg/ml, 25.1 µg/ml and an SPF value of 5.57, respectively. In addition, in the anti-bacterial test for Staphylococcus aureus, it was found that nanoemulgel has an inhibition zone of 2.1 cm in diameter. According to the MRSA, the inhibition zone was 1.5 cm.

Conclusion: E. Sativa oil could be a promising candidate in cosmeceutical and pharmaceutical preparations.

Keywords: Eruca sativa, sun protection factor, anti-wrinkles, microbiology, bio-formulation, nanoemulgel.

Graphical Abstract

[1]
Nayak, A.K.; Mohanty, B.; Sen, K.K. Comparative evaluation of in vitro diclofenac sodium permeability across excised mouse skin from different common pharmaceutical vehicles. Int. J. Pharm. Tech. Res., 2010, 2, 920-930.
[2]
Sawynok, J. Topical and peripherally acting analgesics. Pharmacol. Rev., 2003, 55(1), 1-20.
[http://dx.doi.org/10.1124/pr.55.1.1] [PMID: 12615951]
[3]
Sah, S. Kumar.; Bipin A.B.; Nayak K. Emulgel: Magnifying the application of topical drug delivery Indian J. Pharm. Biol. Res., 2017, 5, 25-33.
[4]
Ashara, K.C.; Paun, J.S.; Soniwala, M.M.; Chavada, J.R.; Mori, N.M. Micro-emulsion based emulgel: A novel topical drug delivery system. Asian Pac. J. Trop. Dis., 2014, 4, S27-S32.
[http://dx.doi.org/10.1016/S2222-1808(14)60411-4]
[5]
Gupta, A.; Mishra, A.; Singh, A.; Gupta, V.; Bansal, P. Formulation and evaluation of topical gel of diclofenac sodium using different polymers. Drug Invent. Today, 2010, 2, 250-253.
[6]
Khunt, D.M.; Mishra, A.D.; Shah, D.R. Formulation design & development of piroxicam emulgel. Int. J. Pharm. Tech. Res., 2012, 4, 1332-1344.
[7]
Khullar, R.; Saini, S.; Seth, N.; Rana, A. Emulgels: A surrogate approach for topically used hydrophobic drugs. Int. J. Pharma Bio Sci., 2011, 1, 117-128.
[8]
Haneefa, K.M.; Easo, S.; Hafsa, P.; Mohanta, G.P.; Nayar, C. Emulgel: An advanced review. Int. J. Pharm. Sci. Res., 2013, 5, 254.
[9]
Meenakshi, D. Emulgel: A novel approach to topical drug delivery. Int. J. Pharma Bio Sci., 2013, 4, 847-856.
[10]
Mohamed, M. Topical emulsion gel composition comprising diclofenac sodium. AAPS PharmSci, 2004, 6, 1-7.
[11]
Khullar, R.; Kumar, D.; Seth, N.; Saini, S. Formulation and evaluation of mefenamic acid emulgel for topical delivery. Saudi Pharm. J., 2012, 20(1), 63-67.
[http://dx.doi.org/10.1016/j.jsps.2011.08.001] [PMID: 23960777]
[12]
Mohamed, M.I. Optimization of chlorphenesin emulgel formulation. AAPS J., 2004, 6(3)e26
[http://dx.doi.org/10.1208/aapsj060326] [PMID: 15760111]
[13]
Yapar, E.A.; Ynal, O.; Erdal, M.S. Design and in vivo evaluation of emulgel formulations including green tea extract and rose oil. Acta Pharm., 2013, 63(4), 531-544.
[http://dx.doi.org/10.2478/acph-2013-0037] [PMID: 24451077]
[14]
Stanos, S.P. Topical agents for the management of musculoskeletal pain. J. Pain Symptom Manage., 2007, 33(3), 342-355.
[http://dx.doi.org/10.1016/j.jpainsymman.2006.11.005] [PMID: 17349504]
[15]
Boulaiz, H.; Alvarez, P.J.; Ramirez, A.; Marchal, J.A.; Prados, J.; Rodríguez-Serrano, F.; Perán, M.; Melguizo, C.; Aranega, A. Nanomedicine: Application areas and development prospects. Int. J. Mol. Sci., 2011, 12(5), 3303-3321.
[http://dx.doi.org/10.3390/ijms12053303] [PMID: 21686186]
[16]
De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[17]
Oesterling, B.M.; Gulati, A.; Joshi, M.D. Nanocarrier-based approaches for treatment and detection of Alzheimer’s disease. J. Nanosci. Nanotechnol., 2014, 14(1), 137-156.
[http://dx.doi.org/10.1166/jnn.2014.8906] [PMID: 24730256]
[18]
Chowdhury, A.; Kunjiappan, S.; Panneerselvam, T.; Somasundaram, B.; Bhattacharjee, C. Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. Int. Nano Lett., 2017, 7, 91-122.
[http://dx.doi.org/10.1007/s40089-017-0208-0]
[19]
Singh, R.; Parpani, S.; Narke, R.; Chavan, R. Emulgel: A recent approach for topical drug delivery system. Asian J. Pharm. Res. Dev, 2014, 2, 112-123.
[20]
Malay, N.J. Nanoemulgel innovative approach for topical gel based formulation., Nanoemulgel innovative approach for topical gel based formulation, February 15. 2018.
[21]
Asadi, M.S.; Mirvaghefei, A.R.; Nematollahi, M.A.; Banaee, M.; Ahmadi, K. Effects of watercress (Nasturtium nasturtium) extract on selected immunological parameters of rainbow trout (Oncorhynchus mykiss). Open Vet. J., 2012, 2(1), 32-39.
[PMID: 26623289]
[22]
Srivastava, J.P.; Lambert, J.; Vietmeyer, N. Medicinal plants: An expanding role in development; The World Bank: U.S.A, 1996.
[http://dx.doi.org/10.1596/0-8213-3613-4]
[23]
Mahesh, B.; Satish, S. Antimicrobial activity of some important medicinal plant against plant and human pathogens. World J. Agric. Sci., 2008, 4, 839-843.
[24]
Akhtar, N.; Mehmood, A.; Khan, B.A.; Mahmood, T.; Muhammad, H.; Khan, S.; Saeed, T. Exploring cucumber extract for skin rejuvenation. Afr. J. Biotechnol., 2011, 10, 1206-1216.
[25]
Kausar, R.; Akhtar, N. Formulation of an emulgel containing strawberry fruit extract and in-vivo evaluation for different skin parameter. Indian J. Pharm. Educ. Res., 2017, 51, 679-683.
[http://dx.doi.org/10.5530/ijper.51.4.100]
[26]
Bonifácio, B.V.; Silva, P.B.; Ramos, M.A.; Negri, K.M.S.; Bauab, T.M.; Chorilli, M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomedicine, 2014, 9, 1-15.
[PMID: 24363556]
[27]
Mallah, E.; Saleh, S.; Rayyan, W.A.; Dayyih, W.A.; Elhajji, F.D.; Mima, M.; Awad, R.; Arafat, T. The influence of Eruca sativa (Arugula) on pharmacokinetics of Sildenafil in rats. Neuroendocrinol. Lett., 2017, 38(4), 295-300.
[PMID: 28871716]
[28]
Miyazawa, M.; Maehara, T.; Kurose, K. Composition of the essential oil from the leaves of Eruca sativa. Flavour Fragrance J., 2002, 17, 187-190.
[http://dx.doi.org/10.1002/ffj.1079]
[29]
Michael, H.N.; Shafik, R.E.; Rasmy, G.E. Studies on the chemical constituents of fresh leaf of Eruca sativa extract and its biological activity as anticancer agent in vitro. J. Med. Plants Res., 2011, 5, 1184-1191.
[30]
Gulfraz, M.; Sadiq, A.; Tariq, H.; Imran, M.; Qureshi, R.; Zeenat, A. Phytochemical analysis and antibacterial activity of Eruca sativa seed. Pak. J. Bot., 2011, 43, 1351-1359.
[31]
Gulfraz, M.; Sadiq, A.; Tariq, H.; Imran, M.; Qureshi, R.; Zeenat, A. Phytochemical analysis and antibacterial activity of Eruca sativaseed. Phytochemical analysis and antibacterial activity of Eruca sativa seed,, 2011, 43, 1351-1359.
[32]
Eid, A.M.; Jaradat, N.A.; Elmarzugi, N.A.; Alkowni, R.; Hussen, F.; Ayyash, L.A.; Sawafta, M.; Danaa, H. Anti-microbial and free radical scavenging activities of nigella sativa colloidal-emulgel. Lett. Drug Des. Discov., 2019, 16, 408-416.
[http://dx.doi.org/10.2174/1570180815666180620150922]
[33]
Jaradat, N.A.; Abualhasan, M. Comparison of phytoconstituents, total phenol contents and free radical scavenging capacities between four Arum species from Jerusalem and Bethlehem. J. Pharm. Sci., 2016, 22, 120-125.
[http://dx.doi.org/10.15171/PS.2016.19]
[34]
Zaid, A.N.; Jaradat, N.; Darwish, S.; Nairat, S.; Shamlawi, R.; Hamad, Y.; Hussein, F.; Issa, L. Assessment of the general quality of sunscreen products available in Palestine and method verification of the sun protection factor using Food and Drug Administration guidelines. J. Cosmet. Dermatol., 2018, 17(6), 1122-1129.
[http://dx.doi.org/10.1111/jocd.12496] [PMID: 29377413]
[35]
Dutra, E.A.; Oliveira, D.G.D.C.; Kedor-Hackmann, E.R.M.; Santoro, M.I.R.M. Determination of Sun Protection Factor (SPF) of sunscreens by ultraviolet spectrophotometry. Rev. Bras. Cienc. Farm, 2004, 40, 381-385.
[http://dx.doi.org/10.1590/S1516-93322004000300014]
[36]
Mansur, J.D.S.; Breder, M.N.R.; Mansur, M.C.D.A. Determinação do fator de proteção solar por espectrofotometria, 1986.
[37]
Moon, J-Y.; Yim, E-Y.; Song, G.; Lee, N.H.; Hyun, C-G. Screening of elastase and tyrosinase inhibitory activity from Jeju Island plants. Eurasia. J. Biosci, 2010, 4, 41-53.
[http://dx.doi.org/10.5053/ejobios.2010.4.0.6]
[38]
Gurpreet, K.; Singh, S. Review of nanoemulsion formulation and characterization techniques. Indian J. Pharm. Sci., 2018, 80, 781-789.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000422]
[39]
Đorđević, S.M.; Cekić, N.D.; Savić, M.M.; Isailović, T.M.; Ranđelović, D.V.; Marković, B.D.; Savić, S.R.; Timić Stamenić, T.; Daniels, R.; Savić, S.D. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation. Int. J. Pharm., 2015, 493(1-2), 40-54.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.007] [PMID: 26209070]
[40]
Mahon, C.R.; Lehman, D.C.; Manuselis, G. Textbook of diagnostic microbiology-E-Book, 5th ed; Saunders: USA, 2014.
[41]
Rezaeian, S.; Pourianfar, H.R.; Janpoor, J. Antioxidant properties of several medicinal plants growing wild in northeastern Iran. Asian J. Plant Sci. Res., 2015, 5, 63-68.
[42]
Mbanga, L.; Mpiana, P.; Mbala, M.; Ilinga, L.; Ngoy, B.; Mvingu, K.; Mulenga, M. Comparative in vitro Sun Protection Factor (SPF) values of some herbal extracts found in Kinshasa by Ultraviolet Spectrophotometry. Int. J. Adv. Res. Chem. Sci, 2015, 1, 7-13.
[43]
Malsawmtluangi, C.; Nath, D.K.; Jamatia, I.; Zarzoliana, E.; Pachuau, L. Determination of Sun Protection Factor (SPF) number of some aqueous herbal extracts. J. Appl. Pharm. Sci., 2013, 3, 150-151.
[44]
Neau, S.H.; Chow, M.Y.; Hileman, G.A.; Durrani, M.J.; Gheyas, F.; Evans, B.A. Formulation and process considerations for beads containing Carbopol 974P, NF resin made by extrusion-spheronization. Int. J. Pharm., 2000, 199(2), 129-140.
[http://dx.doi.org/10.1016/S0378-5173(00)00372-0] [PMID: 10802406]
[45]
Khan, H.; Khan, M.A. Antiulcer effect of extract/fractions of Eruca sativa: Attenuation of urease activity. J. Evid. Based Complementary Altern. Med., 2014, 19(3), 176-180.
[http://dx.doi.org/10.1177/2156587214527452] [PMID: 24647097]
[46]
Kishore, L.; Kaur, N.; Singh, R. Evaluation of antioxidant activity and total phenolic content of Eruca sativa L. Seeds. Int. J. Toxicol. Pharmacol. Res., 2016, 8, 146-151.
[47]
Khoobchandani, M.; Bansal, P.; Medhe, S.; Ganesh, N.; Srivastava, M. Antioxidant and antimutagenic activities of isothiocyanates rich seed oil of Eruca sativa plant in Chemistry of Phytopotentials: Health, Energy and Environmental Perspectives; ; Khemani, L.; Srivastava,M.; Srivastava, S., Eds., ed Berlin, Heidelberg: Springer,. , 2012, 10, pp. 47-51.
[http://dx.doi.org/10.1007/978-3-642-23394-4_10]
[48]
Kaur, C.D.; Saraf, S. In vitro sun protection factor determination of herbal oils used in cosmetics. Pharmacognosy Res., 2010, 2(1), 22-25.
[http://dx.doi.org/10.4103/0974-8490.60586] [PMID: 21808534]
[49]
Jain, A.; Gautam, S.P.; Gupta, Y.; Khambete, H.; Jain, S. Development and characterization of ketoconazole emulgel for topical drug delivery. Der. Chem. Sinica, 2010, 1, 221-231.
[50]
Singla, V.; Saini, S.; Joshi, B.; Rana, A. Emulgel: A new platform for topical drug delivery. Int. J. Pharma Bio Sci., 2012, 3, 485-498.
[51]
Azmi, N.; Hashim, P.; Hashim, D.M.; Halimoon, N.; Majid, N.M.N. Anti-elastase, anti-tyrosinase and matrix metalloproteinase-1 inhibitory activity of earthworm extracts as potential new anti-aging agent. Asian Pac. J. Trop. Biomed., 2014, 4(Suppl. 1), S348-S352.
[http://dx.doi.org/10.12980/APJTB.4.2014C1166] [PMID: 25183109]
[52]
Siedle, B.; Hrenn, A.; Merfort, I. Natural compounds as inhibitors of human neutrophil elastase. Planta Med., 2007, 73(5), 401-420.
[http://dx.doi.org/10.1055/s-2007-967183] [PMID: 17447201]
[53]
Berthon, J-Y.; Nachat-Kappes, R.; Bey, M.; Cadoret, J-P.; Renimel, I.; Filaire, E. Marine algae as attractive source to skin care. Free Radic. Res., 2017, 51(6), 555-567.
[http://dx.doi.org/10.1080/10715762.2017.1355550] [PMID: 28770671]
[54]
Tu, P.T.B.; Tawata, S. Anti-oxidant, anti-aging, and anti-melanogenic properties of the essential oils from two varieties of Alpinia zerumbet. Molecules, 2015, 20(9), 16723-16740.
[http://dx.doi.org/10.3390/molecules200916723] [PMID: 26389869]
[55]
Kalyana Sundaram, I.; Sarangi, D.D.; Sundararajan, V.; George, S.; Sheik Mohideen, S. Poly herbal formulation with anti-elastase and anti-oxidant properties for skin anti-aging. BMC Complement. Altern. Med., 2018, 18(1), 33.
[http://dx.doi.org/10.1186/s12906-018-2097-9] [PMID: 29378653]
[56]
Komaiko, J.S.; Mcclements, D.J. Formation of food‐grade nanoemulsions using low‐energy preparation methods: A review of available methods. Compr. Rev. Food Sci. Food Saf., 2016, 15, 331-352.
[http://dx.doi.org/10.1111/1541-4337.12189]
[57]
Chang, Y.; McLandsborough, L.; McClements, D.J. Physicochemical properties and antimicrobial efficacy of carvacrol nanoemulsions formed by spontaneous emulsification. J. Agric. Food Chem., 2013, 61(37), 8906-8913.
[http://dx.doi.org/10.1021/jf402147p] [PMID: 23998790]
[58]
Saberi, A.H.; Fang, Y.; McClements, D.J. Fabrication of vitamin E-enriched nanoemulsions: Factors affecting particle size using spontaneous emulsification. J. Colloid Interface Sci., 2013, 391, 95-102.
[http://dx.doi.org/10.1016/j.jcis.2012.08.069] [PMID: 23116862]
[59]
Guttoff, M.; Saberi, A.H.; McClements, D.J. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability. Food Chem., 2015, 171, 117-122.
[http://dx.doi.org/10.1016/j.foodchem.2014.08.087] [PMID: 25308650]
[60]
Avachat, A.M.; Patel, V.G. Self nanoemulsifying drug delivery system of stabilized ellagic acid-phospholipid complex with improved dissolution and permeability. Saudi Pharm. J., 2015, 23(3), 276-289.
[http://dx.doi.org/10.1016/j.jsps.2014.11.001] [PMID: 26106276]
[61]
Shakeel, F.; Haq, N.; Alanazi, F.K.; Alsarra, I.A. Polymeric solid self-nanoemulsifying drug delivery system of glibenclamide using coffee husk as a low cost biosorbent. Powder Technol., 2014, 256, 352-360.
[http://dx.doi.org/10.1016/j.powtec.2014.02.028]
[62]
Balakumar, K.; Raghavan, C.V. selvan, N.T.; prasad, R.H.; Abdu, S. Self-Nanoemulsifying Drug Delivery System (SNEDDS) of rosuvastatin calcium: Design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf. B Biointerfaces, 2013, 112, 337-343.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.025] [PMID: 24012665]
[63]
Azeem, A.; Rizwan, M.; Ahmad, F.J.; Iqbal, Z.; Khar, R.K.; Aqil, M.; Talegaonkar, S. Nanoemulsion components screening and selection: A technical note. AAPS PharmSciTech, 2009, 10(1), 69-76.
[http://dx.doi.org/10.1208/s12249-008-9178-x] [PMID: 19148761]
[64]
Bilbao-SáInz.C.; Avena-Bustillos, R.J.; Wood, D.F.; Williams, T.G.; Mchugh, T.H.: Nanoemulsions prepared by a low-energy emulsification method applied to edible films. J. Agric. Food Chem., 2010, 58, 11932-11938.
[http://dx.doi.org/10.1021/jf102341r]
[65]
Ostertag, F.; Weiss, J.; McClements, D.J. Low-energy formation of edible nanoemulsions: Factors influencing droplet size produced by emulsion phase inversion. J. Colloid Interface Sci., 2012, 388(1), 95-102.
[http://dx.doi.org/10.1016/j.jcis.2012.07.089] [PMID: 22981587]
[66]
Li, Y.; Zhang, Z.; Yuan, Q.; Liang, H.; Vriesekoop, F. Process optimization and stability of d-limonene nanoemulsions prepared by catastrophic phase inversion method. J. Food Eng., 2013, 119, 419-424.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.06.001]
[67]
Arbain, N.H.; Salim, N.; Wui, W.T.; Basri, M.; Rahman, M.B.A. Optimization of Quercetin loaded Palm Oil Ester Based Nanoemulsion Formulation for Pulmonary Delivery. J. Oleo Sci., 2018, 67(8), 933-940.
[http://dx.doi.org/10.5650/jos.ess17253] [PMID: 30012897]
[68]
Hasani, F.; Pezeshki, A.; Hamishehkar, H. Effect of surfactant and oil type on size droplets of betacarotene-bearing nanoemulsions. Int. J. Curr. Microbiol. Appl. Sci., 2015, 4, 146.
[69]
Mayer, S.; Weiss, J.; McClements, D.J. Vitamin E-enriched nanoemulsions formed by emulsion phase inversion: factors influencing droplet size and stability. J. Colloid Interface Sci., 2013, 402, 122-130.
[http://dx.doi.org/10.1016/j.jcis.2013.04.016] [PMID: 23660020]
[70]
Eid, A.M.; El-Enshasy, H.A.; Aziz, R.; Elmarzugi, N.A. Preparation, characterization and anti-inflammatory activity of Swietenia macrophylla nanoemulgel. Int. J. Nanotechnol. Nanomed, 2014, 5, 1.
[http://dx.doi.org/10.4172/2157-7439.1000190]
[71]
Yilmaz, E.; Borchert, H-H. Effect of lipid-containing, positively charged nanoemulsions on skin hydration, elasticity and erythema--an in vivo study. Int. J. Pharm., 2006, 307(2), 232-238.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.002] [PMID: 16289984]
[72]
Chakraborty, S.; Khandai, M.; Sharma, A.; Khanam, N.; Patra, ChN.; Dinda, S.C.; Sen, K.K. Preparation, in vitro and in vivo evaluation of algino-pectinate bioadhesive microspheres: An investigation of the effects of polymers using multiple comparison analysis. Acta Pharm., 2010, 60(3), 255-266.
[http://dx.doi.org/10.2478/v10007-010-0026-7] [PMID: 21134861]
[73]
Prasanth, V.; Chakraborty, A.; Mathew, S.T.; Mathappan, R.; Kamalakkannan, V. Formulation and evaluation of Salbutamol sulphate microspheres by solvent evaporation method. J. Appl. Pharm. Sci., 2011, 1, 133-137.
[74]
Eid, A.M.; El-Enshasy, H.A.; Aziz, R.; Elmarzugi, N.A. The preparation and evaluation of self-nanoemulsifying systems containing Swietenia oil and an examination of its anti-inflammatory effects. Int. J. Nanomedicine, 2014, 9, 4685-4695.
[PMID: 25336948]
[75]
Jeong, M-W.; Oh, S-G.; Kim, Y.C. Effects of amine and amine oxide compounds on the zeta-potential of emulsion droplets stabilized by phosphatidylcholine. Colloid Surf. A Physicochem. Eng. Asp, 2001, 181, 247-253.
[http://dx.doi.org/10.1016/S0927-7757(00)00796-2]
[76]
Marslin, G.; Selvakesavan, R.K.; Franklin, G.; Sarmento, B.; Dias, A.C. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera. Int. J. Nanomedicine, 2015, 10, 5955-5963.
[PMID: 26445537]
[77]
Lkhagvajav, N.; Yasa, I.; Celik, E.; Koizhaiganova, M.; Sari, O. Antimicrobial activity of colloidal silver nanoparticles prepared by sol-gel method. Dig. J. Nanomater. Biostruct., 2011, 6, 149-154.
[78]
Assali, M.; Zaid, A.N.; Abdallah, F.; Almasri, M.; Khayyat, R. Single-walled carbon nanotubes-ciprofloxacin nanoantibiotic: strategy to improve ciprofloxacin antibacterial activity. Int. J. Nanomedicine, 2017, 12, 6647-6659.
[http://dx.doi.org/10.2147/IJN.S140625] [PMID: 28924348]