Application of Chiral Isocyanides in Multicomponent Reactions

Page: [162 - 183] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

As one of the most important building blocks in organic synthesis, isocyanides come in for a wide range of transformations owing mostly to their unusual terminal carbon center adsorbed electrophiles, reacted with nucleophiles, get involved in radical reactions and coordinated with metal centers. The distinctive feature of isocyanide is its ready willingness to participate in multicomponent reactions (MCRs). MCRs represent a great tool in organic synthesis for the construction of new lead structures in a single procedure introducing both structural diversity and molecular complexity in only one step. Isocyanide-based multicomponent reactions (IMCRs) have become a powerful approach for the synthesis of complex molecules providing high degree of atom and bond economy under very mild reaction conditions. The use of enantiomerically pure isocyanides can, in principle, bring about two advantages: (i) the possibility to obtain a stereochemically diverse adduct, controlling the absolute configuration of the starting isocyanide; and (ii) the possibility to induce diastereoselection in the multicomponent reaction. The most commonly-used IMCRs are the Ugi and Passerini reactions. Many published reviews have focused on the Ugi and Passerini reactions from different viewpoints, but this review describes advances in the application of chiral isocyanides in MCRs. The rationale for applying such diversity generating chemistries is also discussed.

Keywords: Chiral compounds, isocyanide, multicomponent reactions, passerini reaction, ugi reaction, asymmetric synthesis.

Graphical Abstract

[1]
Kaburagi, Y.; Tokuyama, H.; Fukuyama, T. Total synthesis of (-)-strychnine. J. Am. Chem. Soc., 2004, 126(33), 10246-10247.
[http://dx.doi.org/10.1021/ja046407b] [PMID: 15315428]
[2]
Solé, D.; Bonjoch, J.; García-Rubio, S.; Peidró, E.; Bosch, J. Total synthesis of (-)-strychnine via the wieland-gumlich aldehyde. Angew. Chem. Int. Ed. Engl., 1999, 38(3), 395-397.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990201)38:3<395:AID-ANIE395>3.0.CO;2-5] [PMID: 29711638]
[3]
Ohshima, T.; Xu, Y.; Takita, R.; Shimizu, S.; Zhong, D.; Shibasaki, M. Enantioselective total synthesis of (-)-strychnine using the catalytic asymmetric Michael reaction and tandem cyclization. J. Am. Chem. Soc., 2002, 124(49), 14546-14547.
[http://dx.doi.org/10.1021/ja028457r] [PMID: 12465959]
[4]
Mori, M.; Nakanishi, M.; Kajishima, D.; Sato, Y. A novel and general synthetic pathway to strychnos indole alkaloids: total syntheses of (-)-tubifoline, (-)-dehydrotubifoline, and (-)-strychnine using palladium-catalyzed asymmetric allylic substitution. J. Am. Chem. Soc., 2003, 125(32), 9801-9807.
[http://dx.doi.org/10.1021/ja029382u] [PMID: 12904045]
[5]
Martin, D.B.C.; Vanderwal, C.D. A synthesis of strychnine by a longest linear sequence of six steps. Chem. Sci. (Camb.), 2011, 2(4), 649-651.
[http://dx.doi.org/10.1039/c1sc00009h]
[6]
Wender, P.A.; Handy, S.T.; Wright, D.L. Towards the ideal synthesis. Chem. Ind., 2014, 69(36), 7529-7550.
[7]
Gaich, T.; Baran, P.S. Aiming for the ideal synthesis. J. Org. Chem., 2010, 75(14), 4657-4673.
[http://dx.doi.org/10.1021/jo1006812] [PMID: 20540516]
[8]
Zhu, J.; Bienaymé, H. Multicomponent reactions; Wiley-VCH: Weinheim, 2005.
[http://dx.doi.org/10.1002/3527605118]
[9]
Weber, L. The application of multi-component reactions in drug discovery. Curr. Med. Chem., 2002, 9(23), 2085-2093.
[http://dx.doi.org/10.2174/0929867023368719] [PMID: 12470248]
[10]
Bienaymé, H.; Hulme, C.; Oddon, G.; Schmitt, P. Maximizing synthetic efficiency: multi-component transformations lead the way. Chemistry, 2000, 6(18), 3321-3329.
[http://dx.doi.org/10.1002/1521-3765(20000915)6:18<3321:AID-CHEM3321>3.0.CO;2-A] [PMID: 11039522]
[11]
Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res., 2009, 42(3), 463-472.
[http://dx.doi.org/10.1021/ar800214s] [PMID: 19175315]
[12]
Afshari, R.; Shaabani, A. Materials functionalization with multicomponent reactions: state of the art. ACS Comb. Sci., 2018, 20(9), 499-528.
[http://dx.doi.org/10.1021/acscombsci.8b00072] [PMID: 30106275]
[13]
Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[http://dx.doi.org/10.1021/cr800296p] [PMID: 19480390]
[14]
Ruijter, E.; Orru, R.V.A. Multicomponent reactions - opportunities for the pharmaceutical industry. Drug Discov. Today. Technol., 2013, 10(1), e15-e20.
[http://dx.doi.org/10.1016/j.ddtec.2012.10.012] [PMID: 24050225]
[15]
Neochoritis, C.G.; Zhao, T.; Dömling, A. Tetrazoles via multicomponent reactions. Chem. Rev., 2019, 119(3), 1970-2042.
[http://dx.doi.org/10.1021/acs.chemrev.8b00564] [PMID: 30707567]
[16]
Rotstein, B.H.; Zaretsky, S.; Rai, V.; Yudin, A.K. Small heterocycles in multicomponent reactions. Chem. Rev., 2014, 114(16), 8323-8359.
[http://dx.doi.org/10.1021/cr400615v] [PMID: 25032909]
[17]
Garbarino, S.; Ravelli, D.; Protti, S.; Basso, A. Photoinduced multicomponent reactions. Angew. Chem. Int. Ed. Engl., 2016, 55(50), 15476-15484.
[http://dx.doi.org/10.1002/anie.201605288] [PMID: 27487327]
[18]
Khan, M.M.; Yousuf, R.; Khan, S. Shafiullah. Recent advances in multicomponent reactions involving carbohydrates. RSC Advances, 2015, 5(71), 57883-57905.
[http://dx.doi.org/10.1039/C5RA08059B]
[19]
Lieke, W. Ueber das Cyanallyl. Justus Liebigs Ann. Chem., 1859, 112(3), 316-321.
[http://dx.doi.org/10.1002/jlac.18591120307]
[20]
Gautier, A. auf das Aethyl- und Methylcyanür. Justus Liebigs Ann. Chem., 1867, 142(3), 289-294.
[http://dx.doi.org/10.1002/jlac.18671420304]
[21]
Hofmann, A.W. Observations on mixed contents. Ber. Dtsch. Chem. Ges., 1870, 3, 63.
[22]
Balalaie, S.; Ramezani Kejani, R.; Ghabraie, E.; Darvish, F.; Rominger, F.; Hamdan, F.; Bijanzadeh, H.R. Diastereoselective synthesis of functionalized diketopiperazines through post-transformational reactions. J. Org. Chem., 2017, 82(23), 12141-12152.
[http://dx.doi.org/10.1021/acs.joc.7b01855] [PMID: 29048893]
[23]
Balalaie, S.; Shamakli, M.; Nikbakht, A.; Alavijeh, N.S.; Rominger, F.; Rostamizadeh, S.; Bijanzadeh, H.R. Direct access to isoxazolino and isoxazolo benzazepines from 2-((hydroxyimino)methyl)benzoic acid via a post-Ugi heteroannulation. Org. Biomol. Chem., 2017, 15(27), 5737-5742.
[http://dx.doi.org/10.1039/C7OB01142C] [PMID: 28654111]
[24]
Balalaie, S.; Ghoroghaghaei, H. B.; Alavijeh, N. S.; Darvish, F.; Rominger, F.; Bijanzadeh, H. R. Synthesis of fully functionalized 3-bromoazaspiro [4.5]trienones through Ugi Four-Component Reaction (Ugi-4CR) followed by ipso-bromocyclization. SynOpen., 2018, 2(3), 0222-0228.
[25]
Balalaie, S.; Vaezghaemi, A.; Zarezadeh, N.; Rominger, F.; Bijanzadeh, H.R. Catalyst-free synthesis of fused triazolo-diazepino[5,6-b]quinoline derivatives via a sequential Ugi-4CR–Nucleophilic substitution–intramolecular click reaction. Synlett, 2018, 29(08), 1095-1101.
[http://dx.doi.org/10.1055/s-0036-1591531]
[26]
Balalaie, S.; Saeedi, S.; Ramezanpour, S. Synthesis of pseudo-peptides containing a quinazolinone skeleton via Ugi Four-Component Reaction. Helv. Chim. Acta, 2016, 99(2), 138-142.
[http://dx.doi.org/10.1002/hlca.201500187]
[27]
Nikbakht, A.; Balalaie, S.; Baghestani, F.; Rominger, F. Efficient synthesis of indole derivatives containing the tetrazole moeity utilizing an Ugi-Azide post-transformation strategy. Synlett, 2018, 29(14), 1892-1896.
[http://dx.doi.org/10.1055/s-0037-1610502]
[28]
Alavijeh, N.S.; Zadmard, R.; Ramezanpour, S.; Balalaie, S.; Alavijeh, M.S.; Rominger, F. Efficient synthesis of lower rim α-hydrazino tetrazolocalix [4] arenes via an Ugi-azide multicomponent reaction. New J. Chem., 2015, 39(8), 6578-6584.
[http://dx.doi.org/10.1039/C5NJ00845J]
[29]
Fathi Vavsari, V.; Mohammadi Ziarani, G.; Balalaie, S.; Badiei, A.; Golmohammadi, F.; Ramezanpour, S.; Rominger, F. Unexpected synthesis of 1,3,4-oxadiazines using extraordinary effect of SBA-Pr-SO3H as the nano–catalyst. ChemistrySelect, 2017, 2(12), 3496-3499.
[http://dx.doi.org/10.1002/slct.201601862]
[30]
Motaghi, M.; Khosravi, H.; Balalaie, S.; Rominger, F. Catalytic formal [4 + 1] isocyanide-based cycloaddition: an efficient strategy for the synthesis of 1H-cyclopenta[b]quinolin-1-one derivatives. Org. Biomol. Chem., 2019, 17(2), 275-282.
[http://dx.doi.org/10.1039/C8OB02857E] [PMID: 30539949]
[31]
Akritopoulou-Zanze, I. Isocyanide-based multicomponent reactions in drug discovery. Curr. Opin. Chem. Biol., 2008, 12(3), 324-331.
[http://dx.doi.org/10.1016/j.cbpa.2008.02.004] [PMID: 18312861]
[32]
Liu, Z.Q. Ugi and passerini reactions as successful models for investigating multicomponent reactions. Curr. Org. Chem., 2014, 18(6), 719-739.
[http://dx.doi.org/10.2174/1385272819666140201002717]
[33]
Tempest, P.A. Recent advances in heterocycle generation using the efficient Ugi multiple-component condensation reaction. Curr. Opin. Drug Discov. Devel., 2005, 8(6), 776-788.
[http://dx.doi.org/10.1002/chin.200615243] [PMID: 16312152]
[34]
Serafini, M.; Pirali, T. Arynes and isocyanides: Two close-knit partners in multicomponent reactions. Drug Discov. Today. Technol., 2018, 29, 35-41.
[http://dx.doi.org/10.1016/j.ddtec.2018.06.007] [PMID: 30471672]
[35]
Sadjadi, S.; Heravi, M.M.; Nazari, N. Isocyanide-based multicomponent reactions in the synthesis of heterocycles. RSC Advances, 2016, 6(58), 53203-53272.
[http://dx.doi.org/10.1039/C6RA02143C]
[36]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
[37]
Ugi, I.; Offermann, K. Asymmetrische 1.3-Induktion bei der α-Addition von Immonium-Ionen und Carboxylat-Anionen an Isonitrile. Angew. Chem., 1963, 75(19), 917-917.
[http://dx.doi.org/10.1002/ange.19630751907]
[38]
Ugi, I.; Werner, B.; Dömling, A. The chemistry of isocyanides, their multicomponent reactions and their libraries. Molecules, 2003, 8(1), 53-66.
[http://dx.doi.org/10.3390/80100053]
[39]
Dömling, A. Recent advances in isocyanide-based multicomponent chemistry. Curr. Opin. Chem. Biol., 2002, 6(3), 306-313.
[http://dx.doi.org/10.1016/S1367-5931(02)00328-9] [PMID: 12023110]
[40]
Qiu, G.; Ding, Q.; Wu, J. Recent advances in isocyanide insertion chemistry. Chem. Soc. Rev., 2013, 42(12), 5257-5269.
[http://dx.doi.org/10.1039/c3cs35507a] [PMID: 23456037]
[41]
Váradi, A.; Palmer, T.C.; Notis Dardashti, R.; Majumdar, S. Isocyanide-based multicomponent reactions for the synthesis of heterocycles. Molecules, 2015, 21(1) 9
[http://dx.doi.org/10.3390/molecules21010019] [PMID: 26703561]
[42]
Ivachtchenko, A.V.; Ivanenkov, Y.A.; Kysil, V.M.; Krasavin, M.Y.; Ilyin, A.P. Multicomponent reactions of isocyanides in the synthesis of heterocycles. Russ. Chem. Rev., 2010, 79(9), 787-817.
[http://dx.doi.org/10.1070/RC2010v079n09ABEH004086]
[43]
Van Berkel, S.S.; Bögels, B.G.M.; Wijdeven, M.A.; Westermann, B.; Rutjes, F.P.J.T. Recent advances in asymmetric isocyanide-based multicomponent reactions. Eur. J. Org. Chem., 2012, 2012(19), 3543-3559.
[http://dx.doi.org/10.1002/ejoc.201200030]
[44]
Meyer, R.; Schöllkopf, U.; Böhme, P. Synthesen mit α-metallierten Isocyaniden, XXXIX. 2-Imidazoline aus α-metallierten Isocyaniden und Schiff-Basen: 1,2-Diamine und 2,3-Diaminoalkansäuren. Justus Liebigs Ann. Chem., 1977, 1977(7), 1183-1193.
[http://dx.doi.org/10.1002/jlac.197719770715]
[45]
Van Leusen, A.M.; Wildeman, J.; Oldenziel, O.H. Chemistry of sulfonylmethyl isocyanides. 12. Base-induced cycloaddition of sulfonylmethyl isocyanides to carbon, nitrogen double bonds. Synthesis of 1,5-disubstituted and 1,4,5-trisubstituted imidazoles from aldimines and imidoyl chlorides. J. Org. Chem., 1977, 42(7), 1153-1159.
[http://dx.doi.org/10.1021/jo00427a012]
[46]
Bon, R.S.; Hong, C.; Bouma, M.J.; Schmitz, R.F.; de Kanter, F.J.J.; Lutz, M.; Spek, A.L.; Orru, R.V.A. Novel multicomponent reaction for the combinatorial synthesis of 2-imidazolines. Org. Lett., 2003, 5(20), 3759-3762.
[http://dx.doi.org/10.1021/ol035521g] [PMID: 14507224]
[47]
Boissarie, P.J.; Hamilton, Z.E.; Lang, S.; Murphy, J.A.; Suckling, C.J. A powerful palladium-catalyzed multicomponent process for the preparation of oxazolines and benzoxazoles. Org. Lett., 2011, 13(23), 6256-6259.
[http://dx.doi.org/10.1021/ol202725y] [PMID: 22047037]
[48]
Bauer, M.; Maurer, F.; Hoffmann, S.M.; Kazmaier, U. Hydroxyalkyl Thiazolines, a new class of highly efficient ligands for carbonyl additions. Synlett, 2008, 2008(20), 203203-203207.
[49]
Wang, X.; Xu, X-P.; Wang, S-Y.; Zhou, W.; Ji, S-J. Highly efficient chemoselective synthesis of polysubstituted pyrroles via isocyanide-based multicomponent domino reaction. Org. Lett., 2013, 15(16), 4246-4249.
[http://dx.doi.org/10.1021/ol401976w] [PMID: 23924314]
[50]
Kanazawa, C.; Kamijo, S.; Yamamoto, Y. Synthesis of imidazoles through the copper-catalyzed cross-cycloaddition between two different isocyanides. J. Am. Chem. Soc., 2006, 128(33), 10662-10663.
[http://dx.doi.org/10.1021/ja0617439] [PMID: 16910644]
[51]
Li, Y.; Xu, X.; Tan, J.; Xia, C.; Zhang, D.; Liu, Q. Double isocyanide cyclization: a synthetic strategy for two-carbon-tethered pyrrole/oxazole pairs. J. Am. Chem. Soc., 2011, 133(6), 1775-1777.
[http://dx.doi.org/10.1021/ja110864t] [PMID: 21244008]
[52]
Adib, M.; Nosrati, M.; Mahdavi, M.; Zhu, L-G.; Mirzaei, P. A novel, one-pot, three-component synthesis of 5H-[1,3]thiazolo[3,2-a]pyrimidine derivatives. Synlett, 2007, 2007(17), 2703-2706.
[http://dx.doi.org/10.1055/s-2007-991048]
[53]
Togni, A. Planar-chiral ferrocenes: synthetic methods and applications. Angew. Chem. Int. Ed. Engl., 1996, 35(13-14), 1475-1477.
[http://dx.doi.org/10.1002/anie.199614751]
[54]
Saegusa, T.; Ito, Y.; Kinoshita, H.; Tomita, S. Synthetic reactions by complex catalysts. XIX. Copper-catalyzed cycloaddition reactions of isocyanides. Novel synthesis of. DELTA.1-pyrroline and. DELTA.2-oxazoline. J. Org. Chem., 1971, 36(22), 3316-3323.
[http://dx.doi.org/10.1021/jo00821a011]
[55]
Bauer, M.; Kazmaier, U. A new modular approach towards 2-(1-hydroxyalkyl)oxazolines, effective bidentate chiral ligands. J. Organomet. Chem., 2006, 691(10), 2155-2158.
[http://dx.doi.org/10.1016/j.jorganchem.2005.10.048]
[56]
Cuny, G.; Gámez-Montaño, R.; Zhu, J. Truncated diastereoselective Passerini reaction, a rapid construction of polysubstituted oxazole and peptides having an α-hydroxy-β-amino acid component. Tetrahedron, 2004, 60(22), 4879-4885.
[http://dx.doi.org/10.1016/j.tet.2004.03.084]
[57]
Wang, S-X.; Wang, M-X.; Wang, D-X.; Zhu, J. Chiral salen-aluminum complex as a catalyst for enantioselective α-addition of isocyanides to aldehydes: asymmetric synthesis of 2-(1-hydroxyalkyl)-5-aminooxazoles. Org. Lett., 2007, 9(18), 3615-3618.
[http://dx.doi.org/10.1021/ol7014658] [PMID: 17685533]
[58]
Zeng, X.; Ye, K.; Lu, M.; Chua, P.J.; Tan, B.; Zhong, G. Chiral Brønsted acid catalyzed enantioselective addition of α-isocyanoacetamides to aldehydes. Org. Lett., 2010, 12(10), 2414-2417.
[http://dx.doi.org/10.1021/ol1007789] [PMID: 20429535]
[59]
Mihara, H.; Xu, Y.; Shepherd, N.E.; Matsunaga, S.; Shibasaki, M. A heterobimetallic Ga/Yb-Schiff base complex for catalytic asymmetric α-addition of isocyanides to aldehydes. J. Am. Chem. Soc., 2009, 131(24), 8384-8385.
[http://dx.doi.org/10.1021/ja903158x] [PMID: 19485325]
[60]
Wang, Q.; Wang, D-X.; Wang, M-X.; Zhu, J. Still unconquered: enantioselective Passerini and Ugi multicomponent reactions. Acc. Chem. Res., 2018, 51(5), 1290-1300.
[http://dx.doi.org/10.1021/acs.accounts.8b00105] [PMID: 29708723]
[61]
Wang, S.; Wang, M.X.; Wang, D.X.; Zhu, J. Asymmetric Lewis acid catalyzed addition of isocyanides to aldehydes - synthesis of 5-amino-2-(1-hydroxyalkyl)oxazoles. Eur. J. Org. Chem., 2007, 38(24), 4076-4080.
[http://dx.doi.org/10.1002/ejoc.200700340]
[62]
Wolstenhulme, J.R.; Cavell, A.; Gredičak, M.; Driver, R.W.; Smith, M.D. A cation-directed two-component cascade approach to enantioenriched pyrroloindolines. Chem. Commun. (Camb.), 2014, 50(88), 13585-13588.
[http://dx.doi.org/10.1039/C4CC06683A] [PMID: 25245762]
[63]
Knipe, P.C.; Gredičak, M.; Cernijenko, A.; Paton, R.S.; Smith, M.D. Phase-transfer-catalysed synthesis of pyrroloindolines and pyridoindolines by a hydrogen-bond-assisted isocyanide cyclization cascade. Chemistry, 2014, 20(11), 3005-3009.
[http://dx.doi.org/10.1002/chem.201400192] [PMID: 24523244]
[64]
Berłożecki, S.; Szymański, W.; Ostaszewski, R. α-Amino acids as acid components in the Passerini reaction: influence of N-protection on the yield and stereoselectivity. Tetrahedron, 2008, 64(41), 9780-9783.
[65]
Berłożecki, S.; Szymański, W.; Ostaszewski, R. Application of isocyanides derived from α-amino acids as substrates for the Ugi reaction. Synth. Commun., 2008, 38(16), 2714-2721.
[66]
Leusan, S.V.; Leusan, V. Synthetic uses of isoylmethyl isocyanide (Tos- MIC); Johan Wiley & Sons: New York, 2001.
[67]
Sisko, J.; Kassick, A.J.; Mellinger, M.; Filan, J.J.; Allen, A.; Olsen, M.A. An investigation of imidazole and oxazole syntheses using aryl-substituted TosMIC reagents. J. Org. Chem., 2000, 65(5), 1516-1524.
[http://dx.doi.org/10.1021/jo991782l] [PMID: 10814116]
[68]
Dömling, A.; Beck, B.; Herdtweck, E.; Antuch, W.; Oefner, C.; Yehia, N.; Gracia-Marques, A. Parallel synthesis of arrays of 1,4,5-trisubstituted 1-(4-piperidyl)-imidazoles by IMCR: a novel class of aspartyl protease inhibitors. ARKIVOC, 2007, 12, 99-109.
[69]
Wood, J.M.; Maibaum, J.; Rahuel, J.; Grütter, M.G.; Cohen, N-C.; Rasetti, V.; Rüger, H.; Göschke, R.; Stutz, S.; Fuhrer, W.; Schilling, W.; Rigollier, P.; Yamaguchi, Y.; Cumin, F.; Baum, H-P.; Schnell, C.R.; Herold, P.; Mah, R.; Jensen, C.; O’Brien, E.; Stanton, A.; Bedigian, M.P. Structure-based design of aliskiren, a novel orally effective renin inhibitor. Biochem. Biophys. Res. Commun., 2003, 308(4), 698-705.
[http://dx.doi.org/10.1016/S0006-291X(03)01451-7] [PMID: 12927775]
[70]
Sisko, J.; Mellinger, M. Development of a general process for the synthesis of highly substituted imidazoles. Pure Appl. Chem., 2002, 74, 1349-1357.
[http://dx.doi.org/10.1351/pac200274081349]
[71]
Elders, N.; van der Born, D.; Hendrickx, L.J.D.; Timmer, B.J.J.; Krause, A.; Janssen, E.; de Kanter, F.J.J.; Ruijter, E.; Orru, R.V.A. The efficient one-pot reaction of up to eight components by the union of multicomponent reactions. Angew. Chem. Int. Ed. Engl., 2009, 48(32), 5856-5859.
[http://dx.doi.org/10.1002/anie.200902683] [PMID: 19579257]
[72]
Bock, H.; Ugi, I. Multicomponent reactions. II. Stereoselective synthesis of 1(S)-camphor-2-cis-methylidene-isocyanide and its application in Passerini- and Ugi-reaction. J. Prakt. Chem., 1997, 339(1), 385-389.
[http://dx.doi.org/10.1002/prac.19973390167]
[73]
Gassman, P.G.; Guggenheim, T.L. Opening of epoxides with trimethylsilyl cyanide to produce beta-hydroxy isonitriles: a general synthesis of oxazolines and beta-amino alcohols. J. Am. Chem. Soc., 1982, 104(21), 5849-5850.
[http://dx.doi.org/10.1021/ja00385a078]
[74]
Zhu, C.; Yuan, F.; Gua, W.; Pan, Y. The first example of enantioselective isocyanosilylation of meso epoxides with TMSCN catalyzed by novel chiral organogallium and indium complexes. Chem. Commun. (Camb.), 2003, (6), 692-693.
[http://dx.doi.org/10.1039/b212511k] [PMID: 12703776]
[75]
Xia, L.; Li, S.; Chen, R.; Liu, K.; Chen, X. Catalytic Ugi-type condensation of α-isocyanoacetamide and chiral cyclic imine: access to asymmetric construction of several heterocycles. J. Org. Chem., 2013, 78(7), 3120-3131.
[http://dx.doi.org/10.1021/jo4000702] [PMID: 23442048]
[76]
Yue, T.; Wang, M-X.; Wang, D-X.; Masson, G.; Zhu, J. Brønsted acid catalyzed enantioselective three-component reaction involving the α addition of isocyanides to imines. Angew. Chem. Int. Ed. Engl., 2009, 48(36), 6717-6721.
[http://dx.doi.org/10.1002/anie.200902385] [PMID: 19658144]
[77]
George, J.; Kim, H.Y.; Oh, K. Silver-catalyzed asymmetric desymmetrization of cyclopentenediones via [3 + 2] cycloaddition with α-substituted isocyanoacetates. Org. Lett., 2018, 20(8), 2249-2252.
[http://dx.doi.org/10.1021/acs.orglett.8b00590] [PMID: 29583010]
[78]
Su, Y.; Bouma, M.J.; Alcaraz, L.; Stocks, M.; Furber, M.; Masson, G.; Zhu, J. Organocatalytic enantioselective one-pot four-component ugi-type multicomponent reaction for the synthesis of epoxy-tetrahydropyrrolo[3,4-b]pyridin-5-ones. Chemistry, 2012, 18(40), 12624-12627.
[http://dx.doi.org/10.1002/chem.201202174] [PMID: 22930594]
[79]
Gámez-Montaño, R.; González-Zamora, E.; Potier, P.; Zhu, J. Multicomponent domino process to oxa-bridged polyheterocycles and pyrrolopyridines, structural diversity derived from work-up procedure. Tetrahedron, 2002, 58(32), 6351-6358.
[http://dx.doi.org/10.1016/S0040-4020(02)00634-8]
[80]
Carney, D.W.; Truong, J.V.; Sello, J.K. Investigation of the configurational stabilities of chiral isocyanoacetates in multicomponent reactions. J. Org. Chem., 2011, 76(24), 10279-10285.
[http://dx.doi.org/10.1021/jo201817k] [PMID: 22044401]
[81]
Koopmanschap, G.; Ruijter, E.; Orru, R.V. Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics. Beilstein J. Org. Chem., 2014, 10, 544-598.
[http://dx.doi.org/10.3762/bjoc.10.50] [PMID: 24605172]
[82]
Moni, L.; De Moliner, F.; Garbarino, S.; Saupe, J.; Mang, C.; Basso, A. Exploitation of the Ugi 5-Center-4-component reaction (U-5C-4CR) for the generation of diverse libraries of polycyclic (Spiro)compounds. Front Chem., 2018, 6, 369.
[83]
Vishwanatha, T.M.; Narendra, N.; Sureshbabu, V.V. Synthesis of β-lactam peptidomimetics through Ugi MCR: first application of chiral Nβ-Fmoc amino alkyl isonitriles in MCRs. Tetrahedron Lett., 2011, 52(43), 5620-5624.
[http://dx.doi.org/10.1016/j.tetlet.2011.08.090]
[84]
Nenajdenko, V.G.; Gulevich, A.V.; Balenkova, E.S. The Ugi reaction with 2-substituted cyclic imines. Synthesis of substituted proline and homoproline derivatives. Tetrahedron, 2006, 62(25), 5922-5930.
[http://dx.doi.org/10.1016/j.tet.2006.04.021]
[85]
Morana, F.; Basso, A.; Bella, M.; Riva, R.; Banfi, L. Organocatalytic Asymmetric synthesis of β-Aryl-β-isocyano esters. Adv. Synth. Catal., 2012, 354(11-12), 2199-2210.
[http://dx.doi.org/10.1002/adsc.201200140]
[86]
Cerulli, V.; Banfi, L.; Basso, A.; Rocca, V.; Riva, R. Diversity oriented and chemoenzymatic synthesis of densely functionalized pyrrolidines through a highly diastereoselective Ugi multicomponent reaction. Org. Biomol. Chem., 2012, 10(6), 1255-1274.
[http://dx.doi.org/10.1039/c1ob06632c] [PMID: 22215069]
[87]
Zarezin, D.P.; Shmatova, O.I.; Nenajdenko, V.G. Chiral β3-isocyanopropionates for multicomponent synthesis of peptides and depsipeptides containing a β-amino acid fragment. Org. Biomol. Chem., 2018, 16(33), 5987-5998.
[http://dx.doi.org/10.1039/C8OB01507D] [PMID: 30083689]
[88]
Nenajdenko, V.G.; Gulevich, A.V.; Sokolova, N.V.; Mironov, A.V.; Balenkova, E.S. chiral isocyanoazides: efficient bifunctional reagents for bioconjugation. Eur. J. Org. Chem., 2010, 2010(8), 1445-1449.
[http://dx.doi.org/10.1002/ejoc.200901326]
[89]
Vorobyeva, D.V.; Sokolova, N.V.; Nenajdenko, V.G.; Peregudov, A.S.; Osipov, S.N. Synthesis of CF3-containing tetrapeptide surrogates via Ugi reaction/dipolar cycloaddition sequence. Tetrahedron, 2012, 68(3), 872-877.
[http://dx.doi.org/10.1016/j.tet.2011.11.037]
[90]
Bilgiçer, B.; Kumar, K. Synthesis and thermodynamic characterization of self-sorting coiled coils. Tetrahedron, 2002, 58(20), 4105-4112.
[http://dx.doi.org/10.1016/S0040-4020(02)00260-0]
[91]
Vorobyeva, D.V.; Karimova, N.M.; Vasilyeva, T.P.; Osipov, S.N.; Shchetnikov, G.T.; Odinets, I.L.; Röschenthaler, G-V. Synthesis of functionalized α-CF3-α-aminophosphonates via Cu(I)-catalyzed 1,3-dipolar cycloaddition. J. Fluor. Chem., 2010, 131(3), 378-383.
[http://dx.doi.org/10.1016/j.jfluchem.2009.12.003]
[92]
Shchetnikov, G.T.; Zotova, M.A.; Bruneau, C.; Dixneuf, P.H.; Osipov, S.N. Synthesis of α-Alkynyl-β, β, β-trifluoroalanine derivatives by Sonogashira cross-coupling reaction. Eur. J. Org. Chem., 2010, 2010(8), 1587-1592.
[http://dx.doi.org/10.1002/ejoc.200901354]
[93]
Mayer, J.; Umkehrer, M.; Kalinski, C.; Ross, G.; Kolb, J.; Burdack, C.; Hiller, W. New cleavable isocyanides for the combinatorial synthesis of α-amino acid analogue tetrazoles. Tetrahedron Lett., 2005, 46(43), 7393-7396.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.101]
[94]
Santhosh, L.; Nagamangala, S.R.; Thimmalapura, V.M.; Vommina, S.V. Synthesis of 1, 5- disubstituted tetrazole via Ugi azide reaction: an asymmetric induction approach. ChemistrySelect, 2017, 2(20), 5497-5500.
[http://dx.doi.org/10.1002/slct.201701032]
[95]
Lesma, G.; Cecchi, R.; Crippa, S.; Giovanelli, P.; Meneghetti, F.; Musolino, M.; Sacchetti, A.; Silvani, A. Ugi 4-CR/Pictet-Spengler reaction as a short route to tryptophan-derived peptidomimetics. Org. Biomol. Chem., 2012, 10(45), 9004-9012.
[http://dx.doi.org/10.1039/c2ob26301g] [PMID: 23073566]
[96]
Samarasimhareddy, M.; Hemantha, H.P.; Sureshbabu, V.V. A simple protocol for the synthesis of triazole-linked cyclic glycopeptidomimetics: a sequential Ugi-MCR and azide–alkyne cycloaddition approach. Tetrahedron Lett., 2012, 53(24), 3104-3107.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.034]
[97]
Faure, S.; Hjelmgaard, T.; Roche, S.P.; Aitken, D.J. Passerini reaction-amine deprotection-acyl migration peptide assembly: efficient formal synthesis of cyclotheonamide C. Org. Lett., 2009, 11(5), 1167-1170.
[http://dx.doi.org/10.1021/ol900048r] [PMID: 19203293]
[98]
Vishwanatha, T.M.; Kurpiewska, K.; Kalinowska-Tłuścik, J.; Dömling, A. Cysteine isocyanide in multicomponent reaction: synthesis of peptido-mimetic 1,3-Azoles. J. Org. Chem., 2017, 82(18), 9585-9594.
[http://dx.doi.org/10.1021/acs.joc.7b01615] [PMID: 28817272]
[99]
Haldar, S.; Saha, S.; Mandal, S.; Jana, C.K. C–H functionalization enabled stereoselective Ugi-azide reaction to α-tetrazolyl alicyclic amines. Green Chem., 2018, 20(15), 3463-3467.
[http://dx.doi.org/10.1039/C8GC01544A]
[100]
Zhang, J.; Hu, Y.; Foley, C.; Wang, Y.; Musharrafieh, R.; Xu, S.; Zhang, Y.; Ma, C.; Hulme, C.; Wang, J. Exploring Ugi-Azide Four-Component Reaction products for broad-spectrum influenza antivirals with a high genetic barrier to drug resistance. Sci. Rep., 2018, 8(1), 4653.
[http://dx.doi.org/10.1038/s41598-018-22875-9] [PMID: 29545578]