[1]
Dodia, J.; Dangar, V.; Shah, V. Synthesis, characterization and antimicrobial activity of some new barbitone derivatives. World J. Pharma. Res., 2017, 6(17), 749-754.
[7]
Suddock, J.T.; Cain, M.D. Toxicity, Barbiturate. StatPearls. Internet; Stat- Pearls Publishing, 2018.
[10]
Chowdhury, L.D.; Singh, O.P. Hypnotics and Sedatives In: Psychiatric Drug
Handbook; , 2018; pp. 9-18.
[11]
Santos, C.; Olmedo, R.; Kim, J. Sedative-hypnotic drug withdrawal syndrome: recognition and treatment [digest]. Emerg. Med. Prac., 2017, 19(3 Suppl Points & Pearls), S1-S2.
[13]
Walsh, S.J.; Katz, K.D. Barbiturates. In: Critical Care Toxicology; Springer, 2016; pp. 1-10.
[16]
Millichapf, J.G.H. Anticonvulsant drugs. In: The Nervous System; Central Nervous System Drugs, 2016; p. 97.
[17]
Allgulander, C. Barbiturates In: Encyclopedia of Psychopharmacology; , 2015; pp. 248-254.
[18]
Neumann, D. The Design and Synthesis of Novel Barbiturates of Pharmaceutical Interest., 2004.
[32]
Brouwer, W.G.; Felauerand, E.E.; Bell, A.R. US Patent 779,982. In: Chem.
Abstr; , 1991.
[44]
Green, G.R.; Evans, J.M.; Vong, A.K.; Katritzky, A.R.; Rees, C.W.; Scriven, E.F.V. Pyrans and their benzo derivatives synthesis. In: Comprehensive Heterocyclic Chemistry II; Pergamon Press: Oxford, UK, 1995; Vol. 5, p. 469.
[53]
Dighore, N.; Anandgaonker, P.; Gaikwad, S.; Rajbhoj, A. Solvent free green synthesis of 5-arylidine barbituric acid derivatives catalyzed by copper oxide nanoparticles. Res. J. Chem. Sci., 2014, 4(7), 93-98.
[64]
Yahyazadehfar, M.; Sheikhhosseini, E.; Ahmadi, S.A.; Ghazanfari, D. Microwave‐associate synthesis of Co3O4 nanoparticles as an effcient nanocatalyst for the synthesis of arylidene barbituric and Meldrum’s acid derivatives in green media. Appl. Organomet. Chem., 2019, 33(9) e5100
[68]
Uphade, B.; Gadhave, A. Eggshell waste: an efficient solid catalyst for the synthesisof 5-arylidene barbituric acids under solvent-free condition. IJRST, 2019, 5(4), 1-4.
[72]
Uttam, B. A solvent free green protocol for synthesis of 5-arylidine barbituric acid derivatives. Org. Chem. Indian J., 2016, 12(3), 1-6.
[83]
Türkel, N.; Aksoy, M.S. Complex formation of Nickel (II) and Copper (II)
with barbituric acid. ISRN Analytical Chemistry, 2014, Article ID 243175
[112]
Bakhotmah, D.A. Synthesis of barbituric and thiobarbituric acids bearing 5, 6-diphenyl-1, 2, 4-triazin-3-yl moiety as CDK2 inhibitors of tumor cells. Amer. J. Heter. Chem., 2019, 5(4), 76-80.
[116]
Montazeri, N. Nano Al2O3: an efficient catalyst for the multi-component synthesis of Pyrano [2, 3-d] Pyrimidinone derivatives. Int. J. Nanodimens., 2015, 6(3), 283-287.
[117]
Goli-Jolodar, O.; Shirini, F.; Seddighi, M. Succinimidinium hydrogensulfate ([H-Suc] HSO4) as an efficient ionic liquid catalyst for the synthesis of 5-arylidenepyrimidine-2, 4, 6 (1H, 3H, 5H)-trione and pyrano-pyrimidinones derivatives. J. Indian Chem. Soc., 2016, 12(3), 457-463.
[118]
Kefayati, H.; Valizadeh, M.; Islamnezhad, A. Green electrosynthesis of pyrano [2, 3-d] pyrimidinones at room temperature. Anal. Bioanal. Electrochem, 2014, 6(1), 80-90.