[9]
Kim, K.Y. Nanotechnology Platforms and Physiological Challenges for Cancer Therapeutics. In: Balogh, L.P. (Ed.) In: Nanomedicine in Cancer; Pan Stanford: Temasek Boulevard, 2017; pp. 1-20.
[10]
SreeHarsha. N.; Maheshwari, R.; Al-Dhubiab, B.E.; Tekade, M.; Sharma, M.C.; Venugopala, K.N.; Tekade, R.K.; Alzahrani, A.M. Graphene-based hybrid nanoparticle of doxorubicin for cancer chemotherapy. Int. J. Nanomedicine, 2019, 14, 7419-7429.
[12]
Dinadayalane, T.C.; Leszczynski, J. Fundamental structural, electronic, and chemical properties of carbon nanostructures: graphene, fullerenes, carbon nanotubes, and their derivatives. In: Leszczynski,
J.; Kaczmarek-Kedziera, A.; Puzyn, T.; Papadopoulos,
M.G.; Reis, H.; Shukla, M.K. (Eds.).Handbook of Computational
Chemistry; Springer: Switzerland AG, 2016, p. 1175-1258.
[14]
Kaushik, B.K.; Majumder, M.K. Carbon nanotube: Properties and applications. In: Kaushik, B.K.; Majumder, M.K. (Eds.). In: Carbon Nanotube Based VLSI Interconnects; Springer: Switzerland AG, 2015; pp. 17-37.
[18]
Teoh, W.C.; Yeoh, W.M.; Mohamed, A.R. Evaluation of different oxidizing agents on effective covalent functionalization of multiwalled carbon nanotubes. Fuller. Nanotub. Car. N., 2018, 26, 846-850.
[40]
Smalley, R.; Hauge, R.; Kittrell, W.; Sivarajan, R.; Strano, M.; Bachilo, S.; Weisman, R. Single-wall carbon nanotubes of precisely
defined type and use thereof. US20040038251A1, February,
2004.
[71]
Yang, G.Z. Implantable Sensors and Systems. From Theory to Practice, 2018, 1-17.
[82]
Harvey, J.D.; Jena, P.V.; Baker, H.A.; Zerze, G.H.; Williams, R.M.; Galassi, T.V.; Roxbury, D.; Mittal, J.; Heller, D.A. A carbon
nanotube reporter of microRNA hybridization events in vivo. Nat.
Biomed. Eng, 2017, 1, 0041.
[103]
Hinds, B. Carbon Nanotube Membranes as an Idealized Platform For Protein Channel Mimetic Pumps. InResponsive Membranes and Materials; Bhattacharyya, D.; Schafer, T.; Wickramasinghe, S.R.; Daunert, S., Eds.; John Wiley Sons, Ltd., 2013, pp. 51-71.
[107]
Franco, A.A. Polymer Electrolyte Fuel Cells: Science, Applications, and Challenges. Pan Stanford: Temasek Boulevard, 2016; Vol. 2, pp. 233-245.
[108]
Sahoo, S.K.; Misra, R.; Parveen, S. Nanoparticles: A Boon to Drug
Delivery, Therapeutics, Diagnostics and Imaging. In: Balogh, L.P.
(Ed.).Nanomedicine in Cancer; Pan Stanford: Temasek Boulevard, 2017, p. 47-98.
[109]
Bianco, A.; Pantarotto, D.; Prato, M. Functionalized carbon nanotubes,
a process for preparing the same and their use in medicinal
chemistry. WO2004089819A1, October 2004.
[110]
McCall, M.; Moghaddam, M. Methods for the chemical and physical
modification of nanotubes, methods for linking the nanotubes,
methods for the directed positioning of nanotubes, and uses thereof.
WO2004020450, March, 2006
[111]
Harnack, O.; Raible, I.; Yasuda, A.; Vossmeyer, T. Method for
patterning organic materials or combinations of organic and inorganic
materials. WO2013074622A1, May, 2005.
[112]
Awano, Y.; Yamaguchi, Y.; Arinaga, K.; Fujita, S. Carbon nanotubes,
process for their production, and catalyst for production of
carbon nanotubes. US20050042162A1, February, 2005.
[113]
Robeson, L. M.; Rothrock, G. D. Nanostructured surfaces for biomedical/
biomaterial applications and processes thereof.
US9314548B2, April, 2019.
[114]
Afazali-Ardakani, A.; Hannon, J.B.; Kagan, C.R.; Tulevski, G.S. Methods for separating carbon nanotubes by enhancing the density
differential. US7727505B2, June, 2010.
[115]
Resasco, D.E.; Kitiyanan, B.; Harwell, J.H.; Alvarez, W. Carbon
nanotube product comprising single-walled carbon nanotubes.
US6994907B2, February, 2006.
[116]
Harutyunyan, A.; Mora, E.; Tokune, T. Methods for growing long
carbon single-walled nanotubes. JP5102633B2, December, 2011.
[117]
Clarke, M.S.F. Spatial localization of dispersed single walled carbon
nanotubes into useful structures. US20030012723A1, January,
2003.
[118]
Moravsky, A.P.; Loutfy, R.O. Double-walled carbon nanotubes and
methods for production and application. US8404209B2, March,
2013.