Long-Term Exposure to Ambient Hydrocarbons Increases Dementia Risk in People Aged 50 Years and above in Taiwan

Page: [1276 - 1289] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Alzheimer’s disease, the most common cause of dementia among the elderly, is a progressive and irreversible neurodegenerative disease. Exposure to air pollutants is known to have adverse effects on human health, however, little is known about hydrocarbons in the air that can trigger a dementia event.

Objective: We aimed to investigate whether long-term exposure to airborne hydrocarbons increases the risk of developing dementia.

Method: The present cohort study included 178,085 people aged 50 years and older in Taiwan. Cox proportional hazards regression analysis was used to fit the multiple pollutant models for two targeted pollutants, including total hydrocarbons and non-methane hydrocarbons, and estimated the risk of dementia.

Results: Before controlling for multiple pollutants, hazard ratios with 95% confidence intervals for the overall population were 7.63 (7.28-7.99, p <0.001) at a 0.51-ppm increases in total hydrocarbons, and 2.94 (2.82-3.05, p <0.001) at a 0.32-ppm increases in non-methane hydrocarbons. The highest adjusted hazard ratios for different multiple-pollutant models of each targeted pollutant were statistically significant (p <0.001) for all patients: 11.52 (10.86-12.24) for total hydrocarbons and 9.73 (9.18-10.32) for non-methane hydrocarbons.

Conclusion: Our findings suggest that total hydrocarbons and non-methane hydrocarbons may be contributing to dementia development.

Keywords: Alzheimer's disease, dementia, hydrocarbons, air pollution, environmental pollutants, population-based.

[1]
Greenblatt J, Grossman K. Lithium: the cinderella story about a mineral that may prevent Alzheimer’s disease. Neuropsychotherapist 22-9. (2015)
[2]
Moulton PV, Yang W. Air pollution, oxidative stress, and Alzheimer’s disease. J Environ Public Health 2012 472751 (2012)
[http://dx.doi.org/10.1155/2012/472751] [PMID: 22523504]
[3]
Kochanek KD, Murphy SL, Xu J, Tejada-Vera B. Deaths: final data for 2014. Natl Vital Stat Rep 65(4): 1-122. (2016)
[4]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580): 353-6. (2002)
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[5]
Perl DP. Neuropathology of Alzheimer’s disease. Mt Sinai J Med 77(1): 32-42. (2010)
[http://dx.doi.org/10.1002/msj.20157] [PMID: 20101720]
[6]
Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron 6(4): 487-98. (1991)
[http://dx.doi.org/10.1016/0896-6273(91)90052-2] [PMID: 1673054]
[7]
Coon KD, Myers AJ, Craig DW, Webster JA, Pearson JV, Lince DH, et al. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry 68(4): 613-8. (2007)
[http://dx.doi.org/10.4088/JCP.v68n0419] [PMID: 17474819]
[8]
Guo Z, Cupples LA, Kurz A, Auerbach SH, Volicer L, Chui H, et al. Head injury and the risk of AD in the MIRAGE study. Neurology 54(6): 1316-23. (2000)
[http://dx.doi.org/10.1212/WNL.54.6.1316] [PMID: 10746604]
[9]
Calderón-Garcidueñas L, Reed W, Maronpot RR, Henríquez-Roldán C, Delgado-Chavez R, Calderón-Garcidueñas A, et al. Brain inflammation and Alzheimer’s-like pathology in individuals exposed to severe air pollution. Toxicol Pathol 32(6): 650-8. (2004)
[http://dx.doi.org/10.1080/01926230490520232] [PMID: 15513908]
[10]
Yegambaram M, Manivannan B, Beach TG, Halden RU. Role of environmental contaminants in the etiology of Alzheimer’s disease: a review. Curr Alzheimer Res 12(2): 116-46. (2015)
[http://dx.doi.org/10.2174/1567205012666150204121719] [PMID: 25654508]
[11]
Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet 377(9770): 1019-31. (2011)
[http://dx.doi.org/10.1016/S0140-6736(10)61349-9] [PMID: 21371747]
[12]
Avramopoulos D. Genetics of Alzheimer’s disease: recent advances. Genome Med 1(3): 34. (2009)
[http://dx.doi.org/10.1186/gm34] [PMID: 19341505]
[13]
Maloney B, Lahiri DK. Epigenetics of dementia: understanding the disease as a transformation rather than a state. Lancet Neurol 15(7): 760-74. (2016)
[http://dx.doi.org/10.1016/S1474-4422(16)00065-X] [PMID: 27302240]
[14]
Lahiri DK, Maloney B, Zawia NH. The LEARn model: an epigenetic explanation for idiopathic neurobiological diseases. Mol Psychiatry 14(11): 992-1003. (2009)
[http://dx.doi.org/10.1038/mp.2009.82] [PMID: 19851280]
[15]
Wu YC, Lin YC, Yu HL, Chen JH, Chen TF, Sun Y, et al. Association between air pollutants and dementia risk in the elderly. Alzheimers Dement (Amst) 1(2): 220-8. (2015)
[http://dx.doi.org/10.1016/j.dadm.2014.11.015] [PMID: 27239507]
[16]
Yun Y, Yao G, Yue H, Guo L, Qin G, Li G, et al. SO(2) inhalation causes synaptic injury in rat hippocampus via its derivatives in vivo. Chemosphere 93(10): 2426-32. (2013)
[http://dx.doi.org/10.1016/j.chemosphere.2013.08.063] [PMID: 24099899]
[17]
Wang C, Liang C, Ma J, Manthari RK, Niu R, Wang J, et al. Co-exposure to fluoride and sulfur dioxide on histological alteration and DNA damage in rat brain. J Biochem Mol Toxicol 32(2) e22023 (2018)
[http://dx.doi.org/10.1002/jbt.22023] [PMID: 29278284]
[18]
Yargicoglu P, Şahin E, Gümüşlü S, Ağar A. The effect of sulfur dioxide inhalation on active avoidance learning, antioxidant status and lipid peroxidation during aging. Neurotoxicol Teratol 29(2): 211-8. (2007)
[http://dx.doi.org/10.1016/j.ntt.2006.11.002] [PMID: 17197156]
[19]
Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525(7569): 367-71. (2015)
[http://dx.doi.org/10.1038/nature15371] [PMID: 26381985]
[20]
Béjot Y, Reis J, Giroud M, Feigin V. A review of epidemiological research on stroke and dementia and exposure to air pollution. Int J Stroke 13(7): 687-95. (2018)
[http://dx.doi.org/10.1177/1747493018772800] [PMID: 29699457]
[21]
Guo S, Yang F, Tan J, Duan J. Nonmethane hydrocarbons in ambient air of hazy and normal days in Foshan, South China. Environ Eng Sci 29(4): 262-9. (2012)
[http://dx.doi.org/10.1089/ees.2010.0421] [PMID: 22493559]
[22]
Tormoehlen LM, Tekulve KJ, Nañagas KA. Hydrocarbon toxicity: A review. Clin Toxicol (Phila) 52(5): 479-89. (2014)
[http://dx.doi.org/10.3109/15563650.2014.923904] [PMID: 24911841]
[23]
Barletta B, Meinardi S, Sherwood Rowland F, Chan CY, Wang X, et al. Volatile organic compounds in 43 Chinese cities. Atmos Environ 39: 5979-90. (2005)
[http://dx.doi.org/10.1016/j.atmosenv.2005.06.029]
[24]
Ogawa H, Li T. Volatile organic compounds in exhaust gas from diesel engines under various operating conditions. Int J Engine Res 12: 30-40. (2011)
[http://dx.doi.org/10.1243/14680874JER392472]
[25]
Mo Z, Shao M, Lu S, Niu H, Zhou M, Sun J. Characterization of non-methane hydrocarbons and their sources in an industrialized coastal city, Yangtze River Delta, China. Sci Total Environ 593-594: 641-53. (2017)
[http://dx.doi.org/10.1016/j.scitotenv.2017.03.123] [PMID: 28363178]
[26]
Taiwan environmental protection administration executive yuan 2000. Available form. https://www.epa.gov.tw/mp.asp?mp=epaen
[27]
Jung CR, Lin YT, Hwang BF. Ozone, particulate matter, and newly diagnosed Alzheimer’s disease: a population-based cohort study in Taiwan. J Alzheimers Dis 44(2): 573-84. (2015)
[http://dx.doi.org/10.3233/JAD-140855] [PMID: 25310992]
[28]
Hullmann M, Albrecht C, van Berlo D, Gerlofs-Nijland ME, Wahle T, Boots AW, et al. Diesel engine exhaust accelerates plaque formation in a mouse model of Alzheimer’s disease. Part Fibre Toxicol 14(1): 35. (2017)
[http://dx.doi.org/10.1186/s12989-017-0213-5] [PMID: 28854940]
[29]
Förstl H, Kurz A. Clinical features of Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 249(6): 288-90. (1999)
[http://dx.doi.org/10.1007/s004060050101] [PMID: 10653284]
[30]
Duan H, Jia X, Zhai Q, Ma L, Wang S, Huang C, et al. Long-term exposure to diesel engine exhaust induces primary DNA damage: a population-based study. Occup Environ Med 73(2): 83-90. (2016)
[http://dx.doi.org/10.1136/oemed-2015-102919] [PMID: 26491144]
[31]
Zhang HW, Lin CW, Kok VC, Tseng CH, Lin YP, Li TC, et al. Incidence of retinal vein occlusion with long-term exposure to ambient air pollution. PLoS One 14(9) e0222895 (2019)
[http://dx.doi.org/10.1371/journal.pone.0222895] [PMID: 31550294]
[32]
Sparks DL, Schreurs BG. Trace amounts of copper in water induce β-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc Natl Acad Sci USA 100(19): 11065-9. (2003)
[http://dx.doi.org/10.1073/pnas.1832769100] [PMID: 12920183]
[33]
Thompson CM, Markesbery WR, Ehmann WD, Mao YX, Vance DE. Regional brain trace-element studies in Alzheimer’s disease. Neurotoxicology 9(1): 1-7. (1988)
[PMID: 3393299]
[34]
Weiss B. Can endocrine disruptors influence neuroplasticity in the aging brain? Neurotoxicology 28(5): 938-50. (2007)
[http://dx.doi.org/10.1016/j.neuro.2007.01.012] [PMID: 17350099]
[35]
Lahiri DK, Maloney B, Basha MR, Ge YW, Zawia NH. How and when environmental agents and dietary factors affect the course of Alzheimer’s disease: the “LEARn” model (latent early-life associated regulation) may explain the triggering of AD. Curr Alzheimer Res 4(2): 219-28. (2007)
[http://dx.doi.org/10.2174/156720507780362164] [PMID: 17430250]
[36]
Kang Y, Zhang Y, Feng Z, Liu M, Li Y, Yang H, et al. Nutritional deficiency in early life facilitates aging-associated cognitive decline. Curr Alzheimer Res 14(8): 841-9. (2017)
[http://dx.doi.org/10.2174/1567205014666170425112331] [PMID: 28443508]
[37]
Kilian J, Kitazawa M. The emerging risk of exposure to air pollution on cognitive decline and Alzheimer’s disease - Evidence from epidemiological and animal studies. Biomed J 41(3): 141-62. (2018)
[http://dx.doi.org/10.1016/j.bj.2018.06.001] [PMID: 30080655]
[38]
National Health Insurance Research Database (NHIRD). Introduction to the National Health Insurance Research Database 2017.http://nhird.nhri.org.tw/en/index.html
[39]
Sherman RE, Anderson SA, Dal Pan GJ, Gray GW, Gross T, Hunter NL, et al. Real-world evidence: what is it and what can it tell us? N Engl J Med 375(23): 2293-7. (2016)
[http://dx.doi.org/10.1056/NEJMsb1609216] [PMID: 27959688]
[41]
Environment resource dataset, environmental protection administration executive yuan 2017.https://erdb.epa.gov.tw/ENG/
[42]
Taiwan air quality monitoring network in taiwan environmental protection administration executive yuan (R.O.C.) Taiwan . http://taqm.epa.gov.tw/taqm/en/PsiMap.aspx
[43]
Zhang R, Liu G, Jiang Y, Li G, Pan Y, Wang Y, et al. Acute effects of particulate air pollution on ischemic stroke and hemorrhagic stroke mortality. Front Neurol 9: 827. (2018)
[http://dx.doi.org/10.3389/fneur.2018.00827] [PMID: 30333790]
[44]
Chen R, Wang C, Meng X, Chen H, Thach TQ, Wong CM, et al. Both low and high temperature may increase the risk of stroke mortality. Neurology 81(12): 1064-70. (2013)
[http://dx.doi.org/10.1212/WNL.0b013e3182a4a43c] [PMID: 23946311]
[45]
Lee H, Myung W, Cheong HK, Yi SM, Hong YC, Cho SI, et al. Ambient air pollution exposure and risk of migraine: Synergistic effect with high temperature. Environ Int 121(Pt 1): 383-91. (2018)
[http://dx.doi.org/10.1016/j.envint.2018.09.022] [PMID: 30245361]
[46]
Lin YK, Chang CK, Wang YC, Ho TJ. Acute and prolonged adverse effects of temperature on mortality from cardiovascular diseases. PLoS One 8(12) e82678 (2013)
[http://dx.doi.org/10.1371/journal.pone.0082678] [PMID: 24349335]
[47]
Moghadamnia MT, Ardalan A, Mesdaghinia A, Keshtkar A, Naddafi K, Yekaninejad MS. Ambient temperature and cardiovascular mortality: a systematic review and meta-analysis. PeerJ 5 e3574 (2017)
[http://dx.doi.org/10.7717/peerj.3574] [PMID: 28791197]
[48]
Zhang Q, Wu L, Fang X, Liu M, Zhang J, Shao M, et al. Emission factors of volatile organic compounds (VOCs) based on the detailed vehicle classification in a tunnel study. Sci Total Environ 624: 878-86. (2018)
[http://dx.doi.org/10.1016/j.scitotenv.2017.12.171] [PMID: 29275252]
[49]
Kukull WA, Larson EB, Bowen JD, McCormick WC, Teri L, Pfanschmidt ML, et al. Solvent exposure as a risk factor for Alzheimer’s disease: a case-control study. Am J Epidemiol 141(11): 1059-71. (1995)
[http://dx.doi.org/10.1093/oxfordjournals.aje.a117370] [PMID: 7771442]
[50]
Ritchie GD, Still KR, Alexander WK, Nordholm AF, Wilson CL, Rossi J III, et al. A review of the neurotoxicity risk of selected hydrocarbon fuels. J Toxicol Environ Health B Crit Rev 4(3): 223-312. (2001)
[http://dx.doi.org/10.1080/109374001301419728] [PMID: 11503417]
[51]
Tisch U, Schlesinger I, Ionescu R, Nassar M, Axelrod N, Robertman D, et al. Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine (Lond) 8(1): 43-56. (2013)
[http://dx.doi.org/10.2217/nnm.12.105] [PMID: 23067372]
[52]
Chen H, Kwong JC, Copes R, Hystad P, van Donkelaar A, Tu K, et al. Exposure to ambient air pollution and the incidence of dementia: a population-based cohort study. Environ Int 108: 271-7. (2017)
[http://dx.doi.org/10.1016/j.envint.2017.08.020] [PMID: 28917207]
[53]
Xu X, Ha SU, Basnet R. A review of epidemiological research on adverse neurological effects of exposure to ambient air pollution. Front Public Health 4: 157. (2016)
[http://dx.doi.org/10.3389/fpubh.2016.00157] [PMID: 27547751]
[54]
Di Q, Dai L, Wang Y, Zanobetti A, Choirat C, Schwartz JD. Association of short-term exposure to air pollution with mortality in older adults. JAMA 318(24): 2446-56. (2017)
[http://dx.doi.org/10.1001/jama.2017.17923] [PMID: 29279932]
[55]
Kim SH, Knight EM, Saunders EL, Zanobetti A, Choirat C, Schwartz JD, et al. Rapid doubling of Alzheimer’s amyloid-β40 and 42 levels in brains of mice exposed to a nickel nanoparticle model of air pollution. F1000 Res 1: 70. (2012)
[http://dx.doi.org/10.12688/f1000research.1-70.v1] [PMID: 24358824]
[56]
Calderón-Garcidueñas L, Kavanaugh M, Block M, D’Angiulli A, Delgado-Chávez R, Torres-Jardón R, et al. Neuroinflammation, hyperphosphorylated tau, diffuse amyloid plaques, and down-regulation of the cellular prion protein in air pollution exposed children and young adults. J Alzheimers Dis 28(1): 93-107. (2012)
[http://dx.doi.org/10.3233/JAD-2011-110722] [PMID: 21955814]
[57]
Rivas-Arancibia S, Guevara-Guzmán R, López-Vidal Y, Rodríguez-Martínez E, Zanardo-Gomes M, Angoa-Pérez M, et al. Oxidative stress caused by ozone exposure induces loss of brain repair in the hippocampus of adult rats. Toxicol Sci 113(1): 187-97. (2010)
[http://dx.doi.org/10.1093/toxsci/kfp252] [PMID: 19833740]
[58]
Basha MR, Wei W, Bakheet SA, Benitez N, Siddiqi HK, Ge YW, et al. The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J Neurosci 25(4): 823-9. (2005)
[http://dx.doi.org/10.1523/JNEUROSCI.4335-04.2005] [PMID: 15673661]
[59]
Costa LG, Cole TB, Coburn J, Chang YC, Dao K, Roque P. Neurotoxicants are in the air: convergence of human, animal, and in vitro studies on the effects of air pollution on the brain. BioMed Res Int 2014 736385 (2014)
[http://dx.doi.org/10.1155/2014/736385] [PMID: 24524086]
[60]
Genc S, Zadeoglulari Z, Fuss SH, Genc K. The adverse effects of air pollution on the nervous system. J Toxicol 2012 782462 (2012)
[http://dx.doi.org/10.1155/2012/782462] [PMID: 22523490]
[61]
Liu L, Chan C. The role of inflammasome in Alzheimer’s disease. Ageing Res Rev 15: 6-15. (2014)
[http://dx.doi.org/10.1016/j.arr.2013.12.007] [PMID: 24561250]
[62]
Calderón-Garcidueñas L, Azzarelli B, Acuna H, Garcia R, Gambling TM, Osnaya N, et al. Air pollution and brain damage. Toxicol Pathol 30(3): 373-89. (2002)
[http://dx.doi.org/10.1080/01926230252929954] [PMID: 12051555]
[63]
Wendeln AC, Degenhardt K, Kaurani L, Gertig M, Ulas T, Jain G, et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556(7701): 332-8. (2018)
[http://dx.doi.org/10.1038/s41586-018-0023-4] [PMID: 29643512]
[64]
Goldeck D, Witkowski JM, Fülop T, Pawelec G. Peripheral immune signatures in Alzheimer disease. Curr Alzheimer Res 13(7): 739-49. (2016)
[http://dx.doi.org/10.2174/1567205013666160222112444] [PMID: 26899580]