Green-Synthesized FeSO4 Nanoparticles Exhibit Antibacterial and Cytotoxic Activity by DNA Degradation

Page: [587 - 595] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Objective: The current study reports a green, rapid and one-pot synthesis of FeSO4 nanoparticles using Hibiscus rosasinensis floral extract as a reducing and capping agent. 0.5M of FeSO4 was stirred with the floral extract of H. rosasinensis for around 20 minutes at 37ºC and pH 7.

Methods: The development of pink color was considered as the endpoint of reduction and the nanoparticles were characterized by UV-Vis spectrum, EDAX, DLS, FTIR, FESEM, and XRD. UV-Vis spectral analysis indicated a peak at 530 nm and EDAX measurement revealed the presence of Fe, S, O and C elements in the nanoparticle sample. The FTIR analysis showed amines, alcohol and alkene groups that act as capping agents for the produced nanoparticles. FESEM and XRD determination presented FeSO4 nanoparticles of 40-60 nm in size. The synthesized nanoparticles were found to have antibacterial activity against 6 pathogenic bacteria with MIC and MBC of 40 mg/mL.

Results: To determine the toxicity at the eukaryotic level, brine shrimp toxicity assay was conducted and 100% mortality was found at concentrations >0.06 mg/mL. Gel shift assay suggested the mechanism of toxicity of FeSO4 NPs by binding and degradation of DNA molecules.

Conclusion: From the results, the authors demonstrate the ease of green synthesis of FeSO4 nanoparticles and its bioactivity that may have potential applications as drugs and drug delivery systems against various diseases.

Keywords: Green synthesis, nanoparticle characterization, Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), gel shift assay, pathogenic bacteria.

Graphical Abstract

[1]
Albrecht, M.A.; Evans, C.W.; Raston, C.L. Green chemistry and the health implications of nanoparticles. Green Chem., 2006, 8(5), 417-432.
[http://dx.doi.org/10.1039/b517131h]
[2]
De, D.; Mandal, S.M.; Gauri, S.S.; Bhattacharya, R.; Ram, S.; Roy, S.K. Antibacterial effect of lanthanum calcium manganate (La0.67Ca0.33MnO3) nanoparticles against Pseudomonas aeruginosa ATCC 27853. J. Biomed. Nanotechnol., 2010, 6(2), 138-144.
[http://dx.doi.org/10.1166/jbn.2010.1113] [PMID: 20738067]
[3]
Dixon, M.B.; Falconet, C.; Ho, L.; Chow, C.W.; O’Neill, B.K.; Newcombe, G. Removal of cyanobacterial metabolites by nanofiltration from two treated waters. J. Hazard. Mater., 2011, 188(1-3), 288-295.
[http://dx.doi.org/10.1016/j.jhazmat.2011.01.111] [PMID: 21339048]
[4]
Sastry, M.; Ahmad, A.; Khan, M.I.; Kumar, R. Microbial Nanoparticle Production. In: Nanobiotechnology: Concepts, Applications and Perspectives; Niemeyer, C.M.; Mirkin, C.A., Eds.; Wiley-VCH: Weinheim, 2004.
[http://dx.doi.org/10.1002/3527602453.ch9]
[5]
Bhattacharya, D.; Gupta, R.K. Nanotechnology and potential of microorganisms. Crit. Rev. Biotechnol., 2005, 25(4), 199-204.
[http://dx.doi.org/10.1080/07388550500361994] [PMID: 16419617]
[6]
Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res., 2008, 10(3), 507-517.
[http://dx.doi.org/10.1007/s11051-007-9275-x]
[7]
Rosi, N.L.; Giljohann, D.A.; Thaxton, C.S.; Lytton-Jean, A.K.; Han, M.S.; Mirkin, C.A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science, 2006, 312(5776), 1027-1030.
[http://dx.doi.org/10.1126/science.1125559] [PMID: 16709779]
[8]
Shchukin, D.G.; Radtchenko, I.L.; Sukhorukov, G.B. Synthesis of nanosized magnetic ferrite particles inside hollow polyelectrolyte capsules. J. Phys. Chem. B, 2003, 107(1), 86-90.
[http://dx.doi.org/10.1021/jp0265236]
[9]
Herlekar, M.; Barve, S.; Kumar, R. 2014 Plant-mediated green synthesis of iron nanoparticles. J. Nanoparticles,2004. Article ID, 140614, 9.
[http://dx.doi.org/10.1155/2014/140614]
[10]
Saxena, A.; Tripathi, R.; Zafar, F.; Singh, P. Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater. Lett., 2012, 67(1), 91-94.
[http://dx.doi.org/10.1016/j.matlet.2011.09.038]
[11]
Prathna, T.C.; Chandrasekaran, N.; Raichur, A.M.; Mukherjee, A. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf. B Biointerfaces, 2011, 82(1), 152-159.
[http://dx.doi.org/10.1016/j.colsurfb.2010.08.036] [PMID: 20833002]
[12]
Sathishkumar, M.; Sneha, K.; Won, S.W.; Cho, C.W.; Kim, S.; Yun, Y.S. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf. B Biointerfaces, 2009, 73(2), 332-338.
[http://dx.doi.org/10.1016/j.colsurfb.2009.06.005] [PMID: 19576733]
[13]
Bankar, A.; Joshi, B.; Kumar, A.R.; Zinjarde, S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf. A Physicochem. Eng. Asp., 2010, 368(1-3), 58-63.
[http://dx.doi.org/10.1016/j.colsurfa.2010.07.024]
[14]
Sasidharan, S.; Sowmiya, R.; Balakrishnaraja, R. Biosynthesis of selenium nanoparticles using Citrus reticulata peel extract. World J. Pharm. Res, 2014, 4, 1322-1330.
[15]
Ahmad, N.; Sharma, S.; Alam, M.K.; Singh, V.N.; Shamsi, S.F.; Mehta, B.R.; Fatma, A. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B Biointerfaces, 2010, 81(1), 81-86.
[http://dx.doi.org/10.1016/j.colsurfb.2010.06.029] [PMID: 20656463]
[16]
Nabikhan, A.; Kandasamy, K.; Raj, A.; Alikunhi, N.M. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf. B Biointerfaces, 2010, 79(2), 488-493.
[http://dx.doi.org/10.1016/j.colsurfb.2010.05.018] [PMID: 20627485]
[17]
Salib, J.Y. Polyphenolic Compounds from Flowers of Hibiscus: Characterization and Bioactivity Polyphenols in Plants; Elsevier, 2014, pp. 231-239.
[18]
Murillo Pulgarín, J.A.; García Bermejo, L.F.; Carrasquero, D.A. Determination of antioxidant activity of hibiscus flowers by flow injection analysis with chemiluminescence detection. Anal. Lett., 2017, 50(1), 186-196.
[http://dx.doi.org/10.1080/00032719.2016.1167216]
[19]
Nanda, A.; Saravanan, M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine (Lond.), 2009, 5(4), 452-456.
[http://dx.doi.org/10.1016/j.nano.2009.01.012] [PMID: 19523420]
[20]
O’Toole, G.A. Microtiter dish biofilm formation assay. J. Vis. Exp., 2011, 47, 2437.
[http://dx.doi.org/10.3791/2437] [PMID: 21307833]
[21]
Wooldridge, K.G.; Williams, P.H. Iron uptake mechanisms of pathogenic bacteria. FEMS Microbiol. Rev., 1993, 12(4), 325-348.
[http://dx.doi.org/10.1111/j.1574-6976.1993.tb00026.x] [PMID: 8268005]
[22]
Buckling, A.; Harrison, F.; Vos, M.; Brockhurst, M.A.; Gardner, A.; West, S.A.; Griffin, A. Siderophore-mediated cooperation and virulence in Pseudomonas aeruginosa. FEMS Microbiol. Ecol., 2007, 62(2), 135-141.
[http://dx.doi.org/10.1111/j.1574-6941.2007.00388.x] [PMID: 17919300]
[23]
Schalk, I.J.; Mislin, G.L.A. Bacterial iron uptake pathways: Gates for the import of bactericide compounds. J. Med. Chem., 2017, 60(11), 4573-4576.https://pubs.acs.org/doi/10.1021/acs.jmedchem.7b00554
[PMID: 28453272]
[24]
Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.K.M.A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res., 2017, 9, 1-16.
[http://dx.doi.org/10.1016/j.jare.2017.10.008] [PMID: 30046482]
[25]
Chen, J.C.; Lru, P.C. Accumulation of heavy metals in the nauplii of Artemia salina. J. World Aquacult. Soc., 1987, 18(2), 84-93.
[http://dx.doi.org/10.1111/j.1749-7345.1987.tb00422.x]