Inhalation Delivery of Host Defense Peptides (HDP) using Nano- Formulation Strategies: A Pragmatic Approach for Therapy of Pulmonary Ailments

Page: [369 - 378] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Host defense peptides (HDP) are small cationic molecules released by the immune systems of the body, having multidimensional properties including anti-inflammatory, anticancer, antimicrobial and immune-modulatory activity. These molecules gained importance due to their broad-spectrum pharmacological activities, and hence being actively investigated. Presently, respiratory infections represent a major global health problem, and HDP has an enormous potential to be used as an alternative therapeutics against respiratory infections and related inflammatory ailments. Because of their short half-life, protease sensitivity, poor pharmacokinetics, and first-pass metabolism, it is challenging to deliver HDP as such inside the physiological system in a controlled way by conventional delivery systems. Many HDPs are efficacious only at practically high molar-concentrations, which is not convincing for the development of drug regimen due to their intrinsic detrimental effects. To avail the efficacy of HDP in pulmonary diseases, it is essential to deliver an appropriate payload into the targeted site of lungs. Inhalable HDP can be a potentially suitable alternative for various lung disorders including tuberculosis, Cystic fibrosis, Pneumonia, Lung cancer, and others as they are active against resistant microbes and cells and exhibit improved targeting with reduced adverse effects. In this review, we give an overview of the pharmacological efficacy of HDP and deliberate strategies for designing inhalable formulations for enhanced activity and issues related to their clinical implications.

Keywords: Host defense peptides, pulmonary delivery, dry powder inhalation, tuberculosis, cystic fibrosis, lung cancer.

Graphical Abstract

[1]
(a)Zumla, A.; Maeurer, M.; Chakaya, J.; Hoelscher, M.; Ntoumi, F.; Rustomjee, R.; Vilaplana, C.; Yeboah-Manu, D.; Rasolof, V.; Munderi, P.; Singh, N.; Aklillu, E.; Padayatchi, N.; Macete, E.; Kapata, N.; Mulenga, M.; Kibiki, G.; Mfinanga, S.; Nyirenda, T.; Maboko, L.; Garcia-Basteiro, A.; Rakotosamimanana, N.; Bates, M.; Mwaba, P.; Reither, K.; Gagneux, S.; Edwards, S.; Mfinanga, E.; Abdulla, S.; Cardona, P.J.; Russell, J.B.; Gant, V.; Noursadeghi, M.; Elkington, P.; Bonnet, M.; Menendez, C.; Dieye, T.N.; Diarra, B.; Maiga, A.; Aseffa, A.; Parida, S.; Wejse, C.; Petersen, E.; Kaleebu, P.; Oliver, M.; Craig, G.; Corrah, T.; Tientcheu, L.; Antonio, M.; Rao, M.; McHugh, T.D.; Sheikh, A.; Ippolito, G.; Ramjee, G.; Kaufmann, S.H.; Churchyard, G.; Steyn, A.; Grobusch, M.; Sanne, I.; Martinson, N.; Madansein, R.; Wilkinson, R.J.; Mayosi, B.; Schito, M.; Wallis, R.S.; Wallis, R.S. Host-Directed Therapies Network. Towards host-directed therapies for tuberculosis. Nat. Rev. Drug Discov., 2015, 14(8), 511-512.
[http://dx.doi.org/10.1038/nrd4696] [PMID: 26184493]
(b)Sahl, H.G. Optimizing antimicrobial host defense peptides. Chem. Biol., 2006, 13(10), 1015-1017.
[http://dx.doi.org/10.1016/j.chembiol.2006.10.001] [PMID: 17052605]
(c)Wallis, R.S.; Hafner, R. Advancing host-directed therapy for tuberculosis. Nat. Rev. Immunol., 2015, 15(4), 255-263.
[http://dx.doi.org/10.1038/nri3813] [PMID: 25765201]
[2]
Kaufmann, S.H.E.; Dorhoi, A.; Hotchkiss, R.S.; Bartenschlager, R. Host-directed therapies for bacterial and viral infections. Nat. Rev. Drug Discov., 2018, 17(1), 35-56.
[http://dx.doi.org/10.1038/nrd.2017.162] [PMID: 28935918]
[3]
Zumla, A.; Rao, M.; Wallis, R.S.; Kaufmann, S.H.; Rustomjee, R.; Mwaba, P.; Vilaplana, C.; Yeboah-Manu, D.; Chakaya, J.; Ippolito, G.; Azhar, E.; Hoelscher, M.; Maeurer, M. Host-Directed Therapies Network, current status, recent progress, and future prospects. Lancet Infect. Dis., 2016, 16(4), e47-e63.
[http://dx.doi.org/10.1016/S1473-3099(16)00078-5] [PMID: 27036359]
[4]
Hancock, R.E.; Haney, E.F.; Gill, E.E. The immunology of host defence peptides: beyond antimicrobial activity. Nat. Rev. Immunol., 2016, 16(5), 321-334.
[http://dx.doi.org/10.1038/nri.2016.29] [PMID: 27087664]
[5]
(a)Sharma, A.; Vaghasiya, K.; Ray, E.; Gupta, P.; Kumar Singh, A.; Datta Gupta, U.; Kumar Verma, R. Mycobactericidal activity of some micro-encapsulated synthetic Host Defense Peptides (HDP) by expediting the permeation of antibiotic: A new paradigm of drug delivery for tuberculosis. Int. J. Pharm., 2019, 558, 231-241.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.076] [PMID: 30630076]
(b)Hancock, R.E.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557.
[http://dx.doi.org/10.1038/nbt1267] [PMID: 17160061]
[6]
Liu, C.; Zhang, P.; Zhai, X.; Tian, F.; Li, W.; Yang, J.; Liu, Y.; Wang, H.; Wang, W.; Liu, W. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials, 2012, 33(13), 3604-3613.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.052] [PMID: 22341214]
[7]
Muheem, A.; Shakeel, F.; Jahangir, M.; Anwar, M.; Mallick, N.; Jain, G.; Warsi, M.; Ahmad, F. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm. J., 2016, 413-428.
[8]
(a)Jitendra, P.; Sharma, P.K.; Bansal, S.; Banik, A. Noninvasive routes of proteins and peptides drug delivery. Indian J. Pharm. Sci., 2011, 73(4), 367-375.
[PMID: 22707818]
(b)Ibrahim, M.; Verma, R.; Garcia-Contreras, L. Inhalation drug delivery devices: technology update. Med. Devices (Auckl.), 2015, 8, 131-139.
[PMID: 25709510]
[9]
Lange, C.F.; Hancock, R.E.; Samuel, J.; Finlay, W.H. In vitro aerosol delivery and regional airway surface liquid concentration of a liposomal cationic peptide. J. Pharm. Sci., 2001, 90(10), 1647-1657.
[http://dx.doi.org/10.1002/jps.1115] [PMID: 11745723]
[10]
Sharma, A.; Vaghasiya, K.; Gupta, P.; Gupta, U.D.; Verma, R.K. Reclaiming hijacked phagosomes: Hybrid nano-in-micro encapsulated MIAP peptide ensures host directed therapy by specifically augmenting phagosome-maturation and apoptosis in TB infected macrophage cells. Int. J. Pharm., 2018, 536(1), 50-62.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.046] [PMID: 29180254]
[11]
Wimley, W.C. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol., 2010, 5(10), 905-917.
[http://dx.doi.org/10.1021/cb1001558] [PMID: 20698568]
[12]
Gkeka, P.; Sarkisov, L. Spontaneous formation of a barrel-stave pore in a coarse-grained model of the synthetic LS3 peptide and a DPPC lipid bilayer. J. Phys. Chem. B, 2009, 113(1), 6-8.
[http://dx.doi.org/10.1021/jp808417a] [PMID: 19072238]
[13]
Sengupta, D.; Leontiadou, H.; Mark, A.E.; Marrink, S.J. Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim. Biophys. Acta, 2008, 1778(10), 2308-2317.
[http://dx.doi.org/10.1016/j.bbamem.2008.06.007] [PMID: 18602889]
[14]
Dean, R.E.; O’Brien, L.M.; Thwaite, J.E.; Fox, M.A.; Atkins, H.; Ulaeto, D.O. A carpet-based mechanism for direct antimicrobial peptide activity against vaccinia virus membranes. Peptides, 2010, 31(11), 1966-1972.
[http://dx.doi.org/10.1016/j.peptides.2010.07.028] [PMID: 20705109]
[15]
Mookherjee, N.; Lippert, D.N.; Hamill, P.; Falsafi, R.; Nijnik, A.; Kindrachuk, J.; Pistolic, J.; Gardy, J.; Miri, P.; Naseer, M.; Foster, L.J.; Hancock, R.E. Intracellular receptor for human host defense peptide LL-37 in monocytes. J. Immunol., 2009, 183(4), 2688-2696.
[http://dx.doi.org/10.4049/jimmunol.0802586] [PMID: 19605696]
[16]
Yan, J.; Wang, K.; Dang, W.; Chen, R.; Xie, J.; Zhang, B.; Song, J.; Wang, R. Two hits are better than one: membrane-active and DNA binding-related double-action mechanism of NK-18, a novel antimicrobial peptide derived from mammalian NK-lysin. Antimicrob. Agents Chemother., 2013, 57(1), 220-228.
[http://dx.doi.org/10.1128/AAC.01619-12] [PMID: 23089755]
[17]
Otvos, L., Jr. Antibacterial peptides and proteins with multiple cellular targets. J. Pept. Sci., 2005, 11(11), 697-706.
[18]
Cederlund, A.; Gudmundsson, G.H.; Agerberth, B. Antimicrobial peptides important in innate immunity. FEBS J., 2011, 278(20), 3942-3951.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08302.x] [PMID: 21848912]
[19]
Hilchie, A.L.; Wuerth, K.; Hancock, R.E. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat. Chem. Biol., 2013, 9(12), 761-768.
[http://dx.doi.org/10.1038/nchembio.1393] [PMID: 24231617]
[20]
Agier, J.; Efenberger, M.; Brzezińska-Błaszczyk, E. Cathelicidin impact on inflammatory cells. Cent. Eur. J. Immunol., 2015, 40(2), 225-235.
[http://dx.doi.org/10.5114/ceji.2015.51359] [PMID: 26557038]
[21]
Pena, O.M.; Afacan, N.; Pistolic, J.; Chen, C.; Madera, L.; Falsafi, R.; Fjell, C.D.; Hancock, R.E. Synthetic cationic peptide IDR-1018 modulates human macrophage differentiation. PLoS One, 2013, 8(1), e52449
[http://dx.doi.org/10.1371/journal.pone.0052449] [PMID: 23308112]
[22]
Fruitwala, S.; El-Naccache, D.W.; Chang, T.L. Multifaceted immune functions of human defensins and underlying mechanisms. Semin. Cell Dev. Biol., 2019, 88, 163-172.
[http://dx.doi.org/10.1016/j.semcdb.2018.02.023] [PMID: 29501617]
[23]
Mansour, S.C.; de la Fuente-Núñez, C.; Hancock, R.E. Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections. J. Pept. Sci., 2015, 21(5), 323-329.
[24]
Pachón-Ibáñez, M.E.; Smani, Y.; Pachón, J.; Sánchez-Céspedes, J. Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol. Rev., 2017, 41(3), 323-342.
[http://dx.doi.org/10.1093/femsre/fux012] [PMID: 28521337]
[25]
Braeckman, R. Drugs and the pharmaceutical sciences, 2000, 101, 633-669.
[26]
Kandasamy, S.K.; Larson, R.G. Effect of salt on the interactions of antimicrobial peptides with zwitterionic lipid bilayers. Biochim. Biophys. Acta, 2006, 1758(9), 1274-1284.
[http://dx.doi.org/10.1016/j.bbamem.2006.02.030] [PMID: 16603122]
[27]
Lin, J.H. Pharmacokinetics of biotech drugs: peptides, proteins and monoclonal antibodies. Curr. Drug Metab., 2009, 10(7), 661-691.
[http://dx.doi.org/10.2174/138920009789895499] [PMID: 19702530]
[28]
Akash, M.S.H.; Rehman, K.; Tariq, M.; Chen, S. Turk. J. Biol., 2015, 39(3), 343-358.
[http://dx.doi.org/10.3906/biy-1411-8]
[29]
Di, L. Strategic approaches to optimizing peptide ADME properties. AAPS J., 2015, 17(1), 134-143.
[http://dx.doi.org/10.1208/s12248-014-9687-3] [PMID: 25366889]
[30]
Meibohm, B. Pharmacokinetics and pharmacodynamics of peptide and protein therapeutics.Pharmaceutical Biotechnology; Springer, 2013, pp. 101-132.
[http://dx.doi.org/10.1007/978-1-4614-6486-0_5]
[31]
Slominsky, P.; Shadrina, M. Mol. Gen. Microbiol. Virol., 2018, 33(1), 8-14.
[http://dx.doi.org/10.3103/S0891416818010123]
[32]
El-Sherbiny, I.M.; El-Baz, N.M.; Yacoub, M.H. Inhaled nano- and microparticles for drug delivery. Glob. Cardiol. Sci. Pract., 2015, 2015, 2.
[http://dx.doi.org/10.5339/gcsp.2015.2] [PMID: 26779496]
[33]
Dabbagh, A.; Abu Kasim, N.H.; Yeong, C.H.; Wong, T.W.; Abdul Rahman, N. Critical Parameters for Particle-Based Pulmonary Delivery of Chemotherapeutics. J. Aerosol Med. Pulm. Drug Deliv., 2018, 31(3), 139-154.
[http://dx.doi.org/10.1089/jamp.2017.1382] [PMID: 29022837]
[34]
Paranjpe, M.; Müller-Goymann, C.C. Nanoparticle-mediated pulmonary drug delivery: a review. Int. J. Mol. Sci., 2014, 15(4), 5852-5873.
[http://dx.doi.org/10.3390/ijms15045852] [PMID: 24717409]
[35]
Zhou, Q.T.; Leung, S.S.Y.; Tang, P.; Parumasivam, T.; Loh, Z.H.; Chan, H-K. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv. Drug Deliv. Rev., 2015, 85, 83-99.
[http://dx.doi.org/10.1016/j.addr.2014.10.022] [PMID: 25451137]
[36]
Swain, S.; Mondal, D.; Beg, S.; Patra, C.N.; Dinda, S.C.; Sruti, J.; Rao, M.E. Stabilization and delivery approaches for protein and peptide pharmaceuticals: an extensive review of patents. Recent Pat. Biotechnol., 2013, 7(1), 28-46.
[http://dx.doi.org/10.2174/1872208311307010004] [PMID: 23441815]
[37]
Irngartinger, M.; Camuglia, V.; Damm, M.; Goede, J.; Frijlink, H.W. Pulmonary delivery of therapeutic peptides via dry powder inhalation: effects of micronisation and manufacturing. Eur. J. Pharm. Biopharm., 2004, 58(1), 7-14.
[38]
Canton, I.; Battaglia, G. Endocytosis at the nanoscale. Chem. Soc. Rev., 2012, 41(7), 2718-2739.
[http://dx.doi.org/10.1039/c2cs15309b] [PMID: 22389111]
[39]
Shang, L.; Nienhaus, K.; Nienhaus, G.U. Engineered nanoparticles interacting with cells: size matters. J. Nanobiotechnology, 2014, 12(1), 5.
[http://dx.doi.org/10.1186/1477-3155-12-5] [PMID: 24491160]
[40]
Foroozandeh, P.; Aziz, A.A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett., 2018, 13(1), 339.
[http://dx.doi.org/10.1186/s11671-018-2728-6] [PMID: 30361809]
[41]
Biswaro, L.S.; da Costa Sousa, M.G.; Rezende, T.M.B.; Dias, S.C.; Franco, O.L. Antimicrobial peptides and nanotechnology, recent advances and challenges. Front. Microbiol., 2018, 9, 855.
[http://dx.doi.org/10.3389/fmicb.2018.00855] [PMID: 29867793]
[42]
d’Angelo, I.; Casciaro, B.; Miro, A.; Quaglia, F.; Mangoni, M.L.; Ungaro, F. Overcoming barriers in Pseudomonas aeruginosa lung infections: Engineered nanoparticles for local delivery of a cationic antimicrobial peptide. Colloids Surf. B Biointerfaces, 2015, 135, 717-725.
[http://dx.doi.org/10.1016/j.colsurfb.2015.08.027] [PMID: 26340361]
[43]
Casciaro, B.; d’Angelo, I.; Zhang, X.; Loffredo, M.R.; Conte, G.; Cappiello, F.; Quaglia, F.; Di, Y.P.; Ungaro, F.; Mangoni, M.L. Poly(lactide- co-glycolide) nanoparticles for prolonged therapeutic efficacy of esculentin-1a-derived antimicrobial peptides against Pseudomonas aeruginosa lung infection: In vitro and in vivo studies. Biomacromolecules, 2019, 20(5), 1876-1888.
[http://dx.doi.org/10.1021/acs.biomac.8b01829] [PMID: 31013061]
[44]
Fosgerau, K.; Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771]
[45]
Chakroborty, A. Drug-resistant tuberculosis: an insurmountable epidemic? Inflammopharmacology, 2011, 19(3), 131-137.
[http://dx.doi.org/10.1007/s10787-010-0072-2] [PMID: 21127999]
[46]
Loddenkemper, R.; Sagebiel, D.; Brendel, A. Strategies against multidrug-resistant tuberculosis. Eur. Respir. J. Suppl., 2002, 36, 66s-77s.
[http://dx.doi.org/10.1183/09031936.02.00401302] [PMID: 12168749]
[47]
Hari, B.N.; Chitra, K.P.; Bhimavarapu, R.; Karunakaran, P.; Muthukrishnan, N.; Rani, B.S. Novel technologies: A weapon against tuberculosis. Indian J. Pharmacol., 2010, 42(6), 338-344.
[http://dx.doi.org/10.4103/0253-7613.71887] [PMID: 21189901]
[48]
Sacks, L.V.; Pendle, S.; Orlovic, D.; Andre, M.; Popara, M.; Moore, G.; Thonell, L.; Hurwitz, S. Nephrol. Dial. Transplant., 2001, 32(1), 44-49.
[49]
Labiris, N.R.; Dolovich, M.B. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol., 2003, 56(6), 588-599.
[http://dx.doi.org/10.1046/j.1365-2125.2003.01892.x] [PMID: 14616418]
[50]
Cantin, A.M.; Hartl, D.; Konstan, M.W.; Chmiel, J.F. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. J. Cyst. Fibros., 2015, 14(4), 419-430.
[51]
Chmiel, J.F.; Davis, P.B. State of the art: why do the lungs of patients with cystic fibrosis become infected and why can’t they clear the infection? Respir. Res., 2003, 4, 8.
[http://dx.doi.org/10.1186/1465-9921-4-8] [PMID: 14511398]
[52]
Zhang, L.; Parente, J.; Harris, S.M.; Woods, D.E.; Hancock, R.E.; Falla, T.J. Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrob. Agents Chemother., 2005, 49(7), 2921-2927.
[http://dx.doi.org/10.1128/AAC.49.7.2921-2927.2005] [PMID: 15980369]
[53]
Kwok, P.C.; Grabarek, A.; Chow, M.Y.; Lan, Y.; Li, J.C.; Casettari, L.; Mason, A.J.; Lam, J.K. Inhalable spray-dried formulation of D-LAK antimicrobial peptides targeting tuberculosis. Int. J. Pharm., 2015, 491(1-2), 367-374.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.001] [PMID: 26151107]
[54]
Desai, T.R.; Tyrrell, G.J.; Ng, T.; Finlay, W.H. In vitro evaluation of nebulization properties, antimicrobial activity, and regional airway surface liquid concentration of liposomal polymyxin B sulfate. Pharm. Res., 2003, 20(3), 442-447.
[http://dx.doi.org/10.1023/A:1022664406840] [PMID: 12669966]
[55]
Saiman, L.; Tabibi, S.; Starner, T.D.; San Gabriel, P.; Winokur, P.L.; Jia, H.P.; McCray, P.B., Jr; Tack, B.F. Cathelicidin peptides inhibit multiply antibiotic-resistant pathogens from patients with cystic fibrosis. Antimicrob. Agents Chemother., 2001, 45(10), 2838-2844.
[http://dx.doi.org/10.1128/AAC.45.10.2838-2844.2001] [PMID: 11557478]
[56]
Chen, C.; Deslouches, B.; Montelaro, R.C.; Di, Y.P. Enhanced efficacy of the engineered antimicrobial peptide WLBU2 via direct airway delivery in a murine model of Pseudomonas aeruginosa pneumonia. Clin. Microbiol. Infect., 2018, 24(5), 547.e1-547.e8.
[57]
Yu, Z.; Deslouches, B.; Walton, W.G.; Redinbo, M.R.; Di, Y.P. Enhanced biofilm prevention activity of a SPLUNC1-derived antimicrobial peptide against Staphylococcus aureus. PLoS One, 2018, 13(9), e0203621
[http://dx.doi.org/10.1371/journal.pone.0203621] [PMID: 30216370]
[58]
Corbett, D.; Wise, A.; Langley, T.; Skinner, K.; Trimby, E.; Birchall, S.; Dorali, A.; Sandiford, S.; Williams, J.; Warn, P.; Vaara, M.; Lister, T. Potentiation of Antibiotic Activity by a Novel Cationic Peptide: Potency and Spectrum of Activity of SPR741. Antimicrob. Agents Chemother., 2017, 61(8), e00200-e00217.
[http://dx.doi.org/10.1128/AAC.00200-17] [PMID: 28533232]
[59]
Huang, C.Y.; Huang, H.Y.; Forrest, M.D.; Pan, Y.R.; Wu, W.J.; Chen, H.M. Inhibition effect of a custom peptide on lung tumors. PLoS One, 2014, 9(10), e109174
[http://dx.doi.org/10.1371/journal.pone.0109174] [PMID: 25310698]
[60]
Torres, A.; Serra-Batlles, J.; Ferrer, A.; Jiménez, P.; Celis, R.; Cobo, E.; Rodriguez-Roisin, R. Severe community-acquired pneumonia. Epidemiology and prognostic factors. Am. Rev. Respir. Dis., 1991, 144(2), 312-318.
[http://dx.doi.org/10.1164/ajrccm/144.2.312] [PMID: 1859053]
[61]
Connolly, J.E., Jr; McAdams, H.P.; Erasmus, J.J.; Rosado-de-Christenson, M.L. Opportunistic fungal pneumonia. J. Thorac. Imaging, 1999, 14(1), 51-62.
[http://dx.doi.org/10.1097/00005382-199901000-00005] [PMID: 9894953]
[62]
Virkki, R.; Juven, T.; Rikalainen, H.; Svedström, E.; Mertsola, J.; Ruuskanen, O. Differentiation of bacterial and viral pneumonia in children. Thorax, 2002, 57(5), 438-441.
[http://dx.doi.org/10.1136/thorax.57.5.438] [PMID: 11978922]
[63]
Banaschewski, B.J.; Veldhuizen, E.J.; Keating, E.; Haagsman, H.P.; Zuo, Y.Y.; Yamashita, C.M.; Veldhuizen, R.A. Antimicrobial and biophysical properties of surfactant supplemented with an antimicrobial peptide for treatment of bacterial pneumonia. Antimicrob. Agents Chemother., 2015, 59(6), 3075-3083.
[http://dx.doi.org/10.1128/AAC.04937-14] [PMID: 25753641]
[64]
Deslouches, B.; Islam, K.; Craigo, J.K.; Paranjape, S.M.; Montelaro, R.C.; Mietzner, T.A. Activity of the de novo engineered antimicrobial peptide WLBU2 against Pseudomonas aeruginosa in human serum and whole blood: implications for systemic applications. Antimicrob. Agents Chemother., 2005, 49(8), 3208-3216.
[http://dx.doi.org/10.1128/AAC.49.8.3208-3216.2005] [PMID: 16048927]
[65]
Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin., 2013, 63(1), 11-30.
[http://dx.doi.org/10.3322/caac.21166] [PMID: 23335087]
[66]
Shanker, M.; Willcutts, D.; Roth, J.A.; Ramesh, R. Drug resistance in lung cancer. Lung Cancer (Auckl.), 2010, 1, 23-36.
[PMID: 28210104]
[67]
Gaspar, D.; Veiga, A.S.; Castanho, M.A. From antimicrobial to anticancer peptides. A review. Front. Microbiol., 2013, 4, 294.
[http://dx.doi.org/10.3389/fmicb.2013.00294] [PMID: 24101917]
[68]
Hoskin, D.W.; Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta, 2008, 1778(2), 357-375.
[http://dx.doi.org/10.1016/j.bbamem.2007.11.008] [PMID: 18078805]
[69]
Gajski, G.; Garaj-Vrhovac, V. Melittin: a lytic peptide with anticancer properties. Environ. Toxicol. Pharmacol., 2013, 36(2), 697-705.
[http://dx.doi.org/10.1016/j.etap.2013.06.009] [PMID: 23892471]
[70]
Soman, N.R.; Baldwin, S.L.; Hu, G.; Marsh, J.N.; Lanza, G.M.; Heuser, J.E.; Arbeit, J.M.; Wickline, S.A.; Schlesinger, P.H. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J. Clin. Invest., 2009, 119(9), 2830-2842.
[http://dx.doi.org/10.1172/JCI38842] [PMID: 19726870]
[71]
Badr, G.; Sayed, D.; Maximous, D.; Mohamed, A.O.; Gul, M. Increased susceptibility to apoptosis and growth arrest of human breast cancer cells treated by a snake venom-loaded silica nanoparticles. Cell. Physiol. Biochem., 2014, 34(5), 1640-1651.
[72]
Agemy, L.; Friedmann-Morvinski, D.; Kotamraju, V.R.; Roth, L.; Sugahara, K.N.; Girard, O.M.; Mattrey, R.F.; Verma, I.M.; Ruoslahti, E. Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc. Natl. Acad. Sci. USA, 2011, 108(42), 17450-17455.
[http://dx.doi.org/10.1073/pnas.1114518108] [PMID: 21969599]
[73]
Pan, H.; Soman, N.R.; Schlesinger, P.H.; Lanza, G.M.; Wickline, S.A. Cytolytic peptide nanoparticles (‘NanoBees’) for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2011, 3(3), 318-327.
[http://dx.doi.org/10.1002/wnan.126] [PMID: 21225660]