Anti-angiogenesis Potential of Phytochemicals for the Therapeutic Management of Tumors

Page: [265 - 278] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

The role of angiogeneses during the growth and progression of tumors is well documented. Likewise, a balance is generally maintained between the cellular proliferation and the apoptosis, therefore, the tumors can persist for years in a dormant phase. During the past few years, many hypotheses have been proposed relating to the importance of tumor angiogenesis for the development and spread of tumors and preventive or therapeutic capacity of angiogenesis inhibitors as a potential target for controlling the growth of cancerous tissue. The antiangiogenic based therapeutic approaches are considered as the most promising method for the control of tumors, as this therapeutic approach is less likely to attain the drug resistance. Further, the tumor vasculature is an important prognostic marker that can independently predict the pathological stages as well as the metastatic potential of tumors. Various biologically active phytochemicals have been extracted from the dietary sources and the plants that have engaged the scientist and pharmaceutical industries around the globe. The antioxidant, antiinflammatory, anti-proliferative and anti-angiogenic potential of these bioactive phytochemicals is evident from the in vitro studies using cell lines and investigations involving the animal models. The present review is focused on the promising role of anti-angiogenesis-based therapies for the management of tumors and the recent developments relating to the interplay of phytochemicals and angiogenesis for the suppression of tumor cells.

Keywords: Angiogenesis, metastasis, phytochemicals, VEGF, apoptosis, therapeutics.

[1]
Risau W. Mechanisms of angiogenesis. Nature 1997; 386(6626): 671-4.
[http://dx.doi.org/10.1038/386671a0] [PMID: 9109485]
[2]
Chung AS, Ferrara N. Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol 2011; 27: 563-84.
[http://dx.doi.org/10.1146/annurev-cellbio-092910-154002] [PMID: 21756109]
[3]
King A, Balaji S, Keswani SG, Crombleholme TM. The role of stem cells in wound angiogenesis. Adv Wound Care (New Rochelle) 2014; 3(10): 614-25.
[http://dx.doi.org/10.1089/wound.2013.0497] [PMID: 25300298]
[4]
Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature 2005; 438(7070): 967-74.
[http://dx.doi.org/10.1038/nature04483] [PMID: 16355214]
[5]
Vineis P, Wild CP. Global cancer patterns: causes and prevention. Lancet 2014; 383(9916): 549-57.
[http://dx.doi.org/10.1016/S0140-6736(13)62224-2] [PMID: 24351322]
[6]
Bouïs D, Kusumanto Y, Meijer C, Mulder NH, Hospers GA. A review on pro- and anti-angiogenic factors as targets of clinical intervention. Pharmacol Res 2006; 53(2): 89-103.
[http://dx.doi.org/10.1016/j.phrs.2005.10.006] [PMID: 16321545]
[7]
Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angiogenesis. Cancer Res 2005; 65(10): 3967-79.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2427] [PMID: 15899784]
[8]
Nissim Ben Efraim AH, Levi-Schaffer F. Roles of eosinophils in the modulation of angiogenesis. Chem Immunol Allergy 2014; 99: 138-54.
[http://dx.doi.org/10.1159/000353251] [PMID: 24217607]
[9]
Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol 2014; 5: 75.
[http://dx.doi.org/10.3389/fphys.2014.00075] [PMID: 24634660]
[10]
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[11]
Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat Rev Cancer 2005; 5(6): 423-35.
[http://dx.doi.org/10.1038/nrc1628] [PMID: 15928673]
[12]
Seidi K, Jahanban-Esfahlan R, Zarghami N. Tumor rim cells: from resistance to vascular targeting agents to complete tumor ablation. Tumour Biol 2017; 39(3), 1010428317691001
[http://dx.doi.org/10.1177/1010428317691001] [PMID: 28351332]
[13]
Shing Y, Folkman J, Sullivan R, Butterfield C, Murray J, Klagsbrun M. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 1984; 223(4642): 1296-9.
[http://dx.doi.org/10.1126/science.6199844] [PMID: 6199844]
[14]
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473(7347): 298-307.
[http://dx.doi.org/10.1038/nature10144] [PMID: 21593862]
[15]
Vasudev NS, Reynolds AR. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 2014; 17(3): 471-94.
[http://dx.doi.org/10.1007/s10456-014-9420-y] [PMID: 24482243]
[16]
Fischer C, Mazzone M, Jonckx B, Carmeliet P. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer 2008; 8(12): 942-56.
[http://dx.doi.org/10.1038/nrc2524] [PMID: 19029957]
[17]
Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell 2010; 140(4): 460-76.
[http://dx.doi.org/10.1016/j.cell.2010.01.045] [PMID: 20178740]
[18]
Lee S, Chen TT, Barber CL, et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell 2007; 130(4): 691-703.
[http://dx.doi.org/10.1016/j.cell.2007.06.054] [PMID: 17719546]
[19]
Khan KA, Bicknell R. Anti-angiogenic alternatives to VEGF blockade. Clin Exp Metastasis 2016; 33(2): 197-210.
[http://dx.doi.org/10.1007/s10585-015-9769-3] [PMID: 26620208]
[20]
Kopetz S, Hoff PM, Morris JS, et al. Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J Clin Oncol 2010; 28(3): 453-9.
[http://dx.doi.org/10.1200/JCO.2009.24.8252] [PMID: 20008624]
[21]
Wang L, Park H, Chhim S, et al. A novel monoclonal antibody to fibroblast growth factor 2 effectively inhibits growth of hepatocellular carcinoma xenografts. Mol Cancer Ther 2012; 11(4): 864-72.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0813] [PMID: 22351746]
[22]
Dewerchin M, Carmeliet P. PlGF: a multitasking cytokine with disease-restricted activity. Cold Spring Harb Perspect Med 2012; 2(8): 2.
[http://dx.doi.org/10.1101/cshperspect.a011056] [PMID: 22908198]
[23]
Nielsen DL, Sengeløv L. Inhibition of placenta growth factor with TB-403: a novel antiangiogenic cancer therapy. Expert Opin Biol Ther 2012; 12(6): 795-804.
[http://dx.doi.org/10.1517/14712598.2012.679655] [PMID: 22506966]
[24]
Heldin CH, Eriksson U, Ostman A. New members of the platelet-derived growth factor family of mitogens. Arch Biochem Biophys 2002; 398(2): 284-90.
[http://dx.doi.org/10.1006/abbi.2001.2707] [PMID: 11831861]
[25]
Zhao Y, Adjei AA. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth Factor. Oncologist 2015; 20(6): 660-73.
[http://dx.doi.org/10.1634/theoncologist.2014-0465] [PMID: 26001391]
[26]
Thomas M, Augustin HG. The role of the angiopoietins in vascular morphogenesis. Angiogenesis 2009; 12(2): 125-37.
[http://dx.doi.org/10.1007/s10456-009-9147-3] [PMID: 19449109]
[27]
Kappou D, Sifakis S, Konstantinidou A, Papantoniou N, Spandidos DA. Role of the angiopoietin/Tie system in pregnancy (Review). Exp Ther Med 2015; 9(4): 1091-6. [Review].
[http://dx.doi.org/0.3892/etm.2015.2280] [PMID: 25780392]
[28]
Elisei R, Schlumberger MJ, Müller SP, et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol 2013; 31(29): 3639-46.
[http://dx.doi.org/10.1200/JCO.2012.48.4659] [PMID: 24002501]
[29]
Graveel CR, Tolbert D, Vande Woude GF. MET: a critical player in tumorigenesis and therapeutic target. Cold Spring Harb Perspect Biol 2013; 5(7): 5.
[http://dx.doi.org/10.1101/cshperspect.a009209] [PMID: 23818496]
[30]
Jahangiri A, De Lay M, Miller LM, et al. Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of antiangiogenic therapy resistance. Clin Cancer Res 2013; 19(7): 1773-83.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1281] [PMID: 23307858]
[31]
Cheng N, Brantley DM, Liu H, et al. Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis. Mol Cancer Res 2002; 1(1): 2-11.
[http://dx.doi.org/10.1186/1476-4598-1-2] [PMID: 12496364]
[32]
Sawamiphak S, Seidel S, Essmann CL, et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 2010; 465(7297): 487-91.
[http://dx.doi.org/10.1038/nature08995] [PMID: 20445540]
[33]
Gorantla B, Bhoopathi P, Chetty C, et al. Notch signaling regulates tumor-induced angiogenesis in SPARC-overexpressed neuroblastoma. Angiogenesis 2013; 16(1): 85-100.
[http://dx.doi.org/10.1007/s10456-012-9301-1] [PMID: 22956186]
[34]
Weis SM, Cheresh DA. αV integrins in angiogenesis and cancer. Cold Spring Harb Perspect Med 2011; 1(1), a006478
[http://dx.doi.org/10.1101/cshperspect.a006478] [PMID: 22229119]
[35]
Prandini MH, Dreher I, Bouillot S, Benkerri S, Moll T, Huber P. The human VE-cadherin promoter is subjected to organ-specific regulation and is activated in tumour angiogenesis. Oncogene 2005; 24(18): 2992-3001.
[http://dx.doi.org/10.1038/sj.onc.1208483] [PMID: 15735710]
[36]
Li H, Shi X, Liu J, et al. The soluble fragment of VE-cadherin inhibits angiogenesis by reducing endothelial cell proliferation and tube capillary formation. Cancer Gene Ther 2010; 17(10): 700-7.
[http://dx.doi.org/10.1038/cgt.2010.26] [PMID: 20559333]
[37]
Ucuzian AA, Gassman AA, East AT, Greisler HP. Molecular mediators of angiogenesis. J Burn Care Res 2010; 31(1): 158-75.
[http://dx.doi.org/10.1097/BCR.0b013e3181c7ed82] [PMID: 20061852]
[38]
Holderfield MT, Hughes CC. Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res 2008; 102(6): 637-52.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.167171] [PMID: 18369162]
[39]
Umikawa M, Umikawa A, Asato T, et al. Angiopoietin-like protein 2 induces proinflammatory responses in peritoneal cells. Biochem Biophys Res Commun 2015; 467(2): 235-41.
[http://dx.doi.org/10.1016/j.bbrc.2015.09.183] [PMID: 26435501]
[40]
Wang Z, Yan X. CD146, a multi-functional molecule beyond adhesion. Cancer Lett 2013; 330(2): 150-62.
[http://dx.doi.org/10.1016/j.canlet.2012.11.049] [PMID: 23266426]
[41]
Zeng Q, Wu Z, Duan H, et al. Impaired tumor angiogenesis and VEGF-induced pathway in endothelial CD146 knockout mice. Protein Cell 2014; 5(6): 445-56.
[http://dx.doi.org/10.1007/s13238-014-0047-y] [PMID: 24756564]
[42]
Tu T, Zhang C, Yan H, et al. CD146 acts as a novel receptor for netrin-1 in promoting angiogenesis and vascular development. Cell Res 2015; 25(3): 275-87.
[http://dx.doi.org/10.1038/cr.2015.15] [PMID: 25656845]
[43]
Chaudhary A, Hilton MB, Seaman S, et al. TEM8/ANTXR1 blockade inhibits pathological angiogenesis and potentiates tumoricidal responses against multiple cancer types. Cancer Cell 2012; 21(2): 212-26.
[http://dx.doi.org/10.1016/j.ccr.2012.01.004] [PMID: 22340594]
[44]
Zhou H, Binmadi NO, Yang YH, Proia P, Basile JR. Semaphorin 4D cooperates with VEGF to promote angiogenesis and tumor progression. Angiogenesis 2012; 15(3): 391-407.
[http://dx.doi.org/10.1007/s10456-012-9268-y] [PMID: 22476930]
[45]
Staton CA. Class 3 semaphorins and their receptors in physiological and pathological angiogenesis. Biochem Soc Trans 2011; 39(6): 1565-70.
[http://dx.doi.org/10.1042/BST20110654] [PMID: 22103488]
[46]
Noy PJ, Lodhia P, Khan K, et al. Blocking CLEC14A-MMRN2 binding inhibits sprouting angiogenesis and tumour growth. Oncogene 2015; 34(47): 5821-31.
[http://dx.doi.org/10.1038/onc.2015.34] [PMID: 25745997]
[47]
Leszczynska K, Kaur S, Wilson E, Bicknell R, Heath VL. The role of RhoJ in endothelial cell biology and angiogenesis. Biochem Soc Trans 2011; 39(6): 1606-11.
[http://dx.doi.org/10.1042/BST20110702] [PMID: 22103495]
[48]
Huang WY, Cai YZ, Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 2010; 62(1): 1-20.
[http://dx.doi.org/10.1080/01635580903191585] [PMID: 20043255]
[49]
Sak K. Chemotherapy and dietary phytochemical agents. Chemother Res Pract 2012; 2012, 282570
[http://dx.doi.org/10.1155/2012/282570] [PMID: 23320169]
[50]
Yance DR Jr, Sagar SM. Targeting angiogenesis with integrative cancer therapies. Integr Cancer Ther 2006; 5(1): 9-29.
[http://dx.doi.org/10.1177/1534735405285562] [PMID: 16484711]
[51]
Singh RP, Agarwal R. Inducible nitric oxide synthase-vascular endothelial growth factor axis: a potential target to inhibit tumor angiogenesis by dietary agents. Curr Cancer Drug Targets 2007; 7(5): 475-83.
[http://dx.doi.org/10.2174/156800907781386632] [PMID: 17691907]
[52]
Anand P, Thomas SG, Kunnumakkara AB, et al. Biological activities of curcumin and its analogues (Congeners) made by man and mother nature. Biochem Pharmacol 2008; 76(11): 1590-611.
[http://dx.doi.org/10.1016/j.bcp.2008.08.008] [PMID: 18775680]
[53]
Granci V, Dupertuis YM, Pichard C. Angiogenesis as a potential target of pharmaconutrients in cancer therapy. Curr Opin Clin Nutr Metab Care 2010; 13(4): 417-22.
[http://dx.doi.org/10.1097/MCO.0b013e3283392656] [PMID: 20453647]
[54]
Choi H, Chun YS, Kim SW, Kim MS, Park JW. Curcumin inhibits hypoxia-inducible factor-1 by degrading aryl hydrocarbon receptor nuclear translocator: a mechanism of tumor growth inhibition. Mol Pharmacol 2006; 70(5): 1664-71.
[http://dx.doi.org/10.1124/mol.106.025817] [PMID: 16880289]
[55]
Klinger NV, Mittal S. Therapeutic potential of curcumin for the treatment of brain tumors. Oxid Med Cell Longev 2016; 2016, 9324085
[http://dx.doi.org/10.1155/2016/9324085] [PMID: 27807473]
[56]
Tomeh MA, Hadianamrei R, Zhao X. A Review of curcumin and its derivatives as anticancer agents. Int J Mol Sci 2019; 20(5): 20.
[http://dx.doi.org/10.3390/ijms20051033] [PMID: 30818786]
[57]
Shukla Y, Singh R. Resveratrol and cellular mechanisms of cancer prevention. Ann N Y Acad Sci 2011; 1215: 1-8.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05870.x] [PMID: 21261635]
[58]
Bråkenhielm E, Cao R, Cao Y. Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J 2001; 15(10): 1798-800.
[http://dx.doi.org/10.1096/fj.01-0028fje] [PMID: 11481234]
[59]
Bishayee A, Petit D, Samtani K. Angioprevention is implicated in resveratrol chemoprevention of experimental hepatocarcinogenesis. J Carcinog Mutagen 2010; 1: 102.
[http://dx.doi.org/10.4172/2157-2518.1000102]
[60]
Liu Z, Li Y, Yang R. Effects of resveratrol on vascular endothelial growth factor expression in osteosarcoma cells and cell proliferation. Oncol Lett 2012; 4(4): 837-9.
[http://dx.doi.org/10.3892/ol.2012.824] [PMID: 23205110]
[61]
Martí-Centelles R, Cejudo-Marín R, Falomir E, Murga J, Carda M, Marco JA. Inhibition of VEGF expression in cancer cells and endothelial cell differentiation by synthetic stilbene derivatives. Bioorg Med Chem 2013; 21(11): 3010-5.
[http://dx.doi.org/10.1016/j.bmc.2013.03.072] [PMID: 23623255]
[62]
Jung DB, Lee HJ, Jeong SJ, et al. Rhapontigenin inhibited hypoxia inducible factor 1 alpha accumulation and angiogenesis in hypoxic PC-3 prostate cancer cells. Biol Pharm Bull 2011; 34(6): 850-5.
[http://dx.doi.org/10.1248/bpb.34.850] [PMID: 21628883]
[63]
Kimura Y, Sumiyoshi M, Baba K. Antitumor activities of synthetic and natural stilbenes through antiangiogenic action. Cancer Sci 2008; 99(10): 2083-96.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00948.x] [PMID: 19016770]
[64]
Wong JC, Fiscus RR. Resveratrol at anti-angiogenesis/anticancer concentrations suppresses protein kinase G signaling and decreases IAPs expression in HUVECs. Anticancer Res 2015; 35(1): 273-81.
[PMID: 25550561]
[65]
Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 2011; 82(12): 1807-21.
[http://dx.doi.org/10.1016/j.bcp.2011.07.093] [PMID: 21827739]
[66]
Sartippour MR, Shao ZM, Heber D, et al. Green tea inhibits vascular endothelial growth factor (VEGF) induction in human breast cancer cells. J Nutr 2002; 132(8): 2307-11.
[http://dx.doi.org/10.1093/jn/132.8.2307] [PMID: 12163680]
[67]
Yang H, Sun DK, Chen D, et al. Antitumor activity of novel fluoro-substituted (-)-epigallocatechin-3-gallate analogs. Cancer Lett 2010; 292(1): 48-53.
[http://dx.doi.org/10.1016/j.canlet.2009.11.006] [PMID: 19962231]
[68]
Sen T, Moulik S, Dutta A, et al. Multifunctional effect of epigallocatechin-3-gallate (EGCG) in downregulation of gelatinase-A (MMP-2) in human breast cancer cell line MCF-7. Life Sci 2009; 84(7-8): 194-204.
[http://dx.doi.org/10.1016/j.lfs.2008.11.018] [PMID: 19105967]
[69]
Jung YD, Kim MS, Shin BA, et al. EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells. Br J Cancer 2001; 84(6): 844-50.
[http://dx.doi.org/10.1054/bjoc.2000.1691] [PMID: 11259102]
[70]
Singh BN, Singh BR, Sarma BK, Singh HB. Potential chemoprevention of N-nitrosodiethylamine-induced hepatocarcinogenesis by polyphenolics from Acacia nilotica bark. Chem Biol Interact 2009; 181(1): 20-8.
[http://dx.doi.org/10.1016/j.cbi.2009.05.007] [PMID: 19446540]
[71]
Khan N, Adhami VM, Mukhtar H. Review: green tea polyphenols in chemoprevention of prostate cancer: preclinical and clinical studies. Nutr Cancer 2009; 61(6): 836-41.
[http://dx.doi.org/10.1080/01635580903285056] [PMID: 20155624]
[72]
Yang CS, Wang X, Lu G, Picinich SC. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 2009; 9(6): 429-39.
[http://dx.doi.org/10.1038/nrc2641] [PMID: 19472429]
[73]
Jankun J, Selman SH, Swiercz R, Skrzypczak-Jankun E. Why drinking green tea could prevent cancer? Nature 1997; 387(6633): 561.
[http://dx.doi.org/10.1038/42381] [PMID: 9177339]
[74]
Hastak K, Gupta S, Ahmad N, Agarwal MK, Agarwal ML, Mukhtar H. Role of p53 and NF-kappaB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene 2003; 22(31): 4851-9.
[http://dx.doi.org/10.1038/sj.onc.1206708] [PMID: 12894226]
[75]
Dash R, Uddin MM, Hosen SM, et al. Molecular docking analysis of known flavonoids as duel COX-2 inhibitors in the context of cancer. Bioinformation 2015; 11(12): 543-9.
[http://dx.doi.org/10.6026/97320630011543] [PMID: 26770028]
[76]
Mojzis J, Varinska L, Mojzisova G, Kostova I, Mirossay L. Antiangiogenic effects of flavonoids and chalcones. Pharmacol Res 2008; 57(4): 259-65.
[http://dx.doi.org/10.1016/j.phrs.2008.02.005] [PMID: 18387817]
[77]
Pratheeshkumar P, Budhraja A, Son YO, et al. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS One 2012; 7(10), e47516
[http://dx.doi.org/10.1371/journal.pone.0047516] [PMID: 23094058]
[78]
Zhao D, Qin C, Fan X, Li Y, Gu B. Inhibitory effects of quercetin on angiogenesis in larval zebrafish and human umbilical vein endothelial cells. Eur J Pharmacol 2014; 723: 360-7.
[http://dx.doi.org/10.1016/j.ejphar.2013.10.069] [PMID: 24239714]
[79]
Li F, Bai Y, Zhao M, et al. Quercetin inhibits vascular endothelial growth factor-induced choroidal and retinal angiogenesis in vitro. Ophthalmic Res 2015; 53(3): 109-16.
[http://dx.doi.org/10.1159/000369824] [PMID: 25676100]
[80]
Maurya AK, Vinayak M. Quercetin attenuates cell survival, inflammation, and angiogenesis via modulation of AKT signaling in murine T-cell lymphoma. Nutr Cancer 2017; 69(3): 470-80.
[http://dx.doi.org/10.1080/01635581.2017.1267775] [PMID: 28107044]
[81]
Shanmugam MK, Dai X, Kumar AP, Tan BK, Sethi G, Bishayee A. Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: preclinical and clinical evidence. Cancer Lett 2014; 346(2): 206-16.
[http://dx.doi.org/10.1016/j.canlet.2014.01.016] [PMID: 24486850]
[82]
Huang Y, Zhou Y, Fan Y, Zhou D. Celastrol inhibits the growth of human glioma xenografts in nude mice through suppressing VEGFR expression. Cancer Lett 2008; 264(1): 101-6.
[http://dx.doi.org/10.1016/j.canlet.2008.01.043] [PMID: 18343027]
[83]
Wang XH, Xu B, Liu JT, Cui JR. Effect of beta-escin sodium on endothelial cells proliferation, migration and apoptosis. Vascul Pharmacol 2008; 49(4-6): 158-65.
[http://dx.doi.org/10.1016/j.vph.2008.07.005] [PMID: 18718875]
[84]
Yang H, Shi G, Dou QP. The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from “Indian winter cherry”. Mol Pharmacol 2007; 71(2): 426-37.
[http://dx.doi.org/10.1124/mol.106.030015] [PMID: 17093135]
[85]
Mohan R, Hammers HJ, Bargagna-Mohan P, et al. Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 2004; 7(2): 115-22.
[http://dx.doi.org/10.1007/s10456-004-1026-3] [PMID: 15516832]
[86]
Zheng Y, Liu X, Guo SW. Therapeutic potential of andrographolide for treating endometriosis. Hum Reprod 2012; 27(5): 1300-13.
[http://dx.doi.org/10.1093/humrep/des063] [PMID: 22402211]
[87]
Loutrari H, Hatziapostolou M, Skouridou V, et al. Perillyl alcohol is an angiogenesis inhibitor. J Pharmacol Exp Ther 2004; 311(2): 568-75.
[http://dx.doi.org/10.1124/jpet.104.070516] [PMID: 15210838]
[88]
d’Alessio PA, Mirshahi M, Bisson JF, Bene MC. Skin repair properties of d-Limonene and perillyl alcohol in murine models. Antiinflamm Antiallergy Agents Med Chem 2014; 13(1): 29-35.
[http://dx.doi.org/10.2174/18715230113126660021] [PMID: 24160248]
[89]
Hosseini A, Ghorbani A. Cancer therapy with phytochemicals: evidence from clinical studies. Avicenna J Phytomed 2015; 5(2): 84-97.
[PMID: 25949949]
[90]
Ozturk SA, Alp E, Yar Saglam AS, Konac E, Menevse ES. The effects of thymoquinone and genistein treatment on telomerase activity, apoptosis, angiogenesis, and survival in thyroid cancer cell lines. J Cancer Res Ther 2018; 14(2): 328-34.
[PMID: 29516914]
[91]
Banerjee S, Hwang DJ, Li W, Miller DD. Current advances of tubulin inhibitors in nanoparticle drug delivery and vascular disruption/angiogenesis. Molecules 2016; 21(11): 21.
[http://dx.doi.org/10.3390/molecules21111468] [PMID: 27827858]
[92]
Slaughter KN, Moore KN, Mannel RS. Anti-angiogenic therapy versus dose-dense paclitaxel therapy for frontline treatment of epithelial ovarian cancer: review of phase III randomized clinical trials. Curr Oncol Rep 2014; 16(11): 412.
[http://dx.doi.org/10.1007/s11912-014-0412-2] [PMID: 25292279]
[93]
Clemente N, Argenziano M, Gigliotti CL, et al. Paclitaxel-loaded nanosponges inhibit growth and angiogenesis in melanoma cell models. Front Pharmacol 2019; 10: 776.
[http://dx.doi.org/10.3389/fphar.2019.00776] [PMID: 31354491]
[94]
Aldieri E, Atragene D, Bergandi L, et al. Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF-kB activation. FEBS Lett 2003; 552(2-3): 141-4.
[http://dx.doi.org/10.1016/S0014-5793(03)00905-0] [PMID: 14527676]
[95]
Ho WE, Peh HY, Chan TK, Wong WS. Artemisinins: pharmacological actions beyond anti-malarial. Pharmacol Ther 2014; 142(1): 126-39.
[http://dx.doi.org/10.1016/j.pharmthera.2013.12.001] [PMID: 24316259]
[96]
Wang SJ, Sun B, Cheng ZX, et al. Dihydroartemisinin inhibits angiogenesis in pancreatic cancer by targeting the NF-κB pathway. Cancer Chemother Pharmacol 2011; 68(6): 1421-30.
[http://dx.doi.org/10.1007/s00280-011-1643-7] [PMID: 21479633]
[97]
Zhu XX, Yang L, Li YJ, et al. Effects of sesquiterpene, flavonoid and coumarin types of compounds from Artemisia annua L. on production of mediators of angiogenesis. Pharmacol Rep 2013; 65(2): 410-20.
[http://dx.doi.org/10.1016/S1734-1140(13)71016-8] [PMID: 23744425]
[98]
Jeong DE, Song HJ, Lim S, et al. Repurposing the anti-malarial drug artesunate as a novel therapeutic agent for metastatic renal cell carcinoma due to its attenuation of tumor growth, metastasis, and angiogenesis. Oncotarget 2015; 6(32): 33046-64.
[http://dx.doi.org/10.18632/oncotarget.5422] [PMID: 26426994]
[99]
Wei T, Liu J. Anti-angiogenic properties of artemisinin derivatives (Review). Int J Mol Med 2017; 40(4): 972-8.
[http://dx.doi.org/10.3892/ijmm.2017.3085] [PMID: 28765885]
[100]
Zhou HJ, Wang WQ, Wu GD, Lee J, Li A. Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells. Vascul Pharmacol 2007; 47(2-3): 131-8.
[http://dx.doi.org/10.1016/j.vph.2007.05.002] [PMID: 17581794]
[101]
Kwon GT, Cho HJ, Chung WY, Park KK, Moon A, Park JH. Isoliquiritigenin inhibits migration and invasion of prostate cancer cells: possible mediation by decreased JNK/AP-1 signaling. J Nutr Biochem 2009; 20(9): 663-76.
[http://dx.doi.org/10.1016/j.jnutbio.2008.06.005] [PMID: 18824345]
[102]
Wang Z, Wang N, Han S, et al. Dietary compound isoliquiritigenin inhibits breast cancer neoangiogenesis via VEGF/VEGFR-2 signaling pathway. PLoS One 2013; 8(7), e68566
[http://dx.doi.org/10.1371/journal.pone.0068566] [PMID: 23861918]
[103]
Min JK, Han KY, Kim EC, et al. Capsaicin inhibits in vitro and in vivo angiogenesis. Cancer Res 2004; 64(2): 644-51.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3250] [PMID: 14744780]
[104]
El Sayed KA. Natural products as angiogenesis modulators. Mini Rev Med Chem 2005; 5(11): 971-93.
[http://dx.doi.org/10.2174/138955705774575291] [PMID: 16307528]
[105]
Trécul A, Morceau F, Dicato M, Diederich M. Dietary compounds as potent inhibitors of the signal transducers and activators of transcription (STAT) 3 regulatory network. Genes Nutr 2012; 7(2): 111-25.
[http://dx.doi.org/10.1007/s12263-012-0281-y] [PMID: 22274779]
[106]
Bhutani M, Pathak AK, Nair AS, et al. Capsaicin is a novel blocker of constitutive and interleukin-6-inducible STAT3 activation. Clin Cancer Res 2007; 13(10): 3024-32.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2575] [PMID: 17505005]
[107]
Xu C, Shen G, Chen C, Gélinas C, Kong AN. Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through IkappaBalpha, IKK pathway in human prostate cancer PC-3 cells. Oncogene 2005; 24(28): 4486-95.
[http://dx.doi.org/10.1038/sj.onc.1208656] [PMID: 15856023]
[108]
Davis R, Singh KP, Kurzrock R, Shankar S. Sulforaphane inhibits angiogenesis through activation of FOXO transcription factors. Oncol Rep 2009; 22(6): 1473-8.
[PMID: 19885601]
[109]
Asakage M, Tsuno NH, Kitayama J, et al. Sulforaphane induces inhibition of human umbilical vein endothelial cells proliferation by apoptosis. Angiogenesis 2006; 9(2): 83-91.
[http://dx.doi.org/10.1007/s10456-006-9034-0] [PMID: 16821112]
[110]
Bertl E, Bartsch H, Gerhäuser C. Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane-mediated mechanisms in chemoprevention. Mol Cancer Ther 2006; 5(3): 575-85.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0324] [PMID: 16546971]
[111]
Kallifatidis G, Rausch V, Baumann B, et al. Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling. Gut 2009; 58(7): 949-63.
[http://dx.doi.org/10.1136/gut.2008.149039] [PMID: 18829980]
[112]
Smith TK, Lund EK, Parker ML, Clarke RG, Johnson IT. Allyl-isothiocyanate causes mitotic block, loss of cell adhesion and disrupted cytoskeletal structure in HT29 cells. Carcinogenesis 2004; 25(8): 1409-15.
[http://dx.doi.org/10.1093/carcin/bgh149] [PMID: 15033907]
[113]
Kanjoormana M, Kuttan G. Antiangiogenic activity of ursolic acid. Integr Cancer Ther 2010; 9(2): 224-35.
[http://dx.doi.org/10.1177/1534735410367647] [PMID: 20462855]
[114]
Kassi E, Sourlingas TG, Spiliotaki M, et al. Ursolic acid triggers apoptosis and Bcl-2 downregulation in MCF-7 breast cancer cells. Cancer Invest 2009; 27(7): 723-33.
[http://dx.doi.org/10.1080/07357900802672712] [PMID: 19440893]
[115]
Shanmugam MK, Rajendran P, Li F, et al. Ursolic acid inhibits multiple cell survival pathways leading to suppression of growth of prostate cancer xenograft in nude mice. J Mol Med (Berl) 2011; 89(7): 713-27.
[http://dx.doi.org/10.1007/s00109-011-0746-2] [PMID: 21465181]
[116]
Li J, Dai C, Shen L. Ursolic acid inhibits epithelial-mesenchymal transition through the Axl/NF-κB pathway in gastric cancer cells. Evid Based Complement Alternat Med 2019; 2019, 2474805
[http://dx.doi.org/10.1155/2019/2474805] [PMID: 31281396]
[117]
Saraswati S, Agrawal SS, Alhaider AA. Ursolic acid inhibits tumor angiogenesis and induces apoptosis through mitochondrial-dependent pathway in Ehrlich ascites carcinoma tumor. Chem Biol Interact 2013; 206(2): 153-65.
[http://dx.doi.org/10.1016/j.cbi.2013.09.004] [PMID: 24051192]
[118]
Lin J, Chen Y, Wei L, Hong Z, Sferra TJ, Peng J. Ursolic acid inhibits colorectal cancer angiogenesis through suppression of multiple signaling pathways. Int J Oncol 2013; 43(5): 1666-74.
[http://dx.doi.org/10.3892/ijo.2013.2101] [PMID: 24042330]
[119]
Yi T, Yi Z, Cho SG, et al. Gambogic acid inhibits angiogenesis and prostate tumor growth by suppressing vascular endothelial growth factor receptor 2 signaling. Cancer Res 2008; 68(6): 1843-50.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5944] [PMID: 18339865]
[120]
Wan L, Zhang Q, Wang S, et al. Gambogic acid impairs tumor angiogenesis by targeting YAP/STAT3 signaling axis. Phytother Res 2019; 33(5): 1579-91.
[http://dx.doi.org/10.1002/ptr.6350] [PMID: 31033039]
[121]
Varinska L, Mirossay L, Mojzisova G, Mojzis J. Antiangogenic effect of selected phytochemicals. Pharmazie 2010; 65(1): 57-63.
[PMID: 20187580]
[122]
Cheshmi F, Kazerouni F, Omrani MD, et al. Effect of emodin on expression of VEGF-A and VEGFR_2 genes in human breast carcinoma MCF-7 Cell. Int J Cancer Manag 2017; 10, e8095
[http://dx.doi.org/10.5812/ijcm.8095]
[123]
Gu J, Cui CF, Yang L, Wang L, Jiang XH. Emodin inhibits colon cancer cell invasion and migration by suppressing epithelial-mesenchymal transition via the Wnt/β-catenin pathway. Oncol Res 2019; 27(2): 193-202.
[http://dx.doi.org/10.3727/096504018X15150662230295] [PMID: 29301594]
[124]
Saarinen NM, Wärri A, Dings RP, Airio M, Smeds AI, Mäkelä S. Dietary lariciresinol attenuates mammary tumor growth and reduces blood vessel density in human MCF-7 breast cancer xenografts and carcinogen-induced mammary tumors in rats. Int J Cancer 2008; 123(5): 1196-204.
[http://dx.doi.org/10.1002/ijc.23614] [PMID: 18528864]
[125]
Mhaidat NM, Alzoubi KH, Khabour OF, et al. Assessment of genotoxicity of vincristine, vinblastine and vinorelbine in human cultured lymphocytes: a comparative study. Balkan J Med Genet 2016; 19(1): 13-20.
[http://dx.doi.org/10.1515/bjmg-2016-0002] [PMID: 27785403]
[126]
Moudi M, Go R, Yien CY, Nazre M. Vinca alkaloids. Int J Prev Med 2013; 4(11): 1231-5.
[PMID: 24404355]
[127]
Kim J, Zhang X, Rieger-Christ KM, et al. Suppression of Wnt signaling by the green tea compound (-)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells. Requirement of the transcriptional repressor HBP1. J Biol Chem 2006; 281(16): 10865-75.
[http://dx.doi.org/10.1074/jbc.M513378200] [PMID: 16495219]
[128]
Li Y, Zhang T, Korkaya H, et al. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin Cancer Res 2010; 16(9): 2580-90.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2937] [PMID: 20388854]
[129]
Jagtap S, Meganathan K, Wagh V, Winkler J, Hescheler J, Sachinidis A. Chemoprotective mechanism of the natural compounds, epigallocatechin-3-O-gallate, quercetin and curcumin against cancer and cardiovascular diseases. Curr Med Chem 2009; 16(12): 1451-62.
[http://dx.doi.org/10.2174/092986709787909578] [PMID: 19355899]
[130]
Kwon JS, Joung H, Kim YS, et al. Sulforaphane inhibits restenosis by suppressing inflammation and the proliferation of vascular smooth muscle cells. Atherosclerosis 2012; 225(1): 41-9.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.07.040] [PMID: 22898620]
[131]
Li Y, Liu J, Liu X, et al. Resveratrol-induced cell inhibition of growth and apoptosis in MCF7 human breast cancer cells are associated with modulation of phosphorylated Akt and caspase-9. Appl Biochem Biotechnol 2006; 135(3): 181-92.
[http://dx.doi.org/10.1385/ABAB:135:3:181] [PMID: 17299206]
[132]
Onori P, DeMorrow S, Gaudio E, et al. Caffeic acid phenethyl ester decreases cholangiocarcinoma growth by inhibition of NF-kappaB and induction of apoptosis. Int J Cancer 2009; 125(3): 565-76.
[http://dx.doi.org/10.1002/ijc.24271] [PMID: 19358267]
[133]
Beltz LA, Bayer DK, Moss AL, Simet IM. Mechanisms of cancer prevention by green and black tea polyphenols. Anticancer Agents Med Chem 2006; 6(5): 389-406.
[http://dx.doi.org/10.2174/187152006778226468] [PMID: 17017850]
[134]
Huang CS, Fan YE, Lin CY, Hu ML. Lycopene inhibits matrix metalloproteinase-9 expression and down-regulates the binding activity of nuclear factor-kappa B and stimulatory protein-1. J Nutr Biochem 2007; 18(7): 449-56.
[http://dx.doi.org/10.1016/j.jnutbio.2006.08.007] [PMID: 17049831]
[135]
Pan H, Zhou W, He W, et al. Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-κB activity via the Notch-1 pathway. Int J Mol Med 2012; 30(2): 337-43.
[http://dx.doi.org/10.3892/ijmm.2012.990] [PMID: 22580499]
[136]
Heber D. Multitargeted therapy of cancer by ellagitannins. Cancer Lett 2008; 269(2): 262-8.
[http://dx.doi.org/10.1016/j.canlet.2008.03.043] [PMID: 18468784]
[137]
Hahm ER, Gho YS, Park S, Park C, Kim KW, Yang CH. Synthetic curcumin analogs inhibit activator protein-1 transcription and tumor-induced angiogenesis. Biochem Biophys Res Commun 2004; 321(2): 337-44.
[http://dx.doi.org/10.1016/j.bbrc.2004.06.119] [PMID: 15358181]
[138]
Hunakova L, Sedlakova O, Cholujova D, Gronesova P, Duraj J, Sedlak J. Modulation of markers associated with aggressive phenotype in MDA-MB-231 breast carcinoma cells by sulforaphane. Neoplasma 2009; 56(6): 548-56.
[http://dx.doi.org/10.4149/neo_2009_06_548] [PMID: 19728765]
[139]
Lin MT, Yen ML, Lin CY, Kuo ML. Inhibition of vascular endothelial growth factor-induced angiogenesis by resveratrol through interruption of Src-dependent vascular endothelial cadherin tyrosine phosphorylation. Mol Pharmacol 2003; 64(5): 1029-36.
[http://dx.doi.org/10.1124/mol.64.5.1029] [PMID: 14573751]
[140]
Ma ZS, Huynh TH, Ng CP, Do PT, Nguyen TH, Huynh H. Reduction of CWR22 prostate tumor xenograft growth by combined tamoxifen-quercetin treatment is associated with inhibition of angiogenesis and cellular proliferation. Int J Oncol 2004; 24(5): 1297-304.
[http://dx.doi.org/10.3892/ijo.24.5.1297] [PMID: 15067354]
[141]
Zhang X, Song Y, Wu Y, et al. Indirubin inhibits tumor growth by antitumor angiogenesis via blocking VEGFR2-mediated JAK/STAT3 signaling in endothelial cell. Int J Cancer 2011; 129(10): 2502-11.
[http://dx.doi.org/10.1002/ijc.25909] [PMID: 21207415]
[142]
Chen HW, Yu SL, Chen JJ, et al. Anti-invasive gene expression profile of curcumin in lung adenocarcinoma based on a high throughput microarray analysis. Mol Pharmacol 2004; 65(1): 99-110.
[http://dx.doi.org/10.1124/mol.65.1.99] [PMID: 14722241]
[143]
Lee KW, Kang NJ, Kim JH, et al. Caffeic acid phenethyl ester inhibits invasion and expression of matrix metalloproteinase in SK-Hep1 human hepatocellular carcinoma cells by targeting nuclear factor kappa B. Genes Nutr 2008; 2(4): 319-22.
[http://dx.doi.org/10.1007/s12263-007-0067-9] [PMID: 18850224]
[144]
Wang QL, Tao YY, Yuan JL, Shen L, Liu CH. Salvianolic acid B prevents epithelial-to-mesenchymal transition through the TGF-beta1 signal transduction pathway in vivo and in vitro. BMC Cell Biol 2010; 11: 31.
[http://dx.doi.org/10.1186/1471-2121-11-31] [PMID: 20441599]
[145]
Hung CF, Huang TF, Chen BH, Shieh JM, Wu PH, Wu WB. Lycopene inhibits TNF-alpha-induced endothelial ICAM-1 expression and monocyte-endothelial adhesion. Eur J Pharmacol 2008; 586(1-3): 275-82.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.001] [PMID: 18439578]
[146]
Huynh H, Nguyen TT, Chan E, Tran E. Inhibition of ErbB-2 and ErbB-3 expression by quercetin prevents transforming growth factor alpha (TGF-alpha)- and epidermal growth factor (EGF)-induced human PC-3 prostate cancer cell proliferation. Int J Oncol 2003; 23(3): 821-9.
[http://dx.doi.org/10.3892/ijo.23.3.821] [PMID: 12888923]
[147]
Signorelli P, Ghidoni R. Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem 2005; 16(8): 449-66.
[http://dx.doi.org/10.1016/j.jnutbio.2005.01.017] [PMID: 16043028]
[148]
Banerjee T, Van der Vliet A, Ziboh VA. Downregulation of COX-2 and iNOS by amentoflavone and quercetin in A549 human lung adenocarcinoma cell line. Prostaglandins Leukot Essent Fatty Acids 2002; 66(5-6): 485-92.
[http://dx.doi.org/10.1054/plef.2002.0387] [PMID: 12144868]
[149]
Beevers CS, Zhou H, Huang S. Hitting the golden TORget: curcumin’s effects on mTOR signaling. Anticancer Agents Med Chem 2013; 13(7): 988-94.
[http://dx.doi.org/10.2174/1871520611313070004] [PMID: 23272912]
[150]
Shao ZM, Shen ZZ, Liu CH, et al. Curcumin exerts multiple suppressive effects on human breast carcinoma cells. Int J Cancer 2002; 98(2): 234-40.
[http://dx.doi.org/10.1002/ijc.10183] [PMID: 11857414]
[151]
Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet 2000; 9(16): 2395-402.
[http://dx.doi.org/10.1093/hmg/9.16.2395] [PMID: 11005794]
[152]
Tolba MF, Esmat A, Al-Abd AM, et al. Caffeic acid phenethyl ester synergistically enhances docetaxel and paclitaxel cytotoxicity in prostate cancer cells. IUBMB Life 2013; 65(8): 716-29.
[http://dx.doi.org/10.1002/iub.1188] [PMID: 23847086]
[153]
Tang FY, Shih CJ, Cheng LH, Ho HJ, Chen HJ. Lycopene inhibits growth of human colon cancer cells via suppression of the Akt signaling pathway. Mol Nutr Food Res 2008; 52(6): 646-54.
[http://dx.doi.org/10.1002/mnfr.200700272] [PMID: 18537129]
[154]
Marconett CN, Singhal AK, Sundar SN, Firestone GL. Indole-3-carbinol disrupts estrogen receptor-alpha dependent expression of insulin-like growth factor-1 receptor and insulin receptor substrate-1 and proliferation of human breast cancer cells. Mol Cell Endocrinol 2012; 363(1-2): 74-84.
[http://dx.doi.org/10.1016/j.mce.2012.07.008] [PMID: 22835548]