Prospecting Potential Inhibitors of Sortase A from Enterococcus faecalis: A Multidrug Resistant Bacteria, through In-silico and In-vitro Approaches

Page: [582 - 592] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Enterococcus faecalis (Ef) infections are becoming dreadfully common in hospital environments. Infections caused by Ef are difficult to treat because of its acquired resistance to different class of antibiotics, making it a multidrug resistant bacteria. Key pathogenic factor of Ef includes its ability to form biofilm on the surface of diagnostic and other medical devices. Sortase A (SrtA) is a cysteine transpeptidase which plays a pivotal role in the formation of biofilm in Ef, hence, it is considered as an important enzyme for the pathogenesis of Ef. Thus, inhibition of (SrtA) will affect biofilm formation, which will reduce its virulence and eventually Ef infection will be abridged.

Objective: To find potential inhibitors of Enterococcus faecalis Sortase A (EfSrtA) through insilico and in-vitro methods.

Methods: Gene coding for EfSrtA was cloned, expressed and purified. Three-dimensional model of EfSrtA was created using Swiss-Model workspace. In-silico docking studies using Autodock vina and molecular dynamics simulations of the modelled structures using Gromacs platform were performed to explore potential lead compounds against EfSrtA. In-vitro binding experiments using spectrofluorometric technique was carried out to confirm and validate the study.

Results: In-silico docking and in-vitro binding experiments revealed that curcumin, berberine and myricetin bound to EfSrtA at nanomolar concentrations with high affinity.

Conclusion: This is a first structural report of EfSrtA with curcumin, berberine and myricetin. Taking in account the herbal nature of these compounds, the use of these compounds as inhibitors will be advantageous. This study validated curcumin, berberine and myricetin as potential inhibitors of EfSrtA.

Keywords: Enterococcus faecalis Sortase A (EfSrtA), EfSrtA purification, EfSrtA inhibitors, in-silico modelling & docking, molecular dynamics simulations, in-vitro spectrofluorimetric studies.

Graphical Abstract

[1]
Ryan, K.; George, C. Medical Microbiology, 6th ed; McGraw-Hill Education: New York, 2014.
[2]
Venditti, M.; Brandimarte, C.; Capone, A.; Cassone, M.; Galiè, M.; Tarasi, A.; Tarasi, D. Endocarditis caused by Enterococcus faecalis with high-level resistance to aminoglycosides: failure of ampicillin and ceftriaxone combined therapy. Clin. Microbiol. Infect., 1997, 3(5), 577-580.
[http://dx.doi.org/10.1111/j.1469-0691.1997.tb00314.x] [PMID: 11864188]
[3]
Moellering, R.C. Emergence of Enterococcus as a significant pathogen. Clin. Infect. Dis., 1992, 14(6), 1173-1176.
[http://dx.doi.org/10.1093/clinids/14.6.1173] [PMID: 1623072]
[4]
Murray, B.E. The life and times of the Enterococcus. Clin. Microbiol. Rev., 1990, 3(1), 46-65.
[http://dx.doi.org/10.1128/CMR.3.1.46] [PMID: 2404568]
[5]
Amyes, S.G.B. Enterococci and streptococci. Int. J. Antimicrob. Agents, 2007, 29(Suppl. 3), S43-S52.
[http://dx.doi.org/10.1016/S0924-8579(07)72177-5] [PMID: 17659211]
[6]
Ruggero, K.A.; Schroeder, L.K.; Schreckenberger, P.C.; Mankin, A.S.; Quinn, J.P. Nosocomial superinfections due to linezolidresistant Enterococcus faecalis: evidence for a gene dosage effect on linezolid MICs. Diagn. Microbiol. Infect. Dis., 2003, 47(3), 511-513.
[http://dx.doi.org/10.1016/S0732-8893(03)00153-6] [PMID: 14596970]
[7]
Mohamed, J.A.; Huang, D.B. Biofilm formation by enterococci. J. Med. Microbiol., 2007, 56(Pt 12), 1581-1588.
[http://dx.doi.org/10.1099/jmm.0.47331-0] [PMID: 18033823]
[8]
Chambers, C.J.; Roberts, A.K.; Shone, C.C.; Acharya, K.R. Structure and function of a Clostridium difficile sortase enzyme. Sci. Rep., 2015, 5(1), 9449.
[http://dx.doi.org/10.1038/srep09449] [PMID: 25801974]
[9]
Shankar, N.; Lockatell, C.V.; Baghdayan, A.S.; Drachenberg, C.; Gilmore, M.S.; Johnson, D.E. Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect. Immun., 2001, 69(7), 4366-4372.
[http://dx.doi.org/10.1128/IAI.69.7.4366-4372.2001] [PMID: 11401975]
[10]
Ton-That, H.; Liu, G.; Mazmanian, S.K.; Faull, K.F.; Schneewind, O. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc. Natl. Acad. Sci. USA, 1999, 96(22), 12424-12429.
[http://dx.doi.org/10.1073/pnas.96.22.12424] [PMID: 10535938]
[11]
Frankel, B.A.; Tong, Y.; Bentley, M.L.; Fitzgerald, M.C.; McCafferty, D.G. Mutational analysis of active site residues in the Staphylococcus aureus transpeptidase SrtA. Biochemistry, 2007, 46(24), 7269-7278.
[http://dx.doi.org/10.1021/bi700448e] [PMID: 17518446]
[12]
Ilangovan, U.; Ton-That, H.; Iwahara, J.; Schneewind, O.; Clubb, R.T. Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus. Proc. Natl. Acad. Sci. USA, 2001, 98(11), 6056-6061.
[http://dx.doi.org/10.1073/pnas.101064198] [PMID: 11371637]
[13]
Zong, Y.; Bice, T.W.; Ton-That, H.; Schneewind, O.; Narayana, S.V.L. Crystal structures of Staphylococcus aureus sortase A and its substrate complex. J. Biol. Chem., 2004, 279(30), 31383-31389.
[http://dx.doi.org/10.1074/jbc.M401374200]] [PMID: 15117963]
[14]
Pallen, M.J.; Lam, A.C.; Antonio, M.; Dunbar, K. An embarrassment of sortases - a richness of substrates? Trends Microbiol., 2001, 9(3), 97-102.
[http://dx.doi.org/10.1016/S0966-842X(01)01956-4] [PMID: 11239768]
[15]
Race, P.R.; Bentley, M.L.; Melvin, J.A.; Crow, A.; Hughes, R.K.; Smith, W.D.; Sessions, R.B.; Kehoe, M.A.; McCafferty, D.G.; Banfield, M.J. Crystal structure of Streptococcus pyogenes sortase A: implications for sortase mechanism. J. Biol. Chem., 2009, 284(11), 6924-6933.
[http://dx.doi.org/10.1074/jbc.M805406200] [PMID: 19129180]
[16]
Khare, B.; Krishnan, V.; Rajashankar, K.R.; I-Hsiu, H.; Xin, M.; Ton-That, H.; Narayana, S.V. Structural differences between the Streptococcus agalactiae housekeeping and pilus-specific sortases: SrtA and SrtC1. PLoS One, 2011, 6(8) e22995.
[http://dx.doi.org/10.1371/journal.pone.0022995] [PMID: 21912586]
[17]
Weiner, E.M.; Robson, S.; Marohn, M.; Clubb, R.T. The Sortase A enzyme that attaches proteins to the cell wall of Bacillus anthracis contains an unusual active site architecture. J. Biol. Chem., 2010, 285(30), 23433-23443.
[http://dx.doi.org/10.1074/jbc.M110.135434] [PMID: 20489200]
[18]
Wallock-Richards, D.J.; Marles-Wright, J.; Clarke, D.J.; Maitra, A.; Dodds, M.; Hanley, B.; Campopiano, D.J. Molecular basis of Streptococcus mutans sortase A inhibition by the flavonoid natural product trans-chalcone. Chem. Commun. (Camb.), 2015, 51(52), 10483-10485.
[http://dx.doi.org/10.1039/C5CC01816A] [PMID: 26029850]
[19]
Mazmanian, S.K.; Liu, G.; Jensen, E.R.; Lenoy, E.; Schneewind, O. Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc. Natl. Acad. Sci. USA, 2000, 97(10), 5510-5515.
[http://dx.doi.org/10.1073/pnas.080520697] [PMID: 10805806]
[20]
Guiton, P.S.; Hung, C.S.; Kline, K.A.; Roth, R.; Kau, A.L.; Hayes, E.; Heuser, J.; Dodson, K.W.; Caparon, M.G.; Hultgren, S.J. Contribution of autolysin and Sortase a during Enterococcus faecalis DNA-dependent biofilm development. Infect. Immun., 2009, 77(9), 3626-3638.
[http://dx.doi.org/10.1128/IAI.00219-09] [PMID: 19528211]
[21]
Schneewind, O.; Model, P.; Fischetti, V.A. Sorting of protein A to the staphylococcal cell wall. Cell, 1992, 70(2), 267-281.
[http://dx.doi.org/10.1016/0092-8674(92)90101-H] [PMID: 1638631]
[22]
Barnett, T.C.; Scott, J.R. Differential recognition of surface proteins in Streptococcus pyogenes by two sortase gene homologs. J. Bacteriol., 2002, 184(8), 2181-2191.
[http://dx.doi.org/10.1128/JB.184.8.2181-2191.2002] [PMID: 11914350]
[23]
Patti, J.M.; Allen, B.L.; McGavin, M.J.; Höök, M. MSCRAMMmediated adherence of microorganisms to host tissues. Annu. Rev. Microbiol., 1994, 48(1), 585-617.
[http://dx.doi.org/10.1146/annurev.mi.48.100194.003101] [PMID: 7826020]
[24]
Hendrickx, A.P.A.; Willems, R.J.L.; Bonten, M.J.M.; van Schaik, W. LPxTG surface proteins of enterococci. Trends Microbiol., 2009, 17(9), 423-430.
[http://dx.doi.org/10.1016/j.tim.2009.06.004] [PMID: 19726195]
[25]
Cascioferro, S.; Totsika, M.; Schillaci, D.; Sortase, A. Sortase A: an ideal target for anti-virulence drug development. Microb. Pathog., 2014, 77, 105-112.
[http://dx.doi.org/10.1016/j.micpath.2014.10.007] [PMID: 25457798]
[26]
Chen, F.; Xie, F.; Yang, B.; Wang, C.; Liu, S.; Zhang, Y. Streptococcus suis sortase A is Ca2+ independent and is inhibited by acteoside, isoquercitrin and baicalin. PLoS One, 2017, 12(3) e0173767.
[http://dx.doi.org/10.1371/journal.pone.0173767] [PMID: 28319184]
[27]
Hu, P.; Huang, P.; Chen, W.M. Curcumin inhibits the Sortase A activity of the Streptococcus mutans UA159. Appl. Biochem. Biotechnol., 2013, 171(2), 396-402.
[http://dx.doi.org/10.1007/s12010-013-0378-9] [PMID: 23842671]
[28]
Luo, H.; Liang, D-F.; Bao, M-Y.; Sun, R.; Li, Y-Y.; Li, J-Z.; Wang, X.; Lu, K-M.; Bao, J-K. In silico identification of potential inhibitors targeting Streptococcus mutans sortase A. Int. J. Oral Sci., 2017, 9(1), 53-62.
[http://dx.doi.org/10.1038/ijos.2016.58] [PMID: 28358034]
[29]
Kim, S-H.; Shin, D-S.; Oh, M-N.; Chung, S-C.; Lee, J-S.; Oh, K-B. Inhibition of the bacterial surface protein anchoring transpeptidase sortase by isoquinoline alkaloids. Biosci. Biotechnol. Biochem., 2004, 68(2), 421-424.
[http://dx.doi.org/10.1271/bbb.68.421] [PMID: 14981307]
[30]
Kang, S.S.; Kim, J-G.; Lee, T-H.; Oh, K-B. Flavonols inhibit sortases and sortase-mediated Staphylococcus aureus clumping to fibrinogen. Biol. Pharm. Bull., 2006, 29(8), 1751-1755.
[http://dx.doi.org/10.1248/bpb.29.1751] [PMID: 16880637]
[31]
Silva, L.N.; Da Hora, G.C.A.; Soares, T.A.; Bojer, M.S.; Ingmer, H.; Macedo, A.J.; Trentin, D.S. Myricetin protects Galleria mellonella against Staphylococcus aureus infection and inhibits multiple virulence factors. Sci. Rep., 2017, 7(1), 2823.
[http://dx.doi.org/10.1038/s41598-017-02712-1] [PMID: 28588273]
[32]
Nitulescu, G.; Nicorescu, I.M.; Olaru, O.T.; Ungurianu, A.; Mihai, D.P.; Zanfirescu, A.; Nitulescu, G.M.; Margina, D. Molecular docking and screening studies of new natural sortase A inhibitors. Int. J. Mol. Sci., 2017, 18(10), 2217.
[http://dx.doi.org/10.3390/ijms18102217] [PMID: 29065551]
[33]
Lu, C.; Zhu, J.; Wang, Y.; Umeda, A.; Cowmeadow, R.B.; Lai, E.; Moreno, G.N.; Person, M.D.; Zhang, Z. Staphylococcus aureus sortase A exists as a dimeric protein in vitro. Biochemistry, 2007, 46(32), 9346-9354.
[http://dx.doi.org/10.1021/bi700519w] [PMID: 17658894]
[34]
Ton-That, H.; Schneewind, O. Anchor structure of staphylococcal surface proteins. IV. Inhibitors of the cell wall sorting reaction. J. Biol. Chem., 1999, 274(34), 24316-24320.
[http://dx.doi.org/10.1074/jbc.274.34.24316] [PMID: 10446208]
[35]
Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Gallo Cassarino, T.; Bertoni, M.; Bordoli, L.; Schwede, T. swiss-model: modelling protein tertiary and quaternary structure using evolutionary information. nucleic acids res 2014, 42(web server issue), w252-258.
[http://dx.doi.org/10.1093/nar/gku340] [PMID: 24782522]
[36]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[37]
Sousa da Silva, A.W.; Vranken, W.F. ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res. Notes, 2012, 5(1), 367.
[http://dx.doi.org/10.1186/1756-0500-5-367] [PMID: 22824207]
[38]
Kumari, R.; Kumar, R.; Lynn, A.; Lynn, A.G. Open Source Drug Discovery Consortium g_mmpbsa--a GROMACS tool for highthroughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]
[39]
Amadei, A.; Linssen, A.B.M.; Berendsen, H.J.C. Essential dynamics of proteins. Proteins, 1993, 17(4), 412-425.
[http://dx.doi.org/10.1002/prot.340170408] [PMID: 8108382]
[40]
Arita-Morioka, K.; Yamanaka, K.; Mizunoe, Y.; Ogura, T.; Sugimoto, S. Novel strategy for biofilm inhibition by using small molecules targeting molecular chaperone DnaK. Antimicrob. Agents Chemother., 2015, 59(1), 633-641.
[http://dx.doi.org/10.1128/AAC.04465-14] [PMID: 25403660]
[41]
Devaraj, S.; Jagannathan, N.; Neelakantan, P. Antibiofilm efficacy of photoactivated curcumin, triple and double antibiotic paste, 2% chlorhexidine and calcium hydroxide against Enterococcus fecalis in vitro. Sci. Rep., 2016, 6(1), 24797.
[http://dx.doi.org/10.1038/srep24797] [PMID: 27097667]
[42]
Hu, P.; Huang, P.; Chen, M.W. Curcumin reduces Streptococcus mutans biofilm formation by inhibiting sortase A activity. Arch. Oral Biol., 2013, 58(10), 1343-1348.
[http://dx.doi.org/10.1016/j.archoralbio.2013.05.004] [PMID: 23778072]
[43]
Wang, X.; Yao, X.; Zhu, Z.; Tang, T.; Dai, K.; Sadovskaya, I.; Flahaut, S.; Jabbouri, S. Effect of berberine on Staphylococcus epidermidis biofilm formation. Int. J. Antimicrob. Agents, 2009, 34(1), 60-66.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.10.033] [PMID: 19157797]
[44]
Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 1994, 22(22), 4673-4680.
[http://dx.doi.org/10.1093/nar/22.22.4673] [PMID: 7984417]
[45]
Gouet, P.; Courcelle, E.; Stuart, D.I.; Métoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics, 1999, 15(4), 305-308.
[http://dx.doi.org/10.1093/bioinformatics/15.4.305] [PMID: 10320398]