Anthraquinone Derivatives and its Antibacterial Properties from Paederia foetida Stems

Page: [193 - 199] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Paederia foetida (Rubiaceae) locally known as Chinese fever vine is a prominent plant species in the east and south Asia. The extract of Paederia foetida Linn. has been used for the treatment of gastric infections or other digestive disorders in Chinese traditional medicine.

Objective: The main aim of the study was to isolate bioactive constituents of P. foetida stem through a bio-guided assay, then evaluate their antibacterial activity and compare them with standard agents.

Materials and Methods: The stems of P. foetida were extracted by methanol and successively partitioned with ethyl acetate and n-butanol. The ethyl acetate layer further fractionated using column chromatography and normal phase HPLC. The chemical structures of the isolated compounds were elucidated through comparison of the 1H and 13C NMR and MS spectral data with the literature. The antibacterial activity of P. foetida stem was evaluated using agar well diffusion assay and resazurin based micro-dilution technique.

Results: Ten compounds were isolated from the Chinese fever vine stem including four anthraquinones, morindaparvin A (1), 1,3-dihydroxy-2-methoxyanthraquinone (2), digiferrol (3), and alizarin (4); two steroids, β-sitosterol (5), and stigmastan-3-one (6); two coumarins, scopoletin (7) and fraxidin (8) and two aromatics, ferulic acid (9) and vanillic acid (10). The four anthraquinones 1-4 were isolated for the first time from Chinese fever vine stem. Compound 2 and 3 significantly inhibited Staphylococcus aureus with MIC values 18.75 and 9.37 μg/mL respectively, and streptomycin (1.8 μg/mL) was used as a positive control.

Conclusion: Compound 2 and 3 can be considered as a prospective candidate for the treatment of staphylococcal bacterial infections in both human and animals.

Keywords: Paederia foetida, Rubiaceae, stem, Chinese fever vine, anthraquinones, antibacterial activity.

Graphical Abstract

[1]
Afroz, S.; Alamgir, M.; Khan, M.T.; Jabbar, S.; Nahar, N.; Choudhuri, M.S. Antidiarrhoeal activity of the ethanol extract of Paederia foetida Linn. (Rubiaceae). J. Ethnopharmacol., 2006, 105(1-2), 125-130.
[http://dx.doi.org/10.1016/j.jep.2005.10.004]
[2]
De, S.; Ravishankar, B.; Bhavsar, G.C. Investigation of the anti-inflammatory effects of Paederia foetida. J. Ethnopharmacol., 1994, 43(1), 31-38.
[http://dx.doi.org/10.1016/0378-8741(94)90113-9]
[3]
Morshed, H.; Bin Sayeed, M.S.; Mostofa, A.G.M.; Islam, S.; Parvin, S. Antithrombolytic and Antidiabetic Activity of Methanolic Extract of Paederia foetida. Phcog. J., 2012, 4(30), 30-34.
[http://dx.doi.org/10.5530/pj.2012.30.6]
[4]
Upadhyaya, S. Screening of phytochemicals, nutritional status, antioxidant and antimicrobial activity of Paederia foetida Linn. from different localities of Assam, India. J. Pharm. Res., 2013, 7(1), 139-141.
[http://dx.doi.org/10.1016/j.jopr.2013.01.015]
[5]
Kumar, V.; Anwar, F.; Ahmed, D.; Verma, A.; Ahmed, A.; Damanhouri, Z.A.; Mishra, V.; Ramteke, P.W.; Bhatt, P.C.; Mujeeb, M. Paederia foetida Linn. leaf extract: an antihyperlipidemic, antihyperglycaemic and antioxidant activity. BMC Complement. Altern. Med., 2014, 14, 76.
[http://dx.doi.org/10.1186/1472-6882-14-76]
[6]
Soni, D.K.; Sharma, V.; Chauhan, N.S.; Dixit, V.K. Effect of ethanolic extract of Paederia foetida Linn. leaves on sexual behavior and spermatogenesis in male rats. J. Men’s Health, 2012, 9(4), 268-276.
[http://dx.doi.org/10.1016/j.jomh.2011.12.003]
[7]
Yang, D.; Zhang, C.; Liu, X-X.; Zhang, Y.; Wang, K.; Cheng, Z-Q. Chemical constituents and antioxidant activity of Lasianthus hartii. Chem. Nat. Compd., 2017, 53(2), 390-393.
[http://dx.doi.org/10.1007/s10600-017-2002-7]
[8]
Borgohain, M.P.; Chowdhury, L.; Ahmed, S.; Bolshette, N.; Devasani, K.; Das, T.J.; Mohapatra, A.; Lahkar, M. Renoprotective and antioxidative effects of methanolic Paederia foetida leaf extract on experimental diabetic nephropathy in rats. J. Ethnopharmacol., 2017, 198, 451-459.
[http://dx.doi.org/10.1016/j.jep.2017.01.035]
[9]
Chanda, S.; Sarethy, I.P.; De, B.; Singh, K. Paederia foetida - a promising ethno-medicinal tribal plant of northeastern India. J. For. Res., 2013, 24(4), 801-808.
[http://dx.doi.org/10.1007/s11676-013-0369-2]
[10]
Diaz-Muñoz, G.; Miranda, I.L.; Sartori, S.K.; de Rezende, D.C.; Diaz, M.A.N. Chapter 11 - Anthraquinones: An Overview. Studies in Natural Products Chemistry,; Atta ur, R., Ed.; Elsevier, 2018, 58, pp. 313-338.
[11]
Revathi, S.; Govindarajan, R.K.; Rameshkumar, N.; Hakkim, F.L.; Mohammed, A-B.; Krishnan, M.; Kayalvizhi, N. Anti-cancer, anti-microbial and anti-oxidant properties of Acacia nilotica and their chemical profiling. Biocatal. Agric. Biotechnol., 2017, 11, 322-329.
[http://dx.doi.org/10.1016/j.bcab.2017.08.005]
[12]
Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods, 2007, 42(4), 321-324.
[http://dx.doi.org/10.1016/j.ymeth.2007.01.006]
[13]
de Oliveira Figueiredo, P.; Perdomo, R.T.; Garcez, F.R.; de Fatima Cepa Matos, M.; de Carvalho, J.E.; Garcez, W.S. Further constituents of Galianthe thalictroides (Rubiaceae) and inhibition of DNA topoisomerases I and IIα by its cytotoxic β-carboline alkaloids. Bioorg. Med. Chem. Lett., 2014, 24(5), 1358-1361.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.039]
[14]
Simoneau, B.; Paul, B. Reactions of ketene acetals 1611Part 15. V. Guay and P. Brassard, Tetrahedron, 1984, 40, 5039. The regiospecific synthesis of partially methylated purpurins. Tetrahedron, 1986, 42(14), 3767-3774.
[http://dx.doi.org/10.1016/S0040-4020(01)87530-X]
[15]
Imre, S.; Ersoy, L. Neue Alkylierungsprodukte von Chinizarin und seinem Monomethylether. Justus Liebigs Ann. Chem., 1978, 12, 2018-2023.
[http://dx.doi.org/10.1002/jlac.197819781216]
[16]
Permana, D.; Lajis, N.H.; Othman, A.G.; Ali, A.M.; Aimi, N.; Kitajima, M.; Takayama, H. Anthraquinones from hedyotis herbacea. J. Nat. Prod., 1999, 62(10), 1430-1431.
[http://dx.doi.org/10.1021/np990101e]
[17]
Dhananjeyan, M.R.; Milev, Y.P.; Kron, M.A.; Nair, M.G. Synthesis and activity of substituted anthraquinones against a human filarial parasite, Brugia malayi. J. Med. Chem., 2005, 48(8), 2822-2830.
[http://dx.doi.org/10.1021/jm0492655]
[18]
Berger, Y.; Castonguay, A.; Brassard, P. Carbon-13 nuclear magnetic resonance studies of anthraquinones Part II-hydroxymethoxy-anthraquinones, acetoxymethoxyanthraquinones, and naturally occuring anthraquinone analogues. Org. Mag. Reson., 1980, 14(2), 103-108.
[http://dx.doi.org/10.1002/mrc.1270140206]
[19]
Chang, F.R.; Chen, C.Y.; Hsieh, T.J.; Cho, C.P.; Wu, Y.C. Chemical constituents from Annona glabra III. J. Chin. Chem. Soc. (Taipei), 2000, 47, 913-920.
[http://dx.doi.org/10.1002/jccs.200000124]
[20]
Luo, J.R.; Ma, Q.Y.; Zhao, Y.X.; Yi, T.M.; Li, C.S.; Zhou, J. Palaeophytochemical Components from the Miocene-Fossil Wood of Pinus griffithii. J. Chin. Chem. Soc. (Taipei), 2009, 56, 600-605.
[http://dx.doi.org/10.1002/jccs.200900089]
[21]
Siddiqui, B.S.; Sattar, F.A.; Ahmad, F.; Begum, S. Isolation and structural elucidation of chemical constituents from the fruits of Morinda citrifolia Linn. Arch. Pharm. Res., 2007, 30(8), 919-923.
[http://dx.doi.org/10.1007/BF02993956]
[22]
Terra, Wda.S.; Vieira, I.J.; Braz-Filho, R.; Freitas, W.R.D.; Kanashiro, M.M.; Torres, M.C.M. Lepidotrichilins A and B, new protolimonoids with cytotoxic activity from Trichilia lepidota (Meliaceae). Molecules, 2013, 18(10), 12180-12191.
[http://dx.doi.org/10.3390/molecules181012180]
[23]
Yasuda, T.; Fukui, M.; Nakazawa, T.; Hoshikawa, A.; Ohsawa, K. Metabolic fate of fraxin administered orally to rats. J. Nat. Prod., 2006, 69(5), 755-757.
[http://dx.doi.org/10.1021/np0580412]
[24]
Wang, W.; Guo, J.; Zhang, J.; Peng, J.; Liu, T.; Xin, Z. Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran. Food Chem., 2015, 171, 40-49.
[http://dx.doi.org/10.1016/j.foodchem.2014.08.095]
[25]
Phan Duc, T.; Nguyen Thien, T.V.; Jossang, A.; Nguyen Kim, P.P.; Grellier, P.; Jaureguiberry, G.; Ton That, Q. New wedelolides, (9R)-eudesman-9,12-olide δ-lactones. Wedelia trilobata. Phytochem. Lett., 2016, 17, 304-309.
[http://dx.doi.org/10.1016/j.phytol.2016.06.001]
[26]
Pretto Juliana, B.; Cechinel-Filho, V.; Noldin Vânia, F.; Sartori Mara, R.K.; Isaias Daniela, E.B.; Bella Cruz, A. Antimicrobial activity of fractions and compounds from Calophyllum brasiliense (clusiaceae/guttiferae). Zeitschrift für. Naturforschung C., 2004, 59(9-10), 657-662.
[27]
Lu, C.; Wang, H.; Lv, W.; Xu, P.; Zhu, J.; Xie, J.; Liu, B.; Lou, Z. Antibacterial properties of anthraquinones extracted from rhubarb against Aeromonas hydrophila. Fish. Sci., 2011, 77(3), 375.
[http://dx.doi.org/10.1007/s12562-011-0341-z]
[28]
Comini, L.R.; Montoya, S.C.; Páez, P.L.; Argüello, G.A.; Albesa, I.; Cabrera, J.L. Antibacterial activity of anthraquinone derivatives from Heterophyllaea pustulata (Rubiaceae). J. Photochem. Photobiol. B, 2011, 102(2), 108-114.
[http://dx.doi.org/10.1016/j.jphotobiol.2010.09.009]