MicroRNA-16-5p Aggravates Myocardial Infarction Injury by Targeting the Expression of Insulin Receptor Substrates 1 and Mediating Myocardial Apoptosis and Angiogenesis

Page: [11 - 17] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Purpose: Myocardial infarction is a common cardiovascular disease. MicroRNA-16-5p (miR-16-5p) was upregulated in heart and kidney hypoxia/reoxygenation (H/R) injury. However, the role of miR-16-5p in myocardial infarction injury is still unclear.

Methods: Human adult ventricular cardiomyocytes (AC16) were treated with ischemia/reperfusion (H/R). The miR-16-5p level was evaluated through real-time PCR. The activity of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) was detected via LDH and CK-MB monitoring kits. Cell viability was examined with 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetra-zolium bromide (MTT) assay. Western blotting was used to analyze the protein levels. The luci-ferase report assay confirmed the relative luciferase activity.

Results: miR-16-5p was elevated in H/R-treated AC16 cells. miR-16-5p overexpression and knockdown were carried out. miR-16-5p knockdown repressed cell apoptosis, attenuated LDH and CK-MB activities, and enhanced cell viability in H/R-treated AC16 cells. Moreover, miR-16-5p knockdown promoted angiogenesis in human microvascular endothelial cells (HMVEC), causing elevation of vascular endothelial growth factor (VEGF), insulin receptor substrates 1 (IRS1), minichromosome maintenance complex component 2 (MCM2) and proliferating cell nuclear antigen (PCNA) protein levels. Moreover, miR-16-5p was testified to target IRS1. IRS1 silencing alleviated miR-16-5p knockdown-mediated inhibition of apoptosis in AC16 cells.

Conclusion: miR-16-5p knockdown increased cell viability and angiogenesis, as well as inhibited cell apoptosis by increasing IRS1. These findings indicated that miR-16-5p knockdown may be a new therapeutic target for myocardial infarction.

Keywords: miR-16-5p, IRS1, apoptosis, angiogenesis, myocardial infarction, vascular endothelial growth factor, cardiovascular disease.

[1]
Sutton, M.G.; Sharpe, N. Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation, 2000, 101(25), 2981-2988.
[http://dx.doi.org/10.1161/01.CIR.101.25.2981] [PMID: 10869273]
[2]
Bian, W.S.; Tian, F.H.; Jiang, L.H. Influence of miR-34a on myocardial apoptosis in rats with acute myocardial infarction through the ERK1/2 pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(7), 3034-3041.https://www.ncbi.nlm.nih.gov/pubmed/31002154
[PMID: 31002154]
[3]
Amsterdam, E.A.; Wenger, N.K.; Brindis, R.G. ACC/AHA Task Force Members; Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation, 2014, 130(25), 2354-2394.
[http://dx.doi.org/10.1161/CIR.0000000000000133] [PMID: 25249586]
[4]
Duyuler, P.T.; Duyuler, S.; Demir, M. Impact of myocardial blush grade on Tpe interval and Tpe/QT ratio after successful primary percutaneous coronary intervention in patients with ST elevation myocardial infarction. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(1), 143-149.https://www.ncbi.nlm.nih.gov/pubmed/28121344
[PMID: 28121344]
[5]
Newby, D.E.; Adamson, P.D.; Berry, C. SCOT-HEART Investigators, et al. Coronary CT angiography and 5-year risk of myocardial infarction. N. Engl. J. Med., 2018, 379(10), 924-933.
[http://dx.doi.org/10.1056/NEJMoa1805971] [PMID: 30145934]
[6]
Wu, W.; Yang, J.; Feng, X. MicroRNA-32 (miR-32) regulates phosphatase and tensin homologue (PTEN) expression and promotes growth, migration, and invasion in colorectal carcinoma cells. Mol. Cancer, 2013, 12, 30.
[http://dx.doi.org/10.1186/1476-4598-12-30] [PMID: 23617834]
[7]
Hu, Y.; Liu, Q.; Zhang, M.; Yan, Y.; Yu, H.; Ge, L. MicroRNA-362-3p attenuates motor deficit following spinal cord injury via targeting paired box gene 2. J. Integr. Neurosci., 2019, 18(1), 57-64.https://www.ncbi.nlm.nih.gov/pubmed/31091849
[PMID: 31091849]
[8]
Bostjancic, E.; Zidar, N.; Stajner, D.; Glavac, D. MicroRNA miR-1 is up-regulated in remote myocardium in patients with myocardial infarction. Folia Biol. (Praha), 2010, 56(1), 27-31.https://www.ncbi.nlm.nih.gov/pubmed/20163779
[PMID: 20163779]
[9]
Zhang, L.; Chen, X.; Su, T. Circulating miR-499 are novel and sensitive biomarker of acute myocardial infarction. J. Thorac. Dis., 2015, 7(3), 303-308.https://www.ncbi.nlm.nih.gov/pubmed/25922707
[PMID: 25922707]
[10]
Bauters, C.; Kumarswamy, R.; Holzmann, A. Circulating miR-133a and miR-423-5p fail as biomarkers for left ventricular remodeling after myocardial infarction. Int. J. Cardiol., 2013, 168(3), 1837-1840.
[http://dx.doi.org/10.1016/j.ijcard.2012.12.074] [PMID: 23347612]
[11]
Peng, L.; Chun-guang, Q.; Bei-fang, L. Clinical impact of circulating miR-133, miR-1291 and miR-663b in plasma of patients with acute myocardial infarction. Diagn. Pathol., 2014, 9, 89.
[http://dx.doi.org/10.1186/1746-1596-9-89] [PMID: 24885383]
[12]
Hullinger, T.G.; Montgomery, R.L.; Seto, A.G. Inhibition of miR-15 protects against cardiac ischemic injury. Circ. Res., 2012, 110(1), 71-81.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.244442] [PMID: 22052914]
[13]
Boon, R.A.; Iekushi, K.; Lechner, S. MicroRNA-34a regulates cardiac ageing and function. Nature, 2013, 495(7439), 107-110.
[http://dx.doi.org/10.1038/nature11919] [PMID: 23426265]
[14]
Qian, L.; Van Laake, L.W.; Huang, Y.; Liu, S.; Wendland, M.F.; Srivastava, D. miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J. Exp. Med., 2011, 208(3), 549-560.
[http://dx.doi.org/10.1084/jem.20101547] [PMID: 21383058]
[15]
Bonci, D.; Coppola, V.; Musumeci, M. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat. Med., 2008, 14(11), 1271-1277.
[http://dx.doi.org/10.1038/nm.1880] [PMID: 18931683]
[16]
Sun, C.Y.; She, X.M.; Qin, Y. miR-15a and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF. Carcinogenesis, 2013, 34(2), 426-435.
[http://dx.doi.org/10.1093/carcin/bgs333] [PMID: 23104180]
[17]
Wang, Y.; Fan, H.; Zhao, G. miR-16 inhibits the proliferation and angiogenesis-regulating potential of mesenchymal stem cells in severe pre-eclampsia. FEBS J., 2012, 279(24), 4510-4524.
[http://dx.doi.org/10.1111/febs.12037] [PMID: 23083510]
[18]
Wu, J.; Du, K.; Lu, X. Elevated expressions of serum miR-15a, miR-16, and miR-17-5p are associated with acute ischemic stroke. Int. J. Clin. Exp. Med., 2015, 8(11), 21071-21079.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4723883/
[PMID: 26885038]
[19]
Chen, H.H.; Lan, Y.F.; Li, H.F. Urinary miR-16 transactivated by C/EBPβ reduces kidney function after ischemia/reperfusion-indu-ced injury. Sci. Rep., 2016, 6(27945), 27945.
[http://dx.doi.org/10.1038/srep27945] [PMID: 27297958]
[20]
Devaux, Y.; Vausort, M.; McCann, G.P. A panel of 4 microRNAs facilitates the prediction of left ventricular contractility after acute myocardial infarction. PLoS One, 2013, 8(8)e70644
[http://dx.doi.org/10.1371/journal.pone.0070644] [PMID: 23967079]
[21]
Dearth, R.K.; Cui, X.; Kim, H.J. Mammary tumorigenesis and metastasis caused by overexpression of insulin receptor substrate 1 (IRS-1) or IRS-2. Mol. Cell. Biol., 2006, 26(24), 9302-9314.
[http://dx.doi.org/10.1128/MCB.00260-06] [PMID: 17030631]
[22]
Bergmann, U.; Funatomi, H.; Kornmann, M.; Beger, H.G.; Korc, M. Increased expression of insulin receptor substrate-1 in human pancreatic cancer. Biochem. Biophys. Res. Commun., 1996, 220(3), 886-890.
[http://dx.doi.org/10.1006/bbrc.1996.0500] [PMID: 8607861]
[23]
Boissan, M.; Beurel, E.; Wendum, D. Overexpression of insulin receptor substrate-2 in human and murine hepatocellular carcinoma. Am. J. Pathol., 2005, 167(3), 869-877.
[http://dx.doi.org/10.1016/S0002-9440(10)62058-5] [PMID: 16127164]
[24]
Xu, Q.; Jiang, Y.; Yin, Y. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J. Mol. Cell Biol., 2013, 5(1), 3-13.
[http://dx.doi.org/10.1093/jmcb/mjs049] [PMID: 22935141]
[25]
Hos, D.; Regenfuss, B.; Bock, F.; Onderka, J.; Cursiefen, C. Blockade of insulin receptor substrate-1 inhibits corneal lymphangiogenesis. Invest. Ophthalmol. Vis. Sci., 2011, 52(8), 5778-5785.
[http://dx.doi.org/10.1167/iovs.10-6816] [PMID: 21666240]
[26]
Qi, Y.; Xu, Z.; Zhu, Q. Myocardial loss of IRS1 and IRS2 causes heart failure and is controlled by p38α MAPK during insulin resistance. Diabetes, 2013, 62(11), 3887-3900.
[http://dx.doi.org/10.2337/db13-0095] [PMID: 24159000]
[27]
Liu, Y.; Wang, H.; Wang, X.; Xie, G. MiR-29b inhibits ventricular remodeling by activating notch signaling pathway in the rat myocardial infarction model. Heart Surg. Forum, 2019, 22(1), E019-E023.
[http://dx.doi.org/10.1532/hsf.2079] [PMID: 30802192]
[28]
Li, J.H.; Dai, J.; Han, B.; Wu, G.H.; Wang, C.H. MiR-34a regulates cell apoptosis after myocardial infarction in rats through the Wnt/β-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(6), 2555-2562.https://www.ncbi.nlm.nih.gov/pubmed/30964183
[PMID: 30964183]
[29]
Wu, G.; Tan, J.; Li, J.; Sun, X.; Du, L.; Tao, S. miRNA-145-5p induces apoptosis after ischemia-reperfusion by targeting dual specificity phosphatase 6. J. Cell. Physiol., 2019, 18(10), 28291.
[http://dx.doi.org/10.1002/jcp.28291] [PMID: 30883744]
[30]
Stojkovic, S.; Koller, L.; Sulzgruber, P. Liver-specific microRNA-122 as prognostic biomarker in patients with chronic systolic heart failure. Int. J. Cardiol., 2019, 7(19), 33664-2.
[http://dx.doi.org/10.1016/j.ijcard.2019.11.090] [PMID: 31757654]
[31]
Zhou, F.Q.; Zhao, X.F.; Liu, F.Y.; Wang, S.S.; Hu, H.L.; Fang, Y. MiR-101a attenuates myocardial cell apoptosis in rats with acute myocardial infarction via targeting TGF-β/JNK signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(10), 4432-4438.https://www.ncbi.nlm.nih.gov/pubmed/31173319
[PMID: 31173319]
[32]
He, F.; Liu, H.; Guo, J. Inhibition of MicroRNA-124 reduces cardiomyocyte apoptosis following myocardial infarction via targeting STAT3. Cell. Physiol. Biochem., 2018, 51(1), 186-200.
[http://dx.doi.org/10.1159/000495173] [PMID: 30439699]
[33]
Yan, K.; An, T.; Zhai, M. Mitochondrial miR-762 regulates apoptosis and myocardial infarction by impairing ND2. Cell Death Dis., 2019, 10(7), 500.
[http://dx.doi.org/10.1038/s41419-019-1734-7] [PMID: 31235686]
[34]
Hu, J.; Huang, C.X.; Rao, P.P. MicroRNA-155 inhibition attenuates endoplasmic reticulum stress-induced cardiomyocyte apoptosis following myocardial infarction via reducing macrophage inflammation. Eur. J. Pharmacol., 2019, 857172449
[http://dx.doi.org/10.1016/j.ejphar.2019.172449] [PMID: 31207208]
[35]
Zhang, Y.; Zhan, Y.; Liu, D.; Yu, B. Inhibition of microRNA-183 expression resists human umbilical vascular endothelial cells injury by upregulating expression of IRS1. Drug Deliv., 2019, 26(1), 612-621.
[http://dx.doi.org/10.1080/10717544.2019.1628117] [PMID: 31210063]
[36]
Zhao, H.; Liu, F.; Jia, R. MiR-570 inhibits cell proliferation and glucose metabolism by targeting IRS1 and IRS2 in human chronic myelogenous leukemia. Iran. J. Basic Med. Sci., 2017, 20(5), 481-488.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478775/
[PMID: 28656082]
[37]
Wang, Y.; Zhang, X.; Zou, C. miR-195 inhibits tumor growth and angiogenesis through modulating IRS1 in breast cancer. Biomed. Pharmacother., 2016, 80, 95-101.
[http://dx.doi.org/10.1016/j.biopha.2016.03.007] [PMID: 27133044]