[8]
Markovic SN, Erickson LA, Rao RD, et al. Malignant melanoma in the 21st century, part 1: epidemiology, risk factors, screening, prevention, and diagnosis. Mayo Clin Proc 2007; 82(3): 364-80.
[9]
American Cancer Society Cancer facts & figures 2018. Available fromhttps://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2018.html
[19]
Parsons S K, Chan J A, Winifred W Y, et al. Noninvasive diagnostic techniques for the detection of skin cancers. 2011 Available fromhttps://www.ncbi.nlm.nih.gov/books/NBK82493/
[20]
Thomas L, Puig S. Dermoscopy, Digital dermoscopy and other diagnostic tools in the early detection of melanoma and follow-up of high-risk skin cancer patients. Acta Dermato- Venereological 2017; 97: 14-21.
[26]
Marchionda P, Krause L, Jensen J, Dellavalle R. A North American perspective on dermoscopy: benefits, limitations, and grey zones. G Ital Dermatol Venereol 2010; 145: 89-97.
[27]
Blum A, Kreusch J, Stolz W, et al. Dermoscopy for malignant and benign skin tumors: Indication and standardized terminology. Der Hautarzt 2017; 68(8): 653-73.
[47]
Jamil U, Khalid S. Valuable pre-processing & segmentation techniques used in automated skin lesion detection systems. SRM 2015; 59: 92-112.
[49]
Burg G. Das melanom: wissenswertes über muttermal, sonne und andere risikofaktoren: informationen und ratschläge munich (germany): piper. Serie Gesundheit VCH 1993.
[50]
Arasi MA, El-Dahshan E-SA, El-Horbaty E-SM, Salem A-BM. Malignant melanoma detection based on machine learning techniques: a survey. Egyptian Comput Sci J 2016; 40(3): 1-10.
[51]
Hoshyar AN, Al-Jumaily A, Sulaiman R. Review on automatic early skin cancer detection. International Conference on Computer Science and Service System (CSSS) 2011 June 27-29 Nanjing, China New Jersey: IEEE 2011.
[55]
Saranya D, Radha V. Melanoma skin cancer detection: a review. Int J Adv Stud Comput Sci Engineer 2014; 3: 18.
[56]
Harpreet K, Aashdeep S. A review on automatic diagnosis of skin lesion based on the ABCD rule & thresholding method. Int J Adv Res Comput Sci Softw Engineer 2015; 5: 1-10.
[60]
Revathi V, Chithra A. A review on segmentation techniques. Skin lesion images. IRJET 2015; 2: 1-8.
[63]
Oliveira RB, Papa JP, Pereira AS, Tavares JMR. Computational methods for pigmented skin lesion classification in images: review and future trends. Neural Comput Appl 2016; 2016: 1-24.
[66]
Irum I, Raza M, Sharif M. Morphological techniques for medical images: A review. Res J Appl Sci 2012; 4.
[79]
Abbas Q, Celebi ME, Garcia I. A novel perceptually-oriented approach for skin tumor segmentation. Int J Innov Comput, Inf Control 2012; 8: 1837-48.
[86]
Kopparapu SK, Desai UB. Bayesian approach to image interpretation. Springer Science and Business Media 2001.
[93]
Jafari MH, Nasr-Esfahani E, Karimi N, Soroushmehr S, Samavi S, Najarian K. Extraction of skin lesions from non-dermoscopic images using deep learning. arXiv preprint arXiv:160902374 2016.
[100]
Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel enhancement filtering. International Conference on Medical Image Computing and Computer-Assisted Intervention 1998 Oct 11-13 Cambridge, MA, USA Berlin Springer 1998.
[102]
Shi L, Funt B, Hamarneh G. Quaternion color curvature. Soc Imaging Sci Technol 2008; 2008: 338-41.
[104]
Alina S, Ciuc CM, Radulescu T, Wanyu L, Petrache D. Preliminary work on dermatoscopic lesion segmentation.
Proceedings of the 20th European Signal Processing Conference (EUSIPCO) 2012 Aug 27-31 Bucharest, Romania New Jersey: IEEE 2012.
[106]
Ebrahimi SMS, Pourghassem H, Ashourian M. Lesion detection in dermoscopy images using sarsa reinforcement algorithm. 17th Iranian Conference of Biomedical Engineering (ICBME) 2010 Nov 3-4
Isfahan, Iran New Jersey: IEEE 2011.
[119]
Jahanifar M, Tajeddin NZ, Asl BM. Segmentation of lesions in dermoscopy images using saliency map and contour propagation. arXiv preprint arXiv: 170300087 2017.
[124]
Yasmin M, Sharif M, Masood S, Raza M, Mohsin S. Brain image enhancement-A survey. World Appl Sci J 2012; 17: 1192-204.
[156]
Antony A, Ramesh A, Sojan A, Mathews B, Varghese MTA. Skin cancer detection using artificial neural networking. Skin 2016; 2016: 4.
[161]
Satheesha T, Sathyanarayana D, Prasad MG. Proposed threshold algorithm for accurate segmentation for skin lesion. Oncology: breakthroughs in research and practice. Pennsylvania IGI Global 2016; pp 302.
[165]
Sonka M, Hlavac V, Boyle R. Image processing, analysis, and machine vision. 4th ed. Boston: Cengage Learning 2014.
[168]
Yasmin J, Sathik M. An improved iterative segmentation algorithm using canny edge detector for skin lesion border detection. Int Arab J Inf Technol 2015; 12: 325-32.
[177]
Mohamed A A I, Ali MM, Nusrat K, Rahebi J, Sayiner A, Kandemirli F. Melanoma skin cancer segmentation with image region growing based on fuzzy clustering mean. Int J Engineer Innov Res 2017; 6(2): 91-5.
[179]
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Conference on Computer Vision and Pattern Recognition (CVPR) 2015 Jun 7-12 Boston, MA, USA New Jersey: IEEE 2015.
[180]
Yuan Y, Chao M, Lo Y-C. Automatic skin lesion segmentation with fully convolutional-deconvolutional networks arXiv preprint arXiv:170305165, 2017.
[190]
Do T-T, Zhou Y, Zheng H, Cheung N-M, Koh D. Early melanoma diagnosis with mobile imaging. Conf Proc IEEE Eng Med Biol Soc 2014; 2014: 6752-7.
[194]
Vidhya K, Revathi S, Ashwini S S S, Vanitha S. Review on digital image segmentation techniques. Int Res J Engineer Technol 201; 3(2): 1-8.
[204]
Attia M, Hossny M, Nahavandi S, Yazdabadi A. Spatially aware melanoma segmentation using hybrid deep learning techniques. arXiv preprint arXiv:170207963 2017.
[205]
Ramachandram D, DeVries T. LesionSeg: semantic segmentation of skin lesions using deep convolutional neural network. arXiv preprint arXiv:170303372, 2017.
[206]
Yang X, Zeng Z, Yeo SY, Tan C, Tey HL, Su Y. A novel multitask deep learning model for skin lesion segmentation and classification. arXiv preprint arXiv:170301025 2017.
[216]
Urooj S, Singh S. A novel computer assisted approach for diagnosis of skin disease.
2nd International Conference on Computing for Sustainable Global Development (INDIACom) 2015 Mar 11-13 New Delhi, India New Jersey: IEEE 2015.
[219]
Hamzah N, Asli MS, Lee R. Skin cancer image detection using watershed marker-controlled and canny edge detection techniques. Trans Sci Technol 2018; 5(1): 1-4.
[221]
Yasmin JJ, Sathik MM, Beevi SZ. Robust segmentation algorithm using LOG edge detector for effective border detection of noisy skin lesions. International Conference on Computer, Communication and Electrical Technology (ICCCET) 2011 Mar 18-19 Tamilnadu, India New Jersey IEEE 2011.
[226]
Khan MA, Akram T, Sharif M, Javed MY, Muhammad N, Yasmin M. An implementation of optimized framework for action classification using multilayers neural network on selected fused features. Pattern Anal Appl 2018; 2018: 1-21.
[232]
Liaqat A, Khan MA, Shah JH, Sharif M, Yasmin M, Fernandes SL. Automated ulcer and bleeding classification from wce images using multiple features fusion and selection. J Mech Med Biol 2018; 2018: 1850038.
[255]
Situ N, Yuan X, Zouridakis G. Assisting main task learning by heterogeneous auxiliary tasks with applications to skin cancer screening. J Mach Learn Res 2011; 15: 688-97.
[263]
Mendonc T. PH 2-A Public database for the analysis of dermoscopic images Dermoscopy Image Analysis. 1st ed. Florida: CRC Press 2015.
[274]
Ain QU, Xue B, Al-Sahaf H, Zhang M. Genetic programming for skin cancer detection in dermoscopic images. IEEE Congress on Evolutionary Computation (CEC) 2017 June 5-8 San Sebastian, Spain New Jersey: IEEE 2017.
[281]
Hu R, Queen CM, Zouridakis G. Detection of Buruli ulcer disease: preliminary results with dermoscopic images on smart handheld devices. Point-of-Care Healthcare Technologies; 2013 Jan 16-18; Bangalore, India. New Jersey: IEEE 2013.
[283]
Scharcanski J, Celebi ME. Computer vision techniques for the diagnosis of skin cancer. Berlin: Springer 2013.
[284]
Møllersen K, Hardeberg JY, Godtliebsen F. Divergence-based colour features for melanoma detection. Colour and Visual Computing Symposium (CVCS) 2015 Aug 25-26 Gjovik, Norway New Jersey: IEEE 2015.
[286]
Mengistu AD, Alemayehu DM. Computer vision for skin cancer diagnosis and recognition using RBF and SOM. Int J Image Process 2015; 9: 311.
[287]
Amarathunga A, Ellawala E, Abeysekara G, Amalraj C. Expert system for diagnosis of skin diseases Int J Sci Technol Res 2015; 2015: 4.
[307]
Abbas Q, Emre Celebi M, Garcia IF, Ahmad W. Melanoma recognition framework based on expert definition of ABCD for dermoscopic images. Skin Res Technol 2013; 19(1): e93-102.
[313]
Johnson J, Vijayan A. Neural Network Ensemble Model with Back Propagation for Classifying Melanoma on Dermoscopy Images-A Survey. Int J Adv Res Ideas Innov Technol 2018; 4: 112-5.
[315]
Cheerla N, Frazier D. Automatic melanoma detection using multi-stage neural networks. Int J Innov Res Sci Engineer Technol 2014; 3(2): 9164-83.
[317]
Zaamout K, Zhang JZ. Improving neural networks classification through chaining. International Conference on Artificial Neural Networks 2012 Sept 11-14 Lausanne, Switzerland Berlin Springer
[323]
Vapnik VN, Vapnik V. Statistical learning theory Wiley. New York 1998.
[328]
Fix E, Hodges JL Jr. Discriminatory analysis-nonparametric discrimination: consistency properties. DTIC Document 1951; 57(3): 238-47.
[340]
Amirjahan M, Sujatha I D N. Comparative analysis of various classification algorithms for skin cancer detection. Open Dermatol J 2010; 4: 57.
[343]
Berseth M. ISIC 2017-skin lesion analysis towards melanoma
detection.0 arXiv preprint arXiv:170300523 2017.
[344]
Gutman D, Codella NC, Celebi E, et al. Skin lesion analysis toward
melanoma detection: A challenge at the international symposium
on biomedical imaging (ISBI) 2016, hosted by the international
skin imaging collaboration (ISIC) arXiv preprint arXiv:160501397 2016.
[345]
Alvarez D, Iglesias M. K-means clustering and ensemble of regressions:
An algorithm for the ISIC 2017 skin lesion segmentation
challenge arXiv preprint arXiv:170207333, 2017.
[346]
Guo S, Luo Y, Song Y. Random forests and VGG-NET: An algorithm
for the ISIC 2017 skin lesion classification challenge arXiv
preprint arXiv:170305148, 2017.
[347]
Gutiérrez-Arriola JM, Gómez-Álvarez M, Osma-Ruiz V, Sáenz-Lechón N, Fraile R. Skin lesion segmentation based on preprocessing,
thresholding and neural networks arXiv preprint
arXiv:170304845, 2017.
[348]
Jiji GW, Raj P. An Extensive technique to detect and analyze melanoma:
A challenge at the international symposium on Biomedical
Imaging (ISBI) 2017 arXiv preprint arXiv:170208717 2017.
[349]
Menegola A, Tavares J, Fornaciali M, Li LT, Avila S, Valle E. RECOD Titans at ISIC challenge 2017 arXiv preprint arXiv:
170304819 2017.
[350]
Murphree DH, Ngufor C. Transfer learning for melanoma detection:
participation in ISIC 2017 skin lesion classification challenge
arXiv preprint arXiv:170305235 2017.
[351]
Sousa RT, de Moraes LV. Araguaia medical vision lab at ISIC 2017 Skin Lesion Classification Challenge arXiv preprint arXiv: 170300856 2017.
[352]
Zhang W, Gao L, Liu R. Using Deep Learning Method for Classification:
A Proposed Algorithm for the ISIC 2017 Skin Lesion
Classification Challenge arXiv preprint arXiv:170302182 2017.
[353]
Radhakrishnan A, Durham C, Soylemezoglu A, Uhler C. Patchnet: Interpretable Neural Networks for Image Classification arXiv preprint arXiv:170508078 2017.
[356]
Mendonça T, Ferreira PM, Marques JS, Marcal AR, Rozeira J. PH 2-A dermoscopic image database for research and benchmarking Engineering in Medicine and Biology Society (EMBC). Conf Proc IEEE Eng Med Biol Soc 2013; 2013: 5437-40.