Synthesis, Docking Study, Cytotoxicity, Antioxidant, and Anti-microbial Activities of Novel 2,4-Disubstituted Thiazoles Based on Phenothiazine

Page: [151 - 159] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

A series of novel 1,3-thiazole derivatives (5a-i) with a modified phenothiazine moiety were synthesized and tested against cancer cell line MCF-7 for their cytotoxicity. Most of them (5a-i) were less cytotoxic or had no activity against MCF-7 cancer cell line.

Material and Methods: The IC50 value of compound (4) was 33.84 μM. The compounds (5a-i) were also evaluated for antimicrobial activities, but no significant activity was observed. The antioxidant activity was conducted for target compounds (5a-i). The IC50 value of compound (5b) was 0.151mM.

Results: The total amount of energy, ACE (atomic contact energy), energy of receptor (PDB: 5G5J), and ligand interaction of structure (4) were found to be 22.448 Kcal.mol-1 , -247.68, and -91.91 Kcal.mol-1, respectively. The structure (4) is well binded with the receptor because the values of binding energy, steric energy, and the number of hydrogen bondings are -91.91, 22.448 kcal.mol-1, and 2, respectively. It shows that structure (4) has good cytotoxicity with MCF-7 in vitro.

Conclusion: The increasing of docking ability of structures (5a-i) with the receptor is presented in increasing order as (5f)>(5e)>(5g)>(5a)>(5b)>(5d)>(5c)>(5i)>(5h). The structure bearing substitution as thiosemicarbazone (4), nitrogen heterocyclic (5f), halogen (5e), and azide (5g) showed good cytotoxicity activity in vitro.

Keywords: 2, 4-Disubstituted thiazole, phenothiazine, cytotoxicity, antioxidant activity, molecular docking, anti-microbial activities.

Graphical Abstract

[1]
Kashyap, S.J.; Garg, V.K.; Sharma, P.K.; Kumar, N.; Dudhe, R.; Gupta, J.K. Thiazoles: Having diverse biological activities. Med. Chem. Res., 2012, 21(8), 2123-2132. Available at
[http://dx.doi.org/10.1007/s00044-011-9685-2]
[2]
Tsuji, K.; Ishikawa, H. Synthesis and anti-pseudomonal activity of new 2-isocephems with a dihydroxypyridone moiety at C-7. Bioorg. Med. Chem. Lett., 1994, 4(13), 1601-1606. Available at
[http://dx.doi.org/10.1016/S0960-894X(01)80574-6]
[3]
Patt, W.C.; Hamilton, H.W.; Taylor, M.D.; Ryan, M.J.; Taylor, D.G., Jr; Connolly, C.J.; Doherty, A.M.; Klutchko, S.R.; Sircar, I.; Steinbaugh, B.A. Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors. J. Med. Chem., 1992, 35(14), 2562-2572. Available at
[http://dx.doi.org/10.1021/jm00092a006] [PMID: 1635057]
[4]
Sharma, R.N.; Xavier, F.P.; Vasu, K.K.; Chaturvedi, S.C.; Pancholi, S.S. Synthesis of 4-benzyl-1,3-thiazole derivatives as potential anti-inflammatory agents: an analogue-based drug design approach. J. Enzyme Inhib. Med. Chem., 2009, 24(3), 890-897. Available at
[http://dx.doi.org/10.1080/14756360802519558] [PMID: 19469712]
[5]
Holla, B.S.; Malini, K.V.; Rao, B.S.; Sarojini, B.K.; Kumari, N.S. Synthesis of some new 2,4-disubstituted thiazoles as possible antibacterial and anti-inflammatory agents. Eur. J. Med. Chem., 2003, 38(3), 313-318. Available at
[http://dx.doi.org/10.1016/S0223-5234(02)01447-2] [PMID: 12667698]
[6]
Jaen, J.C.; Wise, L.D.; Caprathe, B.W.; Tecle, H.; Bergmeier, S.; Humblet, C.C.; Heffner, T.G.; Meltzer, L.T.; Pugsley, T.A. 4-(1,2,5,6-Tetrahydro-1-alkyl-3-pyridinyl)-2-thiazolamines: a novel class of compounds with central dopamine agonist properties. J. Med. Chem., 1990, 33(1), 311-317. Available at
[http://dx.doi.org/10.1021/jm00163a051] [PMID: 1967314]
[7]
Bell, F.W.; Cantrell, A.S.; Högberg, M.; Jaskunas, S.R.; Johansson, N.G.; Jordan, C.L.; Kinnick, M.D.; Lind, P.; Morin, J.M., Jr; Noréen, R.; Oberg, B.; Palkowitz, J.A.; Parrish, C.A.; Pranc, P.; Sahlberg, C.; Ternansky, R.J.; Vasileff, R.T.; Vrang, L.; West, S.J.; Zhang, H.; Zhou, X.X. Phenethylthiazolethiourea (PETT) compounds, a new class of HIV-1 reverse transcriptase inhibitors. 1. Synthesis and basic structure-activity relationship studies of PETT analogs. J. Med. Chem., 1995, 38(25), 4929-4936. Available at
[http://dx.doi.org/10.1021/jm00025a010] [PMID: 8523406]
[8]
Hargrave, K.D.; Hess, F.K.; Oliver, J.T.N.N. N-(4-substituted-thiazolyl)oxamic acid derivatives, a new series of potent, orally active antiallergy agents. J. Med. Chem., 1983, 26(8), 1158-1163. Available at
[http://dx.doi.org/10.1021/jm00362a014] [PMID: 6876084]
[9]
Carter, J.S.; Kramer, S.; Talley, J.J.; Penning, T.; Collins, P.; Graneto, M.J.; Seibert, K.; Koboldt, C.M.; Masferrer, J.; Zweifel, B. Synthesis and activity of sulfonamide-substituted 4,5-diaryl thiazoles as selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett., 1999, 9(8), 1171-1174. Available at
[http://dx.doi.org/10.1016/S0960-894X(99)00157-2] [PMID: 10328307]
[10]
Badorc, A.; Bordes, M.F.; de Cointet, P.; Savi, P.; Bernat, A.; Lalé, A.; Petitou, M.; Maffrand, J.P.; Herbert, J.M. New orally active non-peptide fibrinogen receptor (GpIIb-IIIa) antagonists: identification of ethyl 3-[N-[4-[4-[amino[(ethoxycarbonyl) imino]methyl]phenyl]-1,3-thiazol-2-yl]-N-[1-[(ethoxycarbonyl)methyl]pip erid -4-yl]amino]propionate (SR 121787) as a potent and long-acting antithrombotic agent. J. Med. Chem., 1997, 40(21), 3393-3401. Available at
[http://dx.doi.org/10.1021/jm970240y] [PMID: 9341914]
[11]
Rudolph, J.; Theis, H.; Hanke, R.; Endermann, R.; Johannsen, L.; Geschke, F. seco-Cyclothialidines: new concise synthesis, inhibitory activity toward bacterial and human DNA topoisomerases, and antibacterial properties. J. Med. Chem., 2001, 44(4), 619-626. Available at
[http://dx.doi.org/10.1021/jm0010623] [PMID: 11170652]
[12]
Gürsoy, E.; Güzeldemirci, N.U. Synthesis and primary cytotoxicity evaluation of new imidazo[2,1-b]thiazole derivatives. Eur. J. Med. Chem., 2007, 42(3), 320-326. Available at
[http://dx.doi.org/10.1016/j.ejmech.2006.10.012] [PMID: 17145120]
[13]
Lee, S.K.; Cho, J.M.; Goo, Y.; Shin, W.S.; Lee, J.C.; Lee, W.H.; Kang, I.N.; Shim, H.K.; Moon, S.J. Synthesis and characterization of a thiazolo[5,4-d]thiazole-based copolymer for high performance polymer solar cells. Chem. Commun. (Camb.), 2011, 47(6), 1791-1793. Available at
[http://dx.doi.org/10.1039/C0CC03036H] [PMID: 21127814]
[14]
Shi, Q.; Fan, H.; Liu, Y.; Hu, W.; Li, Y.; Zhan, X. Synthesis of copolymers based on thiazolothiazole and their applications in polymer solar cells. J. Phys. Chem. C, 2010, 114(39), 16843-16848. Available at
[http://dx.doi.org/10.1021/jp106319x]
[15]
Catellani, M.; Destri, S.; Porzio, W.; Thémans, B.; Brédas, J.L. Thiazole-based polymers: Synthesis, characterization and electronic structure. Synth. Met., 1988, 26(3), 259-265. Available at
[http://dx.doi.org/10.1016/0379-6779(88)90242-1]
[16]
Grubb, A.M.; Zhang, C.; Jákli, A.; Sampson, P. 2-Alkoxy-1,3-thiazoles: A new core unit for incorporation into self-organising materials. Synthetic approach, mesomorphism, and electrooptic evaluation. Liq. Cryst., 2012, 39(10), 1175-1195. Available at
[http://dx.doi.org/10.1080/02678292.2012.705907]
[17]
Li, Y.; Xu, Y.; Qian, X.; Qu, B. Naphthalimide–thiazoles as novel photonucleases: molecular design, synthesis, and evaluation. Tetrahedron Lett., 2004, 45(6), 1247-1251. Available at
[http://dx.doi.org/10.1016/j.tetlet.2003.11.145]
[18]
Li, Z.; Yang, Q.; Qian, X. Novel 2-aminothiazonaphthalimides as visible light activatable photonucleases: effects of intercalation, heterocyclic-fused area and side chains. Bioorg. Med. Chem. Lett., 2005, 15(7), 1769-1772. Available at
[http://dx.doi.org/10.1016/j.bmcl.2005.02.053] [PMID: 15780603]
[19]
Timtcheva, I.; Maximova, V.; Deligeorgiev, T.; Zaneva, D.; Ivanov, I. New asymmetric monomethine cyanine dyes for nucleic-acid labelling: Absorption and fluorescence spectral characteristics. J. Photochem. Photobiol. Chem., 2000, 130(1), 7-11. Available at
[http://dx.doi.org/10.1016/S1010-6030(99)00207-5]
[20]
Menzel, R.; Ogermann, D.; Kupfer, S.; Weiß, D.; Görls, H.; Kleinermanns, K.; González, L.; Beckert, R. 4-Methoxy-1,3-thiazole based donor-acceptor dyes: Characterization, X-ray structure, DFT calculations and test as sensitizers for DSSC. Dyes Pigments, 2012, 94(3), 512-524. Available at
[http://dx.doi.org/10.1016/j.dyepig.2012.02.014]
[21]
Kim, A.H.H.G.; Ghosh, M.K.; Choi, C.H.; Kim, S.H.; Kim, H.S. New regioisomeric naphthol–thiazole based ‘turn-on’ fluorescent chemosensor for Al3+. Tetrahedron, 2013, 69(46), 9600-9608. Available at
[http://dx.doi.org/10.1016/j.tet.2013.09.038]
[22]
Helal, A.; Thao, N.T.T.; Lee, S.W.; Kim, H.S. Thiazole-based chemosensor II: Synthesis and fluorescence sensing of fluoride ions based on inhibition of ESIPT. J. Incl. Phenom. Macrocycl. Chem., 2010, 66(1-2), 87-94. Available at
[http://dx.doi.org/10.1007/s10847-009-9648-0]
[23]
Helal, A.; Kim, H.S. Thiazole-based chemosensor: Synthesis and ratiometric fluorescence sensing of zinc. Tetrahedron Lett., 2009, 50(39), 5510-5015. Available at
[http://dx.doi.org/10.1016/j.tetlet.2009.07.078]
[24]
Pluta, K.; Morak-Młodawska, B.; Jeleń, M. Recent progress in biological activities of synthesized phenothiazines. Eur. J. Med. Chem., 2011, 46(8), 3179-3189. Available at
[http://dx.doi.org/10.1016/j.ejmech.2011.05.013] [PMID: 21620536]
[25]
Duesing, R.; Tapolsky, G.; Meyer, T.J. Long-range, light-induced redox separation across a ligand bridge. J. Am. Chem. Soc., 1990, 112(3), 5378-5379. Available at
[http://dx.doi.org/10.1021/ja00169a071]
[26]
Daub, J.; Engl, R.; Kurzawa, J.; Miller, S.E.; Schneider, S.; Stockmann, A.; Wasielewski, M.R. Competition between conformational relaxation and intramolecular electron transfer within phenothiazine−pyrene dyads. J. Phys. Chem. A, 2001, 105(23), 5655-5665. Available at
[http://dx.doi.org/10.1021/jp0037293]
[27]
Lai, R.Y.; Kong, X.; Jenekhe, S.A.; Bard, A.J. Synthesis, cyclic voltammetric studies, and electrogenerated chemiluminescence of a new phenylquinoline-biphenothiazine donor-acceptor molecule. J. Am. Chem. Soc., 2003, 125(41), 12631-12639. Available at
[http://dx.doi.org/10.1021/ja036600q] [PMID: 14531707]
[28]
Lai, R.Y.; Fabrizio, E.F.; Lu, L.; Jenekhe, S.A.; Bard, A.J. Synthesis, cyclic voltammetric studies, and electrogenerated chemiluminescence of a new donor-acceptor molecule: 3,7-[Bis[4-phenyl-2-quinolyl]]-10-methylphenothiazine. J. Am. Chem. Soc., 2001, 123(37), 9112-9118. Available at
[http://dx.doi.org/10.1021/ja0102235] [PMID: 11552819]
[29]
Hwang, D.H.; Kim, S.K.; Park, M.J.; Lee, J.H.; Koo, B.W.; Kang, I.N.; Kim, S.H.; Zyung, T. Conjugated polymers based on phenothiazine and fluorene in light-emitting diodes and field effect transistors. Chem. Mater., 2004, 16(7), 1298-1303. Available at
[http://dx.doi.org/10.1021/cm035264+]
[30]
Han, Y.S.; Kim, S.D.; Park, L.S.; Kim, D.U.; Kwon, Y.W. Synthesis of conjugated copolymers containing phenothiazinylene vinylene moieties and their electrooptic properties. J. Polym. Sci. A Polym. Chem., 2003, 41(16), 2502-2511. Available at
[http://dx.doi.org/10.1002/pola.10793]
[31]
Rajakumar, P.; Kanagalatha, R. Synthesis and optoelectrochemical properties of novel phenothiazinophanes. Tetrahedron Lett., 2007, 48(48), 8496-8500. Available at
[http://dx.doi.org/10.1016/j.tetlet.2007.09.161]
[32]
Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res., 2005, 33, W363-367. Available at
[http://dx.doi.org/10.1093/nar/gki481] [PMID: 15980490]
[33]
Ali, I.; Mukhtar, S.D.; Hsieh, M.F.; Alothman, Z.A.; Alwarthan, A. Facile synthesis of indole heterocyclic compounds based micellar nano anti-cancer drugs. RSC Advances, 2018, 8, 37905-37914. Available at
[http://dx.doi.org/10.1039/C8RA07060A]
[34]
Chimenti, F.; Bolasco, A.; Secci, D.; Chimenti, P.; Granese, A.; Carradori, S.; Yáñez, M.; Orallo, F.; Ortuso, F.; Alcaro, S. Investigations on the 2-thiazolylhydrazyne scaffold: synthesis and molecular modeling of selective human monoamine oxidase inhibitors. Bioorg. Med. Chem., 2010, 18(15), 5715-5723. Available at
[http://dx.doi.org/10.1016/j.bmc.2010.06.007] [PMID: 20615716]
[35]
Ferreira, F.B.; Pereira, T.M.; Souza, D.L.N.; Lopes, D.S.; Freitas, V.; Ávila, V.M.R.; Kümmerle, A.E.; Sant’Anna, C.M.R. Structure-based discovery of thiosemicarbazone metalloproteinase inhibitors for hemorrhage treatment in snakebites. ACS Med. Chem. Lett., 2017, 8(11), 1136-1141. Available at
[http://dx.doi.org/10.1021/acsmedchemlett.7b00186]] [PMID: 29152044]
[36]
Parveen, M.; Aslam, A.; Nami, S.A.A.; Malla, A.M.; Alam, M.; Lee, D.U.; Rehman, S.; Silva, P.S.P.; Silva, M.R. Potent acetylcholinesterase inhibitors: Synthesis, biological assay and docking study of nitro acridone derivatives. J. Photochem. Photobiol. B, 2016, 161, 304-311. Available at
[http://dx.doi.org/10.1016/j.jphotobiol.2016.05.028] [PMID: 27295412]
[37]
El-Messery, S.M.; Habib, E.E.; Al-Rashood, S.T.A.; Hassan, G.S. Synthesis, antimicrobial, anti-biofilm evaluation, and molecular modelling study of new chalcone linked amines derivatives. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 818-832. Available at
[http://dx.doi.org/10.1080/14756366.2018.1461855] [PMID: 29722582]
[38]
Kumar, M.A.; An, T.N.M.; Lee, I.J.; Park, S.S.; Lee, K.D. Synthesis and bioactivity of novel phenothiazine-based thiazole derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2015, 190(7), 1160-1168. Available at
[http://dx.doi.org/10.1080/10426507.2014.978324]
[39]
Cho, N.S.; Park, J.H.; Lee, S.K.; Lee, J.; Shim, H.K. Saturated and efficient red light-emitting fluorene-based alternating polymers containing phenothiazine derivatives. Macromolecules, 2006, 39(1), 177-185. Available at
[http://dx.doi.org/10.1021/ma051784+]
[40]
Seo, Y.H.; Lee, W.H.; Park, J.H.; Bae, C.; Hong, Y.; Park, J.W.; Kang, N. Side‐chain effects on phenothiazine‐based donor–acceptor copolymer properties in organic photovoltaic devices. J. Polym. Sci., Part A-1. Polym. Chem., 2012, 50(4), 649-658. Available at
[http://dx.doi.org/10.1002/pola.25074]
[41]
Nguyen, M.N.; Ho-Huynh, T.D. Selective cytotoxicity of a Vietnamese traditional formula, Nam Dia long, against mcf-7 cells by synergistic effects. BMC Complement. Altern. Med., 2016, 16, 220. Available at
[http://dx.doi.org/10.1186/s12906-016-1212-z] [PMID: 27421261]
[42]
Guo, Z.; Sevrioukova, I.F.; Denisov, I.G.; Zhang, X.; Chiu, T.L.; Thomas, D.G.; Hanse, E.A.; Cuellar, R.A.D.; Grinkova, Y.V.; Langenfeld, V.W.; Swedien, D.S.; Stamschror, J.D.; Alvarez, J.; Luna, F.; Galván, A.; Bae, Y.K.; Wulfkuhle, J.D.; Gallagher, R.I.; Petricoin, E.F.; Norris, B.; Flory, C.M.; Schumacher, R.J.; O’Sullivan, M.G.; Cao, Q.; Chu, H.; Lipscomb, J.D.; Atkins, W.M.; Gupta, K.; Kelekar, A.; Blair, I.A.; Capdevila, J.H.; Falck, J.R.; Sligar, S.G.; Poulos, T.L.; Georg, G.I.; Ambrose, E.; Potter, D.A. Heme binding biguanides target cytochrome p450-dependent cancer cell mitochondria. Cell Chem. Biol., 2017, 24(10), 1259-1275.e6. Available at
[http://dx.doi.org/10.1016/j.chembiol.2017.08.009] [PMID: 28919040]
[43]
Osman, H.; Arshad, A.; Lam, C.K.; Bagley, M.C. Microwave-assisted synthesis and antioxidant properties of hydrazinyl thiazolyl coumarin derivatives. Chem. Cent. J., 2012, 6(1), 32. Available at
[http://dx.doi.org/10.1186/1752-153X-6-32] [PMID: 22510146]