[6]
Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft coco: Common objects in context Eur Conf Comput Vis. Springer 2014; pp. 740-55.
[7]
Taigman Y, Marc’ MY, Ranzato A, Wolf L. DeepFace: Closing the Gap to Human-Level Performance in Face Verification n.d.
[8]
Salvador A, Drozdzal M, Giro-i-Nieto X, Romero A. Inverse cooking: Recipe generation from food images. Proc IEEE Conf Comput Vis Pattern Recognit. 10453-62.
[10]
Sun Y, Liang D, Wang X, Tang X. DeepID3: Face Recognition with Very Deep Neural Networks 2015.
[11]
Lee K, Zung J, Li P, Jain V, Seung HS. Superhuman Accuracy on the SNEMI3D Connectomics Challenge 2017.
[12]
He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition 2015.
[14]
Shirer M. Worldwide Spending on Cognitive and Artificial Intelligence Systems. Int Data Corp 2019.
[15]
Shirer M. Worldwide Spending on Cognitive and Artificial Intelligence Systems. Int Data Corp 2018.
[16]
Schwab K. The Fourth Industrial Revolution: what it means, how to respond. 1
[17]
Rosen PP. Rosen’s breast pathology. Lippincott Williams & Wilkins 2001.
[23]
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015.
[25]
Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. Natural language processing (almost) from scratch. J Mach Learn Res 2011; 12: 2493-537.
[26]
Sainath TN, Mohamed A, Kingsbury B, Ramabhadran B. Deep convolutional neural networks for LVCSR IEEE Int Conf Acoust Speech Signal Process. 8614-8.
[28]
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Cham: Springer 2015; pp. 234-41.
[31]
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 2012; 1097-105.
[34]
Hassoun MH. Fundamentals of artificial neural networks. MIT press 1995.
[40]
Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition 2014.
[41]
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going Deeper with Convolutions 2014.
[42]
Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-resnet and the impact of residual connections on learning. Thirty-First AAAI Conf Artif Intell.
[43]
Sutskever I, Martens J, Hinton GE. Generating text with recurrent neural networks. Proc. 28th Int. Conf. Mach Learn 2011; ICML-11: 1017-24.
[44]
Graves A. Generating sequences with recurrent neural networks.ArXiv Prepr ArXiv13080850 2013 2013.
[46]
Choi K, Fazekas G, Sandler M. Text-based LSTM networks for automatic music composition 2016.
[48]
Chen J, Yang L, Zhang Y, Alber M, Chen DZ. Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation. Adv Neural Inf Process Syst 2016; 3036-44.
[49]
Stollenga MF, Byeon W, Liwicki M, Schmidhuber J. Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation. Adv Neural Inf Process Syst 2015; 2998-3006.
[50]
Shin H-C, Roberts K, Lu L, Demner-Fushman D, Yao J, Summers RM. Learning to read chest x-rays: Recurrent neural cascade model for automated image annotation Proc IEEE Conf Comput Vis Pattern Recognit. 2497-506.
[52]
Kingma DP, Welling M. Auto-encoding variational bayes 2013.
[53]
Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J Mach Learn Res 2010; 11: 3371-408.
[54]
Poultney C, Chopra S, Cun YL. Efficient learning of sparse representations with an energy-based model. Adv Neural Inf Process Syst 2007; 1137-44.
[56]
Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative Adversarial Networks 2014.
[57]
Kazeminia S, Baur C, Kuijper A, van Ginneken B, Navab N, Albarqouni S, et al. GANs for Medical Image Analysis. 2018. ArXiv180906222 Cs Stat 2018
[59]
Khan MJ, Yousaf A, Javed N, Nadeem S, Khurshid K. Automatic Target Detection in Satellite Images using Deep Learning. J Space Technol 2017; 7: 44-9.
[60]
Kim E, Corte-Real M, Baloch Z. A deep semantic mobile application for thyroid cytopathology. International Society for Optics and Photonics 2016; Vol. 9789p. 97890A
[63]
Suk H-I, Shen D. Deep Learning-Based Feature Representation for AD/MCI Classification Int Conf Med Image Comput Comput- Assist Interv,. 583-90.
[64]
Hosseini-Asl E, Gimel’farb G, El-Baz A. Alzheimer’s Disease Diagnostics by a Deeply Supervised Adaptable 3D Convolutional Network 2016.
[65]
Payan A, Montana G. Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks 2015.
[67]
Menegola A, Fornaciali M, Pires R, Avila S, Valle E. Towards Automated Melanoma Screening: Exploring Transfer Learning Schemes 2016.
[69]
de Vos BD, Wolterink JM, de Jong PA, Viergever MA, Išgum I. 2D image classification for 3D anatomy localization: employing deep convolutional neural networks. Styner: MA 2016; p. 97841Y.
[76]
Yang X, Yeo S-Y, Hong JM, Wong ST, Tang WT, Wu ZZ, et al. A Deep Learning Approach for Tumor Tissue Image Classification Biomed Eng. Calgary, AB, Canada: ACTAPRESS 2016.
[84]
Kohl S, Bonekamp D, Schlemmer H-P, Yaqubi K, Hohenfellner M, Hadaschik B, et al. Adversarial Networks for the Detection of Aggressive Prostate Cancer. . ArXiv170208014 Cs 2017 2017.
[88]
Anavi Y, Kogan I, Gelbart E, Geva O, Greenspan H. Visualizing and enhancing a deep learning framework using patients age and gender for chest x-ray image retrieval
[89]
Shah A, Conjeti S, Navab N, Katouzian A. Deeply learnt hashing forests for content based image retrieval in prostate MR images.International Society for Optics and Photonics. Styner, MA 2016; Vol. 9784: :p. 978414.
[91]
Gonzalez RT, Riascos JA, Barone DAC. How Artificial Intelligence is Supporting Neuroscience Research: A Discussion About Foundations, Methods and Applications. Cham: Springer 2017; pp. 63-77.
[102]
Funke J, Tschopp FD, Grisaitis W, Sheridan A, Singh C, Saalfeld S, et al. A Deep Structured Learning Approach Towards Automating Connectome Reconstruction from 3D Electron Micrographs 2017.
[104]
Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur Heart J 2010; 31: 2369-429.
[105]
Rajpurkar P, Hannun AY, Haghpanahi M, Bourn C, Ng AY. Cardiologist-level arrhythmia detection with convolutional neural networks.. ArXiv Prepr ArXiv170701836
[106]
Zihlmann M, Perekrestenko D, Tschannen M. Convolutional recurrent neural networks for electrocardiogram classification 2017 Comput Cardiol CinC. IEEE 2017; pp. 1-4.
[108]
Andreotti F, Carr O, Pimentel MAF, Mahdi A, De Vos M. Comparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECG 2017 Comput Cardiol CinC. IEEE 2017; pp. 1-4.
[109]
Ghiasi S, Abdollahpur M, Madani N, Kiani K, Ghaffari A. Atrial fibrillation detection using feature based algorithm and deep convolutional neural network 2017 Comput Cardiol CinC. IEEE 2017; pp. 1-4.
[110]
Limam M, Precioso F. Atrial fibrillation detection and ECG classification based on convolutional recurrent neural network 2017 Comput Cardiol CinC. IEEE 2017; pp. 1-4.
[111]
Rubin J, Parvaneh S, Rahman A, Conroy B, Babaeizadeh S. Densely connected convolutional networks and signal quality analysis to detect atrial fibrillation using short single-lead ECG recordings 2017 Comput Cardiol CinC. IEEE 2017; pp. 1-4.
[112]
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely Connected Convolutional Networks. CVPR 2017; 1: 3.
[113]
Xiong Z, Stiles MK, Zhao J. Robust ECG signal classification for detection of atrial fibrillation using a novel neural network 2017 Comput Cardiol CinC. IEEE 2017; pp. 1-4.
[114]
Hong S, Wu M, Zhou Y, Wang Q, Shang J, Li H, et al. ENCASE: An ENsemble ClASsifiEr for ECG classification using expert features and deep neural networks 2017 Comput Cardiol CinC. IEEE 2017; pp. 1-4.
[115]
Schwab P, Scebba GC, Zhang J, Delai M, Karlen W. Beat by beat: Classifying cardiac arrhythmias with recurrent neural networks 2017 Comput Cardiol CinC. IEEE 2017; pp. 1-4.
[118]
Kim DH, Kim ST, Ro YM. atent feature representation with 3-D multi-view deep convolutional neural network for bilateral analysis in digital breast tomosynthesis IEEE Int Conf Acoust Speech Signal Process. 927-31.
[128]
Wang D, Khosla A, Gargeya R, Irshad H, Beck AH. Deep learning for identifying metastatic breast cancer 2016.
[129]
Ahmad HM, Ghuffar S, Khurshid K. Classification of Breast Cancer Histology Images Using Transfer Learning 16th Int Bhurban Conf Appl Sci Technol. 328-332.
[132]
Ronneberger O, Fischer P, Brox T. Dental X-ray image segmentation using a U-shaped Deep Convolutional network. ISBI 2015.
[134]
Chu P, Bo C, Liang X, Yang J, Megalooikonomou V, Yang F, et al. Using octuplet siamese network for osteoporosis analysis on dental panoramic radiograph 40th Annu Int Conf IEEE Eng Med Biol Soc. 2579-82.
[136]
Egger J, Pfarrkirchner B, Gsaxner C, Lindner L, Schmalstieg D, Wallner J. Fully Convolutional Mandible Segmentation on a valid Ground- Truth Dataset Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf . 656-0.