Natural Products: Experimental Efficient Agents for Inflammatory Bowel Disease Therapy

Page: [4893 - 4913] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Inflammatory bowel disease (IBD) is a chronic, elusive disorder resulting in relapsing inflammation of intestine with incompletely elucidated etiology, whose two representative forms are ulcerative colitis (UC) and Crohn’s disease (CD). Accumulating researches have revealed that the individual genetic susceptibility, environmental risk elements, intestinal microbial flora, as well as innate and adaptive immune system are implicated in the pathogenesis and development of IBD. Despite remarkable progression of IBD therapy has been achieved by chemical drugs and biological therapies such as aminosalicylates, corticosteroids, antibiotics, anti-tumor necrosis factor (TNF)-α, anti-integrin agents, etc., healing outcome still cannot be obtained, along with inevitable side effects. Consequently, a variety of researches have focused on exploring new therapies, and found that natural products (NPs) isolated from herbs or plants may serve as promising therapeutic agents for IBD through antiinflammatory, anti-oxidant, anti-fibrotic and anti-apoptotic effects, which implicates the modulation on nucleotide- binding domain (NOD) like receptor protein (NLRP) 3 inflammasome, gut microbiota, intestinal microvascular endothelial cells, intestinal epithelia, immune system, etc. In the present review, we will summarize the research development of IBD pathogenesis and current mainstream therapy, as well as the therapeutic potential and intrinsic mechanisms of NPs in IBD.

Keywords: Natural products, inflammatory bowel disease, pathogenesis, therapy, mechanisms, nucleotide-binding domain.

[1]
Loddo I, Romano C. Inflammatory bowel disease: genetics, epigenetics, and pathogenesis. Front Immunol 2015; 6: 551.
[http://dx.doi.org/10.3389/fimmu.2015.00551] [PMID: 26579126]
[2]
Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med 2009; 361(21): 2066-78.
[http://dx.doi.org/10.1056/NEJMra0804647] [PMID: 19923578]
[3]
Ventham NT, Kennedy NA, Nimmo ER, Satsangi J. Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics. Gastroenterology 2013; 145(2): 293-308.
[http://dx.doi.org/10.1053/j.gastro.2013.05.050] [PMID: 23751777]
[4]
Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007; 448(7152): 427-34.
[http://dx.doi.org/10.1038/nature06005] [PMID: 17653185]
[5]
Zhang YZ, Li YY. Inflammatory bowel disease: pathogenesis. World J Gastroenterol 2014; 20(1): 91-9.
[http://dx.doi.org/10.3748/wjg.v20.i1.91] [PMID: 24415861]
[6]
Alex P, Zachos NC, Nguyen T, et al. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm Bowel Dis 2009; 15(3): 341-52.
[http://dx.doi.org/10.1002/ibd.20753] [PMID: 18942757]
[7]
Mizoguchi A, Mizoguchi E. Inflammatory bowel disease, past, present and future: lessons from animal models. J Gastroenterol 2008; 43(1): 1-17.
[http://dx.doi.org/10.1007/s00535-007-2111-3] [PMID: 18297430]
[8]
Wirtz S, Popp V, Kindermann M, et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc 2017; 12(7): 1295-309.
[http://dx.doi.org/10.1038/nprot.2017.044] [PMID: 28569761]
[9]
Duerr RH. Genome-wide association studies herald a new era of rapid discoveries in inflammatory bowel disease research. Gastroenterology 2007; 132(5): 2045-9.
[http://dx.doi.org/10.1053/j.gastro.2007.03.082] [PMID: 17484895]
[10]
Inohara N, Ogura Y, Fontalba A, et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem 2003; 278(8): 5509-12.
[http://dx.doi.org/10.1074/jbc.C200673200] [PMID: 12514169]
[11]
Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 2007; 39(2): 207-11.
[http://dx.doi.org/10.1038/ng1954] [PMID: 17200669]
[12]
McCarroll SA, Huett A, Kuballa P, et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat Genet 2008; 40(9): 1107-12.
[http://dx.doi.org/10.1038/ng.215] [PMID: 19165925]
[13]
Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314(5804): 1461-3.
[http://dx.doi.org/10.1126/science.1135245] [PMID: 17068223]
[14]
Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012; 491(7422): 119-24.
[http://dx.doi.org/10.1038/nature11582] [PMID: 23128233]
[15]
Chan SS, Luben R, Bergmann MM, et al. Aspirin in the aetiology of Crohn’s disease and ulcerative colitis: a European prospective cohort study. Aliment Pharmacol Ther 2011; 34(6): 649-55.
[http://dx.doi.org/10.1111/j.1365-2036.2011.04784.x] [PMID: 21790683]
[16]
Ananthakrishnan AN, Higuchi LM, Huang ES, et al. Aspirin, nonsteroidal anti-inflammatory drug use, and risk for Crohn disease and ulcerative colitis: a cohort study. Ann Intern Med 2012; 156(5): 350-9.
[http://dx.doi.org/10.7326/0003-4819-156-5-201203060-00007] [PMID: 22393130]
[17]
Ananthakrishnan AN, McGinley EL, Binion DG, Saeian K. Ambient air pollution correlates with hospitalizations for inflammatory bowel disease: an ecologic analysis. Inflamm Bowel Dis 2011; 17(5): 1138-45.
[http://dx.doi.org/10.1002/ibd.21455] [PMID: 20806342]
[18]
Kaplan GG, Hubbard J, Korzenik J, et al. The inflammatory bowel diseases and ambient air pollution: a novel association. Am J Gastroenterol 2010; 105(11): 2412-9.
[http://dx.doi.org/10.1038/ajg.2010.252] [PMID: 20588264]
[19]
Shaw SY, Blanchard JF, Bernstein CN. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am J Gastroenterol 2010; 105(12): 2687-92.
[http://dx.doi.org/10.1038/ajg.2010.398] [PMID: 20940708]
[20]
Joossens M, Huys G, Cnockaert M, et al. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 2011; 60(5): 631-7.
[http://dx.doi.org/10.1136/gut.2010.223263] [PMID: 21209126]
[21]
Andoh A, Imaeda H, Aomatsu T, et al. Comparison of the fecal microbiota profiles between ulcerative colitis and Crohn’s disease using terminal restriction fragment length polymorphism analysis. J Gastroenterol 2011; 46(4): 479-86.
[http://dx.doi.org/10.1007/s00535-010-0368-4] [PMID: 21253779]
[22]
Meconi S, Vercellone A, Levillain F, et al. Adherent-invasive Escherichia coli isolated from Crohn’s disease patients induce granulomas in vitro. Cell Microbiol 2007; 9(5): 1252-61.
[http://dx.doi.org/10.1111/j.1462-5822.2006.00868.x] [PMID: 17223928]
[23]
Kaser A, Blumberg RS. Autophagy, microbial sensing, endoplasmic reticulum stress, and epithelial function in inflammatory bowel disease. Gastroenterology 2011; 140(6): 1738-47.
[http://dx.doi.org/10.1053/j.gastro.2011.02.048] [PMID: 21530740]
[24]
Salim SY, Söderholm JD. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm Bowel Dis 2011; 17(1): 362-81.
[http://dx.doi.org/10.1002/ibd.21403] [PMID: 20725949]
[25]
Di Sabatino A, Biancheri P, Rovedatti L, MacDonald TT, Corazza GR. New pathogenic paradigms in inflammatory bowel disease. Inflamm Bowel Dis 2012; 18(2): 368-71.
[http://dx.doi.org/10.1002/ibd.21735] [PMID: 21538717]
[26]
Sugihara T, Kobori A, Imaeda H, et al. The increased mucosal mRNA expressions of complement C3 and interleukin-17 in inflammatory bowel disease. Clin Exp Immunol 2010; 160(3): 386-93.
[http://dx.doi.org/10.1111/j.1365-2249.2010.04093.x] [PMID: 20089077]
[27]
Fina D, Sarra M, Fantini MC, et al. Regulation of gut inflammation and th17 cell response by interleukin-21. Gastroenterology 2008; 134(4): 1038-48.
[http://dx.doi.org/10.1053/j.gastro.2008.01.041] [PMID: 18395085]
[28]
Almenier HA, Al Menshawy HH, Maher MM, Al Gamal S. Oxidative stress and inflammatory bowel disease. Front Biosci (Elite Ed) 2012; 4: 1335-44.
[http://dx.doi.org/10.2741/e463] [PMID: 22201958]
[29]
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 2010; 49(11): 1603-16.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[30]
Yildiz G, Yildiz Y, Ulutas PA, Yaylali A, Ural M. Resveratrol pretreatment ameliorates TNBS colitis in rats. Recent Pat Endocr Metab Immune Drug Discov 2015; 9(2): 134-40.
[http://dx.doi.org/10.2174/1872214809666150806105737] [PMID: 26246013]
[31]
Burke JP, Mulsow JJ, O’Keane C, Docherty NG, Watson RW, O’Connell PR. Fibrogenesis in Crohn’s disease. Am J Gastroenterol 2007; 102(2): 439-48.
[http://dx.doi.org/10.1111/j.1572-0241.2006.01010.x] [PMID: 17156147]
[32]
Shafik NM, Gaber RA, Mohamed DA, Ebeid AM. Hesperidin modulates dextran sulfate sodium-induced ulcerative colitis in rats: Targeting sphingosine kinase-1- sphingosine 1 phosphate signaling pathway, mitochondrial biogenesis, inflammation, and apoptosis. J Biochem Mol Toxicol 2019. e22312
[http://dx.doi.org/10.1002/jbt.22312] [PMID: 30811821]
[33]
Xu XM, Yu JP, He XF, Li JH, Yu LL, Yu HG. Effects of garlicin on apoptosis in rat model of colitis. World J Gastroenterol 2005; 11(29): 4579-82.
[http://dx.doi.org/10.3748/wjg.v11.i29.4579] [PMID: 16052692]
[34]
Shen HH, Yang YX, Meng X, et al. NLRP3: A promising therapeutic target for autoimmune diseases. Autoimmun Rev 2018; 17(7): 694-702.
[http://dx.doi.org/10.1016/j.autrev.2018.01.020] [PMID: 29729449]
[35]
Cao F, Hu LQ, Yao SR, et al. P2X7 receptor: a potential therapeutic target for autoimmune diseases. Autoimmun Rev 2019; 18(8): 767-77.
[http://dx.doi.org/10.1016/j.autrev.2019.06.009] [PMID: 31181327]
[36]
Binion DG, Heidemann J, Li MS, Nelson VM, Otterson MF, Rafiee P. Vascular cell adhesion molecule-1 expression in human intestinal microvascular endothelial cells is regulated by PI 3-kinase/Akt/MAPK/NF-kappaB: inhibitory role of curcumin. Am J Physiol Gastrointest Liver Physiol 2009; 297(2): G259-68.
[http://dx.doi.org/10.1152/ajpgi.00087.2009] [PMID: 19520742]
[37]
Binion DG, West GA, Ina K, Ziats NP, Emancipator SN, Fiocchi C. Enhanced leukocyte binding by intestinal microvascular endothelial cells in inflammatory bowel disease. Gastroenterology 1997; 112(6): 1895-907.
[http://dx.doi.org/10.1053/gast.1997.v112.pm9178682] [PMID: 9178682]
[38]
Prasad R, Giri S, Nath N, Singh I, Singh AK. Inhibition of phosphoinositide 3 kinase-Akt (protein kinase B)-nuclear factor-kappa B pathway by lovastatin limits endothelial-monocyte cell interaction. J Neurochem 2005; 94(1): 204-14.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03182.x] [PMID: 15953363]
[39]
Lin WN, Luo SF, Wu CB, Lin CC, Yang CM. Lipopolysaccharide induces VCAM-1 expression and neutrophil adhesion to human tracheal smooth muscle cells: involvement of Src/EGFR/PI3-K/Akt pathway. Toxicol Appl Pharmacol 2008; 228(2): 256-68.
[http://dx.doi.org/10.1016/j.taap.2007.11.026] [PMID: 18182168]
[40]
Danese S, Sans M, de la Motte C, et al. Angiogenesis as a novel component of inflammatory bowel disease pathogenesis. Gastroenterology 2006; 130(7): 2060-73.
[http://dx.doi.org/10.1053/j.gastro.2006.03.054] [PMID: 16762629]
[41]
Bagli E, Xagorari A, Papetropoulos A, Murphy C, Fotsis T. Angiogenesis in inflammation. Autoimmun Rev 2004; 3(Suppl. 1): S26.
[PMID: 15309776]
[42]
Szekanecz Z, Koch AE. Vascular endothelium and immune responses: implications for inflammation and angiogenesis. Rheum Dis Clin North Am 2004; 30(1): 97-114.
[http://dx.doi.org/10.1016/S0889-857X(03)00116-9] [PMID: 15061570]
[43]
Danese S, Sans M, Spencer DM, et al. Angiogenesis blockade as a new therapeutic approach to experimental colitis. Gut 2007; 56(6): 855-62.
[http://dx.doi.org/10.1136/gut.2006.114314] [PMID: 17170016]
[44]
Turner JR. Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am J Pathol 2006; 169(6): 1901-9.
[http://dx.doi.org/10.2353/ajpath.2006.060681] [PMID: 17148655]
[45]
Abraham BP, Ahmed T, Ali T. Inflammatory bowel disease: pathophysiology and current therapeutic approaches. Handb Exp Pharmacol 2017; 239: 115-46.
[http://dx.doi.org/10.1007/164_2016_122] [PMID: 28233184]
[46]
Yue W, Liu Y, Li X, Lv L, Huang J, Liu J. Curcumin ameliorates dextran sulfate sodium-induced colitis in mice via regulation of autophagy and intestinal immunity. Turk J Gastroenterol 2019; 30(3): 290-8.
[http://dx.doi.org/10.5152/tjg.2019.18342] [PMID: 30923033]
[47]
Gong Z, Zhao S, Zhou J, et al. Curcumin alleviates DSS-induced colitis via inhibiting NLRP3 inflammsome activation and IL-1β production. Mol Immunol 2018; 104: 11-9.
[http://dx.doi.org/10.1016/j.molimm.2018.09.004] [PMID: 30396035]
[48]
Yang JY, Zhong X, Kim SJ, et al. Comparative effects of curcumin and tetrahydrocurcumin on dextran sulfate sodium-induced colitis and inflammatory signaling in mice. J Cancer Prev 2018; 23(1): 18-24.
[http://dx.doi.org/10.15430/JCP.2018.23.1.18] [PMID: 29629345]
[49]
Li CP, Li JH, He SY, Chen O, Shi L. Effect of curcumin on p38MAPK expression in DSS-induced murine ulcerative colitis. Genet Mol Res 2015; 14(2): 3450-8.
[http://dx.doi.org/10.4238/2015.April.15.8] [PMID: 25966111]
[50]
Yang M, Wang J, Yang C, Han H, Rong W, Zhang G. Oral administration of curcumin attenuates visceral hyperalgesia through inhibiting phosphorylation of TRPV1 in rat model of ulcerative colitis. Mol Pain 2017; 13 1744806917726416
[http://dx.doi.org/10.1177/1744806917726416] [PMID: 28812431]
[51]
Zhao HM, Han F, Xu R, et al. Therapeutic effect of curcumin on experimental colitis mediated by inhibiting CD8+CD11c+ cells. World J Gastroenterol 2017; 23(10): 1804-15.
[http://dx.doi.org/10.3748/wjg.v23.i10.1804] [PMID: 28348486]
[52]
Zhao HM, Xu R, Huang XY, et al. Curcumin suppressed activation of dendritic cells via JAK/STAT/SOCS signal in mice with experimental colitis. Front Pharmacol 2016; 7: 455.
[http://dx.doi.org/10.3389/fphar.2016.00455] [PMID: 27932984]
[53]
Zhao HM, Xu R, Huang XY, et al. Curcumin improves regulatory T cells in gut-associated lymphoid tissue of colitis mice. World J Gastroenterol 2016; 22(23): 5374-83.
[http://dx.doi.org/10.3748/wjg.v22.i23.5374] [PMID: 27340353]
[54]
Mouzaoui S, Rahim I, Djerdjouri B. Aminoguanidine and curcumin attenuated tumor necrosis factor (TNF)-α-induced oxidative stress, colitis and hepatotoxicity in mice. Int Immunopharmacol 2012; 12(1): 302-11.
[http://dx.doi.org/10.1016/j.intimp.2011.10.010] [PMID: 22036766]
[55]
Venkataranganna MV, Rafiq M, Gopumadhavan S, Peer G, Babu UV, Mitra SK. NCB-02 (standardized Curcumin preparation) protects dinitrochlorobenzene- induced colitis through down-regulation of NFkappa-B and iNOS. World J Gastroenterol 2007; 13(7): 1103-7.
[http://dx.doi.org/10.3748/wjg.v13.i7.1103] [PMID: 17373747]
[56]
Billerey-Larmonier C, Uno JK, Larmonier N, et al. Protective effects of dietary curcumin in mouse model of chemically induced colitis are strain dependent. Inflamm Bowel Dis 2008; 14(6): 780-93.
[http://dx.doi.org/10.1002/ibd.20348] [PMID: 18200517]
[57]
Toden S, Theiss AL, Wang X, Goel A. Essential turmeric oils enhance anti-inflammatory efficacy of curcumin in dextran sulfate sodium-induced colitis. Sci Rep 2017; 7(1): 814.
[http://dx.doi.org/10.1038/s41598-017-00812-6] [PMID: 28400554]
[58]
Loganes C, Lega S, Bramuzzo M, et al. Curcumin anti-apoptotic action in a model of intestinal epithelial inflammatory damage. Nutrients 2017; 9(6): 9.
[http://dx.doi.org/10.3390/nu9060578] [PMID: 28587282]
[59]
Midura-Kiela MT, Radhakrishnan VM, Larmonier CB, Laubitz D, Ghishan FK, Kiela PR. Curcumin inhibits interferon-γ signaling in colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 2012; 302(1): G85-96.
[http://dx.doi.org/10.1152/ajpgi.00275.2011] [PMID: 22038826]
[60]
Larmonier CB, Midura-Kiela MT, Ramalingam R, et al. Modulation of neutrophil motility by curcumin: implications for inflammatory bowel disease. Inflamm Bowel Dis 2011; 17(2): 503-15.
[http://dx.doi.org/10.1002/ibd.21391] [PMID: 20629184]
[61]
Binion DG, Otterson MF, Rafiee P. Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition. Gut 2008; 57(11): 1509-17.
[http://dx.doi.org/10.1136/gut.2008.152496] [PMID: 18596194]
[62]
Grammatikopoulou MG, Gkiouras K, Theodoridis X, Asteriou E, Forbes A, Bogdanos DP. Oral adjuvant curcumin therapy for attaining clinical remission in ulcerative colitis: a systematic review and meta-analysis of randomized controlled trials. Nutrients 2018; 10(11): 10.
[http://dx.doi.org/10.3390/nu10111737] [PMID: 30424514]
[63]
Iqbal U, Anwar H, Quadri AA. Use of curcumin in achieving clinical and endoscopic remission in ulcerative colitis: a systematic review and meta-analysis. Am J Med Sci 2018; 356(4): 350-6.
[http://dx.doi.org/10.1016/j.amjms.2018.06.023] [PMID: 30360803]
[64]
Kumar S, Ahuja V, Sankar MJ, Kumar A, Moss AC. Curcumin for maintenance of remission in ulcerative colitis. Cochrane Database Syst Rev 2012; 10 CD008424
[PMID: 23076948]
[65]
Martín AR, Villegas I, La Casa C, de la Lastra CA. Resveratrol, a polyphenol found in grapes, suppresses oxidative damage and stimulates apoptosis during early colonic inflammation in rats. Biochem Pharmacol 2004; 67(7): 1399-410.
[http://dx.doi.org/10.1016/j.bcp.2003.12.024] [PMID: 15013856]
[66]
Abdallah DM, Ismael NR. Resveratrol abrogates adhesion molecules and protects against TNBS-induced ulcerative colitis in rats. Can J Physiol Pharmacol 2011; 89(11): 811-8.
[PMID: 22029500]
[67]
Sánchez-Fidalgo S, Cárdeno A, Villegas I, Talero E, de la Lastra CA. Dietary supplementation of resveratrol attenuates chronic colonic inflammation in mice. Eur J Pharmacol 2010; 633(1-3): 78-84.
[http://dx.doi.org/10.1016/j.ejphar.2010.01.025] [PMID: 20132809]
[68]
Singh UP, Singh NP, Singh B, et al. Resveratrol (trans-3,5,4′-trihydroxystilbene) induces silent mating type information regulation-1 and down-regulates nuclear transcription factor-kappaB activation to abrogate dextran sulfate sodium-induced colitis. J Pharmacol Exp Ther 2010; 332(3): 829-39.
[http://dx.doi.org/10.1124/jpet.109.160838] [PMID: 19940103]
[69]
Youn J, Lee JS, Na HK, Kundu JK, Surh YJ. Resveratrol and piceatannol inhibit iNOS expression and NF-kappaB activation in dextran sulfate sodium-induced mouse colitis. Nutr Cancer 2009; 61(6): 847-54.
[http://dx.doi.org/10.1080/01635580903285072] [PMID: 20155626]
[70]
Wagnerova A, Babickova J, Liptak R, Vlkova B, Celec P, Gardlik R. Sex differences in the effect of resveratrol on DSS-induced colitis in mice. Gastroenterol Res Pract 2017; 2017 8051870
[http://dx.doi.org/10.1155/2017/8051870] [PMID: 28465680]
[71]
Rahal K, Schmiedlin-Ren P, Adler J, et al. Resveratrol has anti-inflammatory and antifibrotic effects in the peptidoglycan-polysaccharide rat model of Crohn’s disease. Inflamm Bowel Dis 2012; 18(4): 613-23.
[http://dx.doi.org/10.1002/ibd.21843] [PMID: 22431488]
[72]
Abdin AA. Targeting sphingosine kinase 1 (SphK1) and apoptosis by colon-specific delivery formula of resveratrol in treatment of experimental ulcerative colitis in rats. Eur J Pharmacol 2013; 718(1-3): 145-53.
[http://dx.doi.org/10.1016/j.ejphar.2013.08.040] [PMID: 24055189]
[73]
Serra D, Rufino AT, Mendes AF, Almeida LM, Dinis TC. Resveratrol modulates cytokine-induced Jak/STAT activation more efficiently than 5-aminosalicylic acid: an in vitro approach. PLoS One 2014; 9(10) e109048
[http://dx.doi.org/10.1371/journal.pone.0109048] [PMID: 25271420]
[74]
Serra D, Almeida LM, Dinis TC. Anti-inflammatory protection afforded by cyanidin-3-glucoside and resveratrol in human intestinal cells via Nrf2 and PPAR-γ: comparison with 5-aminosalicylic acid. Chem Biol Interact 2016; 260: 102-9.
[http://dx.doi.org/10.1016/j.cbi.2016.11.003] [PMID: 27818126]
[75]
Samsami-Kor M, Daryani NE, Asl PR, Hekmatdoost A. Anti-inflammatory effects of resveratrol in patients with ulcerative colitis: a randomized, double-blind, placebo-controlled pilot study. Arch Med Res 2015; 46(4): 280-5.
[http://dx.doi.org/10.1016/j.arcmed.2015.05.005] [PMID: 26002728]
[76]
Jia Z, Xu C, Shen J, Xia T, Yang J, He Y. The natural compound celastrol inhibits necroptosis and alleviates ulcerative colitis in mice. Int Immunopharmacol 2015; 29(2): 552-9.
[http://dx.doi.org/10.1016/j.intimp.2015.09.029] [PMID: 26454701]
[77]
Wang R, Gu X, Dai W, et al. A lipidomics investigation into the intervention of celastrol in experimental colitis. Mol Biosyst 2016; 12(5): 1436-44.
[http://dx.doi.org/10.1039/C5MB00864F] [PMID: 27021137]
[78]
Shaker ME, Ashamallah SA, Houssen ME. Celastrol ameliorates murine colitis via modulating oxidative stress, inflammatory cytokines and intestinal homeostasis. Chem Biol Interact 2014; 210: 26-33.
[http://dx.doi.org/10.1016/j.cbi.2013.12.007] [PMID: 24384223]
[79]
Zhao J, Sun Y, Shi P, et al. Celastrol ameliorates experimental colitis in IL-10 deficient mice via the up-regulation of autophagy. Int Immunopharmacol 2015; 26(1): 221-8.
[http://dx.doi.org/10.1016/j.intimp.2015.03.033] [PMID: 25858875]
[80]
de Luca A, Smeekens SP, Casagrande A, et al. IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc Natl Acad Sci USA 2014; 111(9): 3526-31.
[http://dx.doi.org/10.1073/pnas.1322831111] [PMID: 24550444]
[81]
Lin L, Sun Y, Wang D, Zheng S, Zhang J, Zheng C. Celastrol ameliorates ulcerative colitis-related colorectal cancer in mice via suppressing inflammatory responses and epithelial-mesenchymal transition. Front Pharmacol 2016; 6: 320.
[http://dx.doi.org/10.3389/fphar.2015.00320] [PMID: 26793111]
[82]
Ai XY, Qin Y, Liu HJ, et al. Apigenin inhibits colonic inflammation and tumorigenesis by suppressing STAT3-NF-κB signaling. Oncotarget 2017; 8(59): 100216-26.
[http://dx.doi.org/10.18632/oncotarget.22145] [PMID: 29245972]
[83]
Márquez-Flores YK, Villegas I, Cárdeno A, Rosillo MÁ, Alarcón-de-la-Lastra C. Apigenin supplementation protects the development of dextran sulfate sodium-induced murine experimental colitis by inhibiting canonical and non-canonical inflammasome signaling pathways. J Nutr Biochem 2016; 30: 143-52.
[http://dx.doi.org/10.1016/j.jnutbio.2015.12.002] [PMID: 27012631]
[84]
Radulovic K, Normand S, Rehman A, et al. A dietary flavone confers communicable protection against colitis through NLRP6 signaling independently of inflammasome activation. Mucosal Immunol 2018; 11(3): 811-9.
[http://dx.doi.org/10.1038/mi.2017.87] [PMID: 29139477]
[85]
Mascaraque C, González R, Suárez MD, Zarzuelo A, Sánchez de Medina F, Martínez-Augustin O. Intestinal anti-inflammatory activity of apigenin K in two rat colitis models induced by trinitrobenzenesulfonic acid and dextran sulphate sodium. Br J Nutr 2015; 113(4): 618-26.
[http://dx.doi.org/10.1017/S0007114514004292] [PMID: 25654996]
[86]
Ganjare AB, Nirmal SA, Patil AN. Use of apigenin from Cordia dichotoma in the treatment of colitis. Fitoterapia 2011; 82(7): 1052-6.
[http://dx.doi.org/10.1016/j.fitote.2011.06.008] [PMID: 21745550]
[87]
Wen XD, Wang CZ, Yu C, et al. Salvia miltiorrhiza (dan shen) significantly ameliorates colon inflammation in dextran sulfate sodium induced colitis. Am J Chin Med 2013; 41(5): 1097-108.
[http://dx.doi.org/10.1142/S0192415X13500742] [PMID: 24117071]
[88]
Wang K, Yang Q, Ma Q, et al. Protective effects of salvianolic acid A against dextran sodium sulfate-induced acute colitis in rats. Nutrients 2018; 10(6): 10.
[http://dx.doi.org/10.3390/nu10060791] [PMID: 29921812]
[89]
Xiong Y, Wang J, Chu H, Chen D, Guo H. Salvianolic acid B restored impaired barrier function via downregulation of MLCK by microRNA-1 in rat colitis model. Front Pharmacol 2016; 7: 134.
[http://dx.doi.org/10.3389/fphar.2016.00134] [PMID: 27303297]
[90]
Crespo ME, Gálvez J, Cruz T, Ocete MA, Zarzuelo A. Anti-inflammatory activity of diosmin and hesperidin in rat colitis induced by TNBS. Planta Med 1999; 65(7): 651-3.
[http://dx.doi.org/10.1055/s-2006-960838] [PMID: 10575379]
[91]
Polat FR, Karaboga I, Polat MS, Erboga Z, Yilmaz A, Güzel S. Effect of hesperetin on inflammatory and oxidative status in trinitrobenzene sulfonic acid-induced experimental colitis model. Cell Mol Biol 2018; 64(11): 58-65.
[http://dx.doi.org/10.14715/cmb/2018.64.11.11] [PMID: 30213290]
[92]
Xu L, Yang ZL, Li P, Zhou YQ. Modulating effect of hesperidin on experimental murine colitis induced by dextran sulfate sodium. Phytomedicine 2009; 16(10): 989-95.
[http://dx.doi.org/10.1016/j.phymed.2009.02.021] [PMID: 19386481]
[93]
Guo K, Ren J, Gu G, et al. Hesperidin protects against intestinal inflammation by restoring intestinal barrier function and up-regulating Treg cells. Mol Nutr Food Res 2019; 63(11) e1800975
[http://dx.doi.org/10.1002/mnfr.201800975] [PMID: 30817082]
[94]
Sun W, Cai Y, Zhang XX, Chen H, Lin YD, Li H. Osthole pretreatment alleviates TNBS-induced colitis in mice via both cAMP/PKA-dependent and independent pathways. Acta Pharmacol Sin 2017; 38(8): 1120-8.
[http://dx.doi.org/10.1038/aps.2017.71] [PMID: 28603288]
[95]
Fan H, Gao Z, Ji K, et al. The in vitro and in vivo anti-inflammatory effect of osthole, the major natural coumarin from Cnidium monnieri (L.) Cuss, via the blocking of the activation of the NF-κB and MAPK/p38 pathways. Phytomedicine 2019; 58 152864
[http://dx.doi.org/10.1016/j.phymed.2019.152864] [PMID: 30878874]
[96]
Khairy H, Saleh H, Badr AM, Marie MS. Therapeutic efficacy of osthole against dinitrobenzene sulphonic acid induced-colitis in rats. Biomed Pharmacother 2018; 100: 42-51.
[http://dx.doi.org/10.1016/j.biopha.2018.01.104] [PMID: 29421581]
[97]
Xu X, Wang Y, Wei Z, et al. Madecassic acid, the contributor to the anti-colitis effect of madecassoside, enhances the shift of Th17 toward Treg cells via the PPARγ/AMPK/ACC1 pathway. Cell Death Dis 2017; 8(3)e2723
[http://dx.doi.org/10.1038/cddis.2017.150] [PMID: 28358365]
[98]
Guo W, Liu W, Jin B, et al. Asiatic acid ameliorates dextran sulfate sodium-induced murine experimental colitis via suppressing mitochondria-mediated NLRP3 inflammasome activation. Int Immunopharmacol 2015; 24(2): 232-8.
[http://dx.doi.org/10.1016/j.intimp.2014.12.009] [PMID: 25523461]
[99]
Yang XL, Guo TK, Wang YH, Gao MT, Qin H, Wu YJ. Therapeutic effect of ginsenoside Rd in rats with TNBS-induced recurrent ulcerative colitis. Arch Pharm Res 2012; 35(7): 1231-9.
[http://dx.doi.org/10.1007/s12272-012-0714-6] [PMID: 22864746]
[100]
Yang XL, Guo TK, Wang YH, et al. Ginsenoside Rd attenuates the inflammatory response via modulating p38 and JNK signaling pathways in rats with TNBS-induced relapsing colitis. Int Immunopharmacol 2012; 12(2): 408-14.
[http://dx.doi.org/10.1016/j.intimp.2011.12.014] [PMID: 22227208]
[101]
Liu C, Wang J, Yang Y, et al. Ginsenoside Rd ameliorates colitis by inducing p62-driven mitophagy-mediated NLRP3 inflammasome inactivation in mice. Biochem Pharmacol 2018; 155: 366-79.
[http://dx.doi.org/10.1016/j.bcp.2018.07.010] [PMID: 30012462]
[102]
Pile JE, Navalta JW, Davis CD, Sharma NC. Interventional effects of plumbagin on experimental ulcerative colitis in mice. J Nat Prod 2013; 76(6): 1001-6.
[http://dx.doi.org/10.1021/np3008792] [PMID: 23742275]
[103]
Bamba S, Andoh A, Ban H, et al. The severity of dextran sodium sulfate-induced colitis can differ between dextran sodium sulfate preparations of the same molecular weight range. Dig Dis Sci 2012; 57(2): 327-34.
[http://dx.doi.org/10.1007/s10620-011-1881-x] [PMID: 21901260]
[104]
Zhou Y, Liu H, Song J, Cao L, Tang L, Qi C. Sinomenine alleviates dextran sulfate sodiuminduced colitis via the Nrf2/NQO1 signaling pathway. Mol Med Rep 2018; 18(4): 3691-8.
[http://dx.doi.org/10.3892/mmr.2018.9378] [PMID: 30106158]
[105]
Xiong H, Tian L, Zhao Z, et al. The sinomenine enteric-coated microspheres suppressed the TLR/NF-κB signaling in DSS-induced experimental colitis. Int Immunopharmacol 2017; 50: 251-62.
[http://dx.doi.org/10.1016/j.intimp.2017.06.033] [PMID: 28711031]
[106]
Cheng H, Xia B, Guo Q, et al. Sinomenine attenuates 2, 4, 6-trinitrobenzene sulfonic acid-induced colitis in mice. Int Immunopharmacol 2007; 7(5): 604-11.
[http://dx.doi.org/10.1016/j.intimp.2007.01.003] [PMID: 17386408]
[107]
Yu Q, Zhu S, Zhou R, et al. Effects of sinomenine on the expression of microRNA-155 in 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice. PLoS One 2013; 8(9) e73757
[http://dx.doi.org/10.1371/journal.pone.0073757] [PMID: 24066068]
[108]
Rosillo MA, Sánchez-Hidalgo M, Cárdeno A, et al. Dietary supplementation of an ellagic acid-enriched pomegranate extract attenuates chronic colonic inflammation in rats. Pharmacol Res 2012; 66(3): 235-42.
[http://dx.doi.org/10.1016/j.phrs.2012.05.006] [PMID: 22677088]
[109]
Singh K, Jaggi AS, Singh N. Exploring the ameliorative potential of Punica granatum in dextran sulfate sodium induced ulcerative colitis in mice. Phytother Res 2009; 23(11): 1565-74.
[http://dx.doi.org/10.1002/ptr.2822] [PMID: 19367659]
[110]
Kamali M, Tavakoli H, Khodadoost M, et al. Efficacy of the Punica granatum peels aqueous extract for symptom management in ulcerative colitis patients. A randomized, placebo-controlled, clinical trial. Complement Ther Clin Pract 2015; 21(3): 141-6.
[http://dx.doi.org/10.1016/j.ctcp.2015.03.001] [PMID: 26256131]
[111]
Hollebeeck S, Winand J, Hérent MF, et al. Anti-inflammatory effects of pomegranate (Punica granatum L.) husk ellagitannins in Caco-2 cells, an in vitro model of human intestine. Food Funct 2012; 3(8): 875-85.
[http://dx.doi.org/10.1039/c2fo10258g] [PMID: 22733173]
[112]
Kang GD, Lim S, Kim DH. Oleanolic acid ameliorates dextran sodium sulfate-induced colitis in mice by restoring the balance of Th17/Treg cells and inhibiting NF-κB signaling pathway. Int Immunopharmacol 2015; 29(2): 393-400.
[http://dx.doi.org/10.1016/j.intimp.2015.10.024] [PMID: 26514300]
[113]
Tao F, Qian C, Guo W, Luo Q, Xu Q, Sun Y. Inhibition of Th1/Th17 responses via suppression of STAT1 and STAT3 activation contributes to the amelioration of murine experimental colitis by a natural flavonoid glucoside icariin. Biochem Pharmacol 2013; 85(6): 798-807.
[http://dx.doi.org/10.1016/j.bcp.2012.12.002] [PMID: 23261528]
[114]
Wang QS, Wang GF, Zhou J, Gao LN, Cui YL. Colon targeted oral drug delivery system based on alginate-chitosan microspheres loaded with icariin in the treatment of ulcerative colitis. Int J Pharm 2016; 515(1-2): 176-85.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.002] [PMID: 27713029]
[115]
Li P, Lei J, Hu G, Chen X, Liu Z, Yang J. Matrine mediates inflammatory response via gut microbiota in TNBS-induced murine colitis. Front Physiol 2019; 10: 28.
[http://dx.doi.org/10.3389/fphys.2019.00028] [PMID: 30800071]
[116]
Wu C, Xu Z, Gai R, Huang K. Matrine ameliorates spontaneously developed colitis in interleukin-10-deficient mice. Int Immunopharmacol 2016; 36: 256-62.
[http://dx.doi.org/10.1016/j.intimp.2016.04.038] [PMID: 27179305]