Resveratrol: A New Potential Therapeutic Agent for Melanoma?

Page: [687 - 711] Pages: 25

  • * (Excluding Mailing and Handling)

Abstract

Melanoma is the most life-threatening and aggressive class of skin malignancies. The incidence of melanoma has steadily increased. Metastatic melanoma is greatly resistant to standard antimelanoma treatments such as chemotherapy, and the 5-year survival rate of cases with melanoma who have a metastatic form of the disease is less than 10%. The contributing role of apoptosis, angiogenesis and autophagy in the pathophysiology of melanoma has been previously demonstrated. Thus, it is extremely urgent to search for complementary therapeutic approaches that could enhance the quality of life of subjects and reduce treatment resistance and adverse effects. Resveratrol, known as a polyphenol component present in grapes and some plants, has anti-cancer properties due to its function as an apoptosis inducer in tumor cells, and anti-angiogenic agent to prevent metastasis. However, more clinical trials should be conducted to prove resveratrol efficacy.

Herein, for the first time, we summarize the current knowledge of anti-cancerous activities of resveratrol in melanoma.

Keywords: Melanoma, resveratrol, therapy, natural compounds, apoptosis, angiogenesis.

[1]
Houghton, A.N.; Polsky, D. Focus on melanoma. Cancer Cell, 2002, 2(4), 275-278.
[http://dx.doi.org/10.1016/S1535-6108(02)00161-7] [PMID: 12398891]
[2]
Singh, S.; Zafar, A.; Khan, S.; Naseem, I. Towards therapeutic advances in melanoma management: An overview. Life Sci., 2017, 174, 50-58.
[http://dx.doi.org/10.1016/j.lfs.2017.02.011] [PMID: 28238718]
[3]
Tong, L.X.; Young, L.C. Nutrition: the future of melanoma prevention? J. Am. Acad. Dermatol., 2014, 71(1), 151-160.
[http://dx.doi.org/10.1016/j.jaad.2014.01.910] [PMID: 24656410]
[4]
Mirzaei, H.; Sahebkar, A.; Avan, A.; Jaafari, M.R.; Salehi, R.; Salehi, H.; Baharvand, H.; Rezaei, A.; Hadjati, J.; Pawelek, J.M.; Mirzaei, H.R. Application of mesenchymal stem cells in melanoma: a potential therapeutic strategy for delivery of targeted agents. Curr. Med. Chem., 2016, 23(5), 455-463.
[http://dx.doi.org/10.2174/0929867323666151217122033] [PMID: 26674785]
[5]
Zapas, J.L.; Coley, H.C.; Beam, S.L.; Brown, S.D.; Jablonski, K.A.; Elias, E.G. The risk of regional lymph node metastases in patients with melanoma less than 1.0 mm thick: recommendations for sentinel lymph node biopsy. J. Am. Coll. Surg., 2003, 197(3), 403-407.
[http://dx.doi.org/10.1016/S1072-7515(03)00432-0] [PMID: 12946795]
[6]
Negroiu, G.; Dwek, R.A.; Petrescu, S.M. Tyrosinase-related protein-2 and -1 are trafficked on distinct routes in B16 melanoma cells. Biochem. Biophys. Res. Commun., 2005, 328(4), 914-921.
[http://dx.doi.org/10.1016/j.bbrc.2005.01.040] [PMID: 15707965]
[7]
Mirzaei, H.; Salehi, H.; Oskuee, R.K.; Mohammadpour, A.; Mirzaei, H.R.; Sharifi, M.R.; Salarinia, R.; Darani, H.Y.; Mokhtari, M.; Masoudifar, A.; Sahebkar, A.; Salehi, R.; Jaafari, M.R. The therapeutic potential of human adipose-derived mesenchymal stem cells producing CXCL10 in a mouse melanoma lung metastasis model. Cancer Lett., 2018, 419, 30-39.
[http://dx.doi.org/10.1016/j.canlet.2018.01.029] [PMID: 29331419]
[8]
Leung, A.M.; Hari, D.M.; Morton, D.L. Surgery for distant melanoma metastasis. Cancer J., 2012, 18(2), 176-184.
[http://dx.doi.org/10.1097/PPO.0b013e31824bc981] [PMID: 22453019]
[9]
Mosca, P.J.; Teicher, E.; Nair, S.P.; Pockaj, B.A. Can surgeons improve survival in stage IV melanoma? J. Surg. Oncol., 2008, 97(5), 462-468.
[http://dx.doi.org/10.1002/jso.20950] [PMID: 18270974]
[10]
Trinh, V.A. Current management of metastatic melanoma. Am. J. Health Syst. Pharm., 2008, 65(24)(Suppl. 9), S3-S8.
[http://dx.doi.org/10.2146/ajhp080460] [PMID: 19052264]
[11]
Pautu, V.; Leonetti, D.; Lepeltier, E.; Clere, N.; Passirani, C. Nanomedicine as a potent strategy in melanoma tumor microenvironment. Pharmacol. Res., 2017, 126, 31-53.
[http://dx.doi.org/10.1016/j.phrs.2017.02.014] [PMID: 28223185]
[12]
Kuske, M.; Westphal, D.; Wehner, R.; Schmitz, M.; Beissert, S.; Praetorius, C.; Meier, F. Immunomodulatory effects of BRAF and MEK inhibitors: Implications for Melanoma therapy. Pharmacol. Res., 2018, 136, 151-159.
[http://dx.doi.org/10.1016/j.phrs.2018.08.019] [PMID: 30145328]
[13]
Khan, N.; Khan, M.K.; Almasan, A.; Singh, A.D.; Macklis, R. The evolving role of radiation therapy in the management of malignant melanoma. Int. J. Radiat. Oncol. Biol. Phys., 2011, 80(3), 645-654.
[http://dx.doi.org/10.1016/j.ijrobp.2010.12.071]
[14]
Siegel, R.; Ward, E.; Brawley, O.; Jemal, A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J. Clin., 2011, 61(4), 212-236.
[http://dx.doi.org/10.3322/caac.20121] [PMID: 21685461]
[15]
Nicholl, M.B.; Elashoff, D.; Takeuchi, H.; Morton, D.L.; Hoon, D.S. Molecular upstaging based on paraffin-embedded sentinel lymph nodes: ten-year follow-up confirms prognostic utility in melanoma patients. Ann. Surg., 2011, 253(1), 116-122.
[http://dx.doi.org/10.1097/SLA.0b013e3181fca894] [PMID: 21135695]
[16]
Balkwill, F.; Mantovani, A. Inflammation and cancer: back to Virchow? Lancet, 2001, 357(9255), 539-545.
[http://dx.doi.org/10.1016/S0140-6736(00)04046-0] [PMID: 11229684]
[17]
Vidal-Vanaclocha, F. The prometastatic microenvironment of the liver. Cancer Microenviron., 2008, 1(1), 113-129.
[http://dx.doi.org/10.1007/s12307-008-0011-6] [PMID: 19308690]
[18]
Mirzaei, H.R.; Sahebkar, A.; Salehi, R.; Nahand, J.S.; Karimi, E.; Jaafari, M.R.; Mirzaei, H. Boron neutron capture therapy: moving toward targeted cancer therapy. J. Cancer Res. Ther., 2016, 12(2), 520-525.
[http://dx.doi.org/10.4103/0973-1482.176167] [PMID: 27461603]
[19]
Cianciosi, D.; Varela-Lopez, A.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Afrin, S.; Reboredo-Rodriguez, P.; Zhang, J.; Quiles, J.L.; Nabavi, S.F.; Battino, M.; Giampieri, F. Targeting molecular pathways in cancer stem cells by natural bioactive compounds. Pharmacol. Res., 2018, 135, 150-165.
[http://dx.doi.org/10.1016/j.phrs.2018.08.006] [PMID: 30103002]
[20]
Banik, K.; Ranaware, A.M.; Deshpande, V.; Nalawade, S.P.; Padmavathi, G.; Bordoloi, D.; Sailo, B.L.; Shanmugam, M.K.; Fan, L.; Arfuso, F.; Sethi, G.; Kunnumakkara, A.B. Honokiol for cancer therapeutics: a traditional medicine that can modulate multiple oncogenic targets. Pharmacol. Res., 2019, 144, 192-209.
[http://dx.doi.org/10.1016/j.phrs.2019.04.004] [PMID: 31002949]
[21]
Asensi, M.; Ortega, A.; Mena, S.; Feddi, F.; Estrela, J.M. Natural polyphenols in cancer therapy. Crit. Rev. Clin. Lab. Sci., 2011, 48(5-6), 197-216.
[http://dx.doi.org/10.3109/10408363.2011.631268] [PMID: 22141580]
[22]
Pal, H.C.; Hunt, K.M.; Diamond, A.; Elmets, C.A.; Afaq, F.; Afaq, F. Phytochemicals for the management of melanoma. Mini Rev. Med. Chem., 2016, 16(12), 953-979.
[http://dx.doi.org/10.2174/1389557516666160211120157] [PMID: 26864554]
[23]
Mirzaei, H.; Naseri, G.; Rezaee, R.; Mohammadi, M.; Banikazemi, Z.; Mirzaei, H.R.; Salehi, H.; Peyvandi, M.; Pawelek, J.M.; Sahebkar, A. Curcumin: a new candidate for melanoma therapy? Int. J. Cancer, 2016, 139(8), 1683-1695.
[http://dx.doi.org/10.1002/ijc.30224] [PMID: 27280688]
[24]
Mirzaei, H.; Khoi, M.J.; Azizi, M.; Goodarzi, M. Can curcumin and its analogs be a new treatment option in cancer therapy? Cancer Gene Ther., 2016, 23(11), 410.
[http://dx.doi.org/10.1038/cgt.2016.47] [PMID: 27853147]
[25]
Hesari, A.; Azizian, M.; Sheikhi, A.; Nesaei, A.; Sanaei, S.; Mahinparvar, N.; Derakhshani, M.; Hedayt, P.; Ghasemi, F.; Mirzaei, H. Chemopreventive and therapeutic potential of curcumin in esophageal cancer: Current and future status. Int. J. Cancer, 2019, 144(6), 1215-1226.
[http://dx.doi.org/10.1002/ijc.31947]] [PMID: 30362511]
[26]
Mehta, R.G.; Pezzuto, J.M. Discovery of cancer preventive agents from natural products: from plants to prevention. Curr. Oncol. Rep., 2002, 4(6), 478-486.
[http://dx.doi.org/10.1007/s11912-002-0059-2] [PMID: 12354359 ]
[27]
Rivière, C.; Pawlus, A.D.; Mérillon, J-M. Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat. Prod. Rep., 2012, 29(11), 1317-1333.
[http://dx.doi.org/10.1039/c2np20049j] [PMID: 23014926]
[28]
Thiel, G.; Ulrich, M.; Mukaida, N.; Rössler, O.G. Resveratrol stimulation induces interleukin-8 gene transcription via NF-κB. Pharmacol. Res., 2018, 134, 238-245.
[http://dx.doi.org/10.1016/j.phrs.2018.07.003] [PMID: 30018026]
[29]
Bradamante, S.; Barenghi, L.; Villa, A. Cardiovascular protective effects of resveratrol. Cardiovasc. Drug Rev., 2004, 22(3), 169-188.
[http://dx.doi.org/10.1111/j.1527-3466.2004.tb00139.x] [PMID: 15492766]
[30]
Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.; Fong, H.H.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 1997, 275(5297), 218-220.
[http://dx.doi.org/10.1126/science.275.5297.218] [PMID: 8985016]
[31]
Sinha, K.; Chaudhary, G.; Gupta, Y.K. Protective effect of resveratrol against oxidative stress in middle cerebral artery occlusion model of stroke in rats. Life Sci., 2002, 71(6), 655-665.
[http://dx.doi.org/10.1016/S0024-3205(02)01691-0] [PMID: 12072154]
[32]
Falchetti, R.; Fuggetta, M.P.; Lanzilli, G.; Tricarico, M.; Ravagnan, G. Effects of resveratrol on human immune cell function. Life Sci., 2001, 70(1), 81-96.
[http://dx.doi.org/10.1016/S0024-3205(01)01367-4] [PMID: 11764009]
[33]
Gao, X.; Xu, Y.X.; Janakiraman, N.; Chapman, R.A.; Gautam, S.C. Immunomodulatory activity of resveratrol: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production. Biochem. Pharmacol., 2001, 62(9), 1299-1308.
[http://dx.doi.org/10.1016/S0006-2952(01)00775-4] [PMID: 11705464]
[34]
Chen, J-C.; Chen, Y.; Lin, J-H.; Wu, J-M.; Tseng, S-H. Resveratrol suppresses angiogenesis in gliomas: evaluation by color Doppler ultrasound. Anticancer Res., 2006, 26(2A), 1237-1245.
[PMID: 16619530]
[35]
Bishayee, A. Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev. Res. (Phila.), 2009, 2(5), 409-418.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0160] [PMID: 19401532]
[36]
Delmas, D.; Rébé, C.; Micheau, O.; Athias, A.; Gambert, P.; Grazide, S.; Laurent, G.; Latruffe, N.; Solary, E. Redistribution of CD95, DR4 and DR5 in rafts accounts for the synergistic toxicity of resveratrol and death receptor ligands in colon carcinoma cells. Oncogene, 2004, 23(55), 8979-8986.
[http://dx.doi.org/10.1038/sj.onc.1208086] [PMID: 15480430]
[37]
Fulda, S.; Debatin, K.M. Sensitization for anticancer drug-induced apoptosis by the chemopreventive agent resveratrol. Oncogene, 2004, 23(40), 6702-6711.
[http://dx.doi.org/10.1038/sj.onc.1207630] [PMID: 15273734]
[38]
Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov., 2006, 5(6), 493-506.
[http://dx.doi.org/10.1038/nrd2060] [PMID: 16732220]
[39]
Yang, S.; Irani, K.; Heffron, S.E.; Jurnak, F.; Meyskens, F.L. Jr. Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1) in human melanoma and identification of the therapeutic potential of resveratrol as an APE/Ref-1 inhibitor. Mol. Cancer Ther., 2005, 4(12), 1923-1935.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0229] [PMID: 16373707]
[40]
Morris, J.C. Resveratrol, thyroid cancer, and iodide: drink up? Thyroid, 2010, 20(2), 125-126.
[http://dx.doi.org/10.1089/thy.2010.1617] [PMID: 20151819]
[41]
Casanova, F.; Quarti, J.; da Costa, D.C.; Ramos, C.A.; da Silva, J.L.; Fialho, E. Resveratrol chemosensitizes breast cancer cells to melphalan by cell cycle arrest. J. Cell. Biochem., 2012, 113(8), 2586-2596.
[http://dx.doi.org/10.1002/jcb.24134] [PMID: 22415970]
[42]
Tyagi, A.; Gu, M.; Takahata, T.; Frederick, B.; Agarwal, C.; Siriwardana, S.; Agarwal, R.; Sclafani, R.A. Resveratrol selectively induces DNA Damage, independent of Smad4 expression, in its efficacy against human head and neck squamous cell carcinoma. Clin. Cancer Res., 2011, 17(16), 5402-5411.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1072] [PMID: 21705453]
[43]
Miki, H.; Uehara, N.; Kimura, A.; Sasaki, T.; Yuri, T.; Yoshizawa, K.; Tsubura, A. Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells. Int. J. Oncol., 2012, 40(4), 1020-1028.
[http://dx.doi.org/10.3892/ijo.2012.1325] [PMID: 22218562]
[44]
Surh, Y.J.; Hurh, Y.J.; Kang, J.Y.; Lee, E.; Kong, G.; Lee, S.J. Resveratrol, an antioxidant present in red wine, induces apoptosis in human promyelocytic leukemia (HL-60) cells. Cancer Lett., 1999, 140(1-2), 1-10.
[http://dx.doi.org/10.1016/S0304-3835(99)00039-7] [PMID: 10403535]
[45]
Shishodia, S.; Aggarwal, B.B. Resveratrol: a polyphenol for all seasons. Oxid. Stress and Dis., 2006, 20, 1.
[46]
Bhardwaj, A.; Sethi, G.; Vadhan-Raj, S.; Bueso-Ramos, C.; Takada, Y.; Gaur, U.; Nair, A.S.; Shishodia, S.; Aggarwal, B.B. Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-kappaB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood, 2007, 109(6), 2293-2302.
[http://dx.doi.org/10.1182/blood-2006-02-003988] [PMID: 17164350]
[47]
Wu, Z.; Liu, B.; Cailing, E.; Liu, J.; Zhang, Q.; Liu, J.; Chen, N.; Chen, R.; Zhu, R. Resveratrol inhibits the proliferation of human melanoma cells by inducing G1/S cell cycle arrest and apoptosis. Mol. Med. Rep., 2015, 11(1), 400-404.
[http://dx.doi.org/10.3892/mmr.2014.2716] [PMID: 25333673]
[48]
Kim, M.Y. Nitric oxide triggers apoptosis in A375 human melanoma cells treated with capsaicin and resveratrol. Mol. Med. Rep., 2012, 5(2), 585-591.
[http://dx.doi.org/10.3892/mmr.2011.688]] [PMID: 22143933 ]
[49]
Ahsan, H.; Hadi, S.M. Strand scission in DNA induced by curcumin in the presence of Cu(II). Cancer Lett., 1998, 124(1), 23-30.
[http://dx.doi.org/10.1016/S0304-3835(97)00442-4] [PMID: 9500187]
[50]
Singh, S.; Asad, S.F.; Ahmad, A.; Khan, N.U.; Hadi, S.M. Oxidative DNA damage by capsaicin and dihydrocapsaicin in the presence of Cu(II). Cancer Lett., 2001, 169(2), 139-146.
[http://dx.doi.org/10.1016/S0304-3835(01)00544-4] [PMID: 11431102]
[51]
Rahman, A. Shahabuddin; Hadi, S.M.; Parish, J.H. Complexes involving quercetin, DNA and Cu(II). Carcinogenesis, 1990, 11(11), 2001-2003.
[http://dx.doi.org/10.1093/carcin/11.11.2001] [PMID: 2225332]
[52]
Darby, J.R.T.; Mohd Dollah, M.H.B.; Regnault, T.R.H.; Williams, M.T.; Morrison, J.L. Systematic review: impact of resveratrol exposure during pregnancy on maternal and fetal outcomes in animal models of human pregnancy complications-Are we ready for the clinic? Pharmacol. Res., 2019, 144, 264-278.
[http://dx.doi.org/10.1016/j.phrs.2019.04.020] [PMID: 31029765]
[53]
Haghighatdoost, F.; Hariri, M. Effect of resveratrol on lipid profile: An updated systematic review and meta-analysis on randomized clinical trials. Pharmacol. Res., 2018, 129, 141-150.
[http://dx.doi.org/10.1016/j.phrs.2017.12.033] [PMID: 29305228]
[54]
Juan, M.E.; Alfaras, I.; Planas, J.M. Colorectal cancer chemoprevention by trans-resveratrol. Pharmacol. Res., 2012, 65(6), 584-591.
[http://dx.doi.org/10.1016/j.phrs.2012.03.010] [PMID: 22465196]
[55]
Ignatowicz, E.; Baer-Dubowska, W. Resveratrol, a natural chemopreventive agent against degenerative diseases. Pol. J. Pharmacol., 2001, 53(6), 557-569.
[PMID: 11985329 ]
[56]
Soleas, G.J.; Angelini, M.; Grass, L.; Diamandis, E.P.; Goldberg, D.M. Methods in enzymology; Elsevier, 2001, Vol. 335, pp. 145-154.
[http://dx.doi.org/10.1016/s0076-6879(01)35239-4 ] [PMID: 11400363]
[57]
Soleas, G.J.; Diamandis, E.P.; Goldberg, D.M. Wine as a biological fluid: history, production, and role in disease prevention. J. Clin. Lab. Anal., 1997, 11(5), 287-313.
[http://dx.doi.org/10.1002/(SICI)1098-2825(1997)11:-5<287:AID-JCLA6>3.0.CO;2-4] [PMID: 9292395]
[58]
Renaud, S.; de Lorgeril, M. Wine, alcohol, platelets and the French paradox for coronary heart disease. Lancet, 1992, 339(8808), 1523-1526.
[http://dx.doi.org/10.1016/0140-6736(92)91277-F] [PMID: 1351198]
[59]
Providencia, R. Cardiovascular protection from alcoholic drinks: scientific basis of the French Paradox. Rev. Port. Cardiol., 2006, 25(11), 1043-1058.
[PMID: 17274460]
[60]
Maulik, N. Reactive oxygen species drives myocardial angiogenesis? Antioxidants & redox signaling, , 2006, 8(11-12), 2161-2168.
[http://dx.doi.org/ 10.1089/ars.2006.8.2161]
[61]
Truong, V.L.; Jun, M.; Jeong, W.S. Role of resveratrol in regulation of cellular defense systems against oxidative stress. Biofactors, 2018, 44(1), 36-49.
[http://dx.doi.org/10.1002/biof.1399] [PMID: 29193412]
[62]
Delmas, D.; Jannin, B.; Latruffe, N. Resveratrol: preventing properties against vascular alterations and ageing. Mol. Nutr. Food Res., 2005, 49(5), 377-395.
[http://dx.doi.org/10.1002/mnfr.200400098] [PMID: 15830334]
[63]
Holme, A.L.; Pervaiz, S. Resveratrol in cell fate decisions. J. Bioenerg. Biomembr., 2007, 39(1), 59-63.
[http://dx.doi.org/10.1007/s10863-006-9053-y] [PMID: 17308975]
[64]
Martín, A.R.; Villegas, I.; Sánchez-Hidalgo, M.; de la Lastra, C.A. The effects of resveratrol, a phytoalexin derived from red wines, on chronic inflammation induced in an experimentally induced colitis model. Br. J. Pharmacol., 2006, 147(8), 873-885.
[http://dx.doi.org/10.1038/sj.bjp.0706469] [PMID: 16474422]
[65]
Martín, A.R.; Villegas, I.; La Casa, C.; de la Lastra, C.A. Resveratrol, a polyphenol found in grapes, suppresses oxidative damage and stimulates apoptosis during early colonic inflammation in rats. Biochem. Pharmacol., 2004, 67(7), 1399-1410.
[http://dx.doi.org/10.1016/j.bcp.2003.12.024] [PMID: 15013856]
[66]
de la Lastra, C.A.; Villegas, I. Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications. Mol. Nutr. Food Res., 2005, 49(5), 405-430.
[http://dx.doi.org/10.1002/mnfr.200500022] [PMID: 15832402]
[67]
Aziz, M.H.; Kumar, R.; Ahmad, N. Cancer chemoprevention by resveratrol: in vitro and in vivo studies and the underlying mechanisms. (review) Int. J. Oncol., 2003, 23(1), 17-28.
[http://dx.doi.org/10.3892/ijo.23.1.17] [PMID: 12792772]
[68]
Somoza, V. MAGIC-OL Resveratrol. Mol. Nutr. Food Res., 2005, 49(5), 373-373.
[http://dx.doi.org/10.1002/mnfr.200590020] [PMID: 15880559]
[69]
Cal, C.; Garban, H.; Jazirehi, A.; Yeh, C.; Mizutani, Y.; Bonavida, B. Resveratrol and cancer: chemoprevention, apoptosis, and chemo-immunosensitizing activities. Curr. Med. Chem. Anticancer Agents, 2003, 3(2), 77-93.
[http://dx.doi.org/10.2174/1568011033353443] [PMID: 12678904]
[70]
Ahmad, K.A.; Clement, M.V.; Pervaiz, S. Pro-oxidant activity of low doses of resveratrol inhibits hydrogen peroxide-induced apoptosis. Ann. N. Y. Acad. Sci., 2003, 1010, 365-373.
[http://dx.doi.org/10.1196/annals.1299.067] [PMID: 15033754]
[71]
Martinez, J.; Moreno, J.J. Effect of resveratrol, a natural polyphenolic compound, on reactive oxygen species and prostaglandin production. Biochem. Pharmacol., 2000, 59(7), 865-870.
[http://dx.doi.org/10.1016/S0006-2952(99)00380-9] [PMID: 10718345]
[72]
Gusman, J.; Malonne, H.; Atassi, G. A reappraisal of the potential chemopreventive and chemotherapeutic properties of resveratrol. Carcinogenesis, 2001, 22(8), 1111-1117.
[http://dx.doi.org/10.1093/carcin/22.8.1111] [PMID: 11470738]
[73]
Ozgová, S.; Hermánek, J.; Gut, I. Different antioxidant effects of polyphenols on lipid peroxidation and hydroxyl radicals in the NADPH-, Fe-ascorbate- and Fe-microsomal systems. Biochem. Pharmacol., 2003, 66(7), 1127-1137.
[http://dx.doi.org/10.1016/S0006-2952(03)00425-8] [PMID: 14505792]
[74]
Gatouillat, G.; Balasse, E.; Joseph-Pietras, D.; Morjani, H.; Madoulet, C. Resveratrol induces cell-cycle disruption and apoptosis in chemoresistant B16 melanoma. J. Cell. Biochem., 2010, 110(4), 893-902.
[http://dx.doi.org/10.1002/jcb.22601] [PMID: 20564188]
[75]
Bhattacharya, S.; Darjatmoko, S.R.; Polans, A.S. Resveratrol modulates the malignant properties of cutaneous melanoma through changes in the activation and attenuation of the antiapoptotic protooncogenic protein Akt/PKB. Melanoma Res., 2011, 21(3), 180-187.
[http://dx.doi.org/10.1097/CMR.0b013e3283456dfc] [PMID: 21407133]
[76]
van Ginkel, P.R.; Darjatmoko, S.R.; Sareen, D.; Subramanian, L.; Bhattacharya, S.; Lindstrom, M.J.; Albert, D.M.; Polans, A.S. Resveratrol inhibits uveal melanoma tumor growth via early mitochondrial dysfunction. Invest. Ophthalmol. Vis. Sci., 2008, 49(4), 1299-1306.
[http://dx.doi.org/10.1167/iovs.07-1233] [PMID: 18385041]
[77]
Szekeres, T.; Saiko, P.; Fritzer-Szekeres, M.; Djavan, B.; Jäger, W. Chemopreventive effects of resveratrol and resveratrol derivatives. Ann. N. Y. Acad. Sci., 2011, 1215, 89-95.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05864.x] [PMID: 21261645]
[78]
Bhatia, S.; Tykodi, S.S.; Thompson, J.A. Treatment of metastatic melanoma: an overview. Oncology (Williston Park), 2009, 23(6), 488-496.
[PMID: 19544689]
[79]
Sporn, M.B.; Dunlop, N.M.; Newton, D.L.; Smith, J.M. Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed. Proc., 1976, 35(6), 1332-1338.
[PMID: 770206]
[80]
Yuan, Y.; Xue, X.; Guo, R.B.; Sun, X.L.; Hu, G. Resveratrol enhances the antitumor effects of temozolomide in glioblastoma via ROS-dependent AMPK-TSC-mTOR signaling pathway. CNS Neurosci. Ther., 2012, 18(7), 536-546.
[http://dx.doi.org/10.1111/j.1755-5949.2012.00319.x] [PMID: 22530672]
[81]
Iwuchukwu, O.F.; Tallarida, R.J.; Nagar, S. Resveratrol in combination with other dietary polyphenols concomitantly enhances antiproliferation and UGT1A1 induction in Caco-2 cells. Life Sci., 2011, 88(23-24), 1047-1054.
[http://dx.doi.org/10.1016/j.lfs.2011.03.016] [PMID: 21466813]
[82]
Harper, C.E.; Cook, L.M.; Patel, B.B.; Wang, J.; Eltoum, I.A.; Arabshahi, A.; Shirai, T.; Lamartiniere, C.A. Genistein and resveratrol, alone and in combination, suppress prostate cancer in SV-40 tag rats. Prostate, 2009, 69(15), 1668-1682.
[http://dx.doi.org/10.1002/pros.21017] [PMID: 19670229]
[83]
Singh, C.K.; George, J.; Ahmad, N. Resveratrol-based combinatorial strategies for cancer management. Ann. N. Y. Acad. Sci., 2013, 1290, 113-121.
[http://dx.doi.org/10.1111/nyas.12160] [PMID: 23855473]
[84]
Olson, S.Y.; Garbán, H.J. Regulation of apoptosis-related genes by nitric oxide in cancer. Nitric Oxide, 2008, 19(2), 170-176.
[http://dx.doi.org/10.1016/j.niox.2008.04.005] [PMID: 18460349]
[85]
Williams, E.L.; Djamgoz, M.B. Nitric oxide and metastatic cell behaviour. BioEssays, 2005, 27(12), 1228-1238.
[http://dx.doi.org/10.1002/bies.20324] [PMID: 16299735]
[86]
Vogelstein, B.; Lane, D.; Levine, A.J. Surfing the p53 network. Nature, 2000, 408(6810), 307-310.
[http://dx.doi.org/10.1038/35042675] [PMID: 11099028]
[87]
Athar, M.; Back, J.H.; Kopelovich, L.; Bickers, D.R.; Kim, A.L. Multiple molecular targets of resveratrol: Anti-carcinogenic mechanisms. Arch. Biochem. Biophys., 2009, 486(2), 95-102.
[http://dx.doi.org/10.1016/j.abb.2009.01.018] [PMID: 19514131]
[88]
Piotrowska, H.; Kucinska, M.; Murias, M. Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat. Res., 2012, 750(1), 60-82.
[http://dx.doi.org/10.1016/j.mrrev.2011.11.001] [PMID: 22108298]
[89]
Zhao, H.; Han, L.; Jian, Y.; Ma, Y.; Yan, W.; Chen, X.; Xu, H.; Li, L. Resveratrol induces apoptosis in human melanoma cell through negatively regulating Erk/PKM2/Bcl-2 axis. OncoTargets Ther., 2018, 11, 8995-9006.
[http://dx.doi.org/10.2147/OTT.S186247] [PMID: 30588012]
[90]
Heo, J.R.; Kim, S.M.; Hwang, K.A.; Kang, J.H.; Choi, K.C. Resveratrol induced reactive oxygen species and endoplasmic reticulum stress mediated apoptosis, and cell cycle arrest in the A375SM malignant melanoma cell line. Int. J. Mol. Med., 2018, 42(3), 1427-1435.
[http://dx.doi.org/10.3892/ijmm.2018.3732] [PMID: 29916532]
[91]
Rojas, C.; Pan-Castillo, B.; Valls, C.; Pujadas, G.; Garcia-Vallve, S.; Arola, L.; Mulero, M. Resveratrol enhances palmitate-induced ER stress and apoptosis in cancer cells. PLoS One, 2014, 9(12)e113929
[http://dx.doi.org/10.1371/journal.pone.0113929] [PMID: 25436452]
[92]
Marciniak, S.J.; Yun, C.Y.; Oyadomari, S.; Novoa, I.; Zhang, Y.; Jungreis, R.; Nagata, K.; Harding, H.P.; Ron, D. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev., 2004, 18(24), 3066-3077.
[http://dx.doi.org/10.1101/gad.1250704] [PMID: 15601821]
[93]
Rozpedek, W.; Pytel, D.; Mucha, B.; Leszczynska, H.; Diehl, J.A.; Majsterek, I. The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr. Mol. Med., 2016, 16(6), 533-544.
[http://dx.doi.org/10.2174/1566524016666160523143937] [PMID: 27211800]
[94]
Yen, Y-P.; Tsai, K-S.; Chen, Y-W.; Huang, C-F.; Yang, R-S.; Liu, S-H. Arsenic induces apoptosis in myoblasts through a reactive oxygen species-induced endoplasmic reticulum stress and mitochondrial dysfunction pathway. Arch. Toxicol., 2012, 86(6), 923-933.
[http://dx.doi.org/10.1007/s00204-012-0864-9] [PMID: 22622864]
[95]
Kim, E.K.; Choi, E-J. Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta (BBA)-. Molecular Basis of Disease, 2010, 1802(4), 396-405.
[http://dx.doi.org/10.1016/j.bbadis.2009.12.009]
[96]
Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J., 2012, 5(1), 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613]] [PMID: 23268465]
[97]
Wang, X-J.; Sun, Z.; Villeneuve, N.F.; Zhang, S.; Zhao, F.; Li, Y.; Chen, W.; Yi, X.; Zheng, W.; Wondrak, G.T.; Wong, P.K.; Zhang, D.D. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis, 2008, 29(6), 1235-1243.
[http://dx.doi.org/10.1093/carcin/bgn095] [PMID: 18413364]
[98]
Menegon, S.; Columbano, A.; Giordano, S. The dual roles of NRF2 in cancer. Trends Mol. Med., 2016, 22(7), 578-593.
[http://dx.doi.org/10.1016/j.molmed.2016.05.002] [PMID: 27263465]
[99]
Rachakonda, G.; Sekhar, K.R.; Jowhar, D.; Samson, P.C.; Wikswo, J.P.; Beauchamp, R.D.; Datta, P.K.; Freeman, M.L. Increased cell migration and plasticity in Nrf2-deficient cancer cell lines. Oncogene, 2010, 29(25), 3703-3714.
[http://dx.doi.org/10.1038/onc.2010.118] [PMID: 20440267]
[100]
Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol., 2013, 53, 401-426.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140320] [PMID: 23294312]
[101]
Moon, E.J.; Giaccia, A. Dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment. Free Radic. Biol. Med., 2015, 79, 292-299.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.11.009] [PMID: 25458917]
[102]
Karin, M. Nuclear factor-kappaB in cancer development and progression. Nature, 2006, 441(7092), 431-436.
[http://dx.doi.org/10.1038/nature04870] [PMID: 16724054]
[103]
Ivanov, V.N.; Bhoumik, A.; Ronai, Z. Death receptors and melanoma resistance to apoptosis. Oncogene, 2003, 22(20), 3152-3161.
[http://dx.doi.org/10.1038/sj.onc.1206456] [PMID: 12789291]
[104]
Aggarwal, B.B.; Bhardwaj, A.; Aggarwal, R.S.; Seeram, N.P.; Shishodia, S.; Takada, Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res., 2004, 24(5A), 2783-2840.
[PMID: 15517885]
[105]
Shankar, S.; Singh, G.; Srivastava, R.K. Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. Front. Biosci., 2007, 12(12), 4839-4854.
[http://dx.doi.org/10.2741/2432] [PMID: 17569614]
[106]
Dörrie, J.; Gerauer, H.; Wachter, Y.; Zunino, S.J. Resveratrol induces extensive apoptosis by depolarizing mitochondrial membranes and activating caspase-9 in acute lymphoblastic leukemia cells. Cancer Res., 2001, 61(12), 4731-4739.
[PMID: 11406544]
[107]
Niles, R.M.; McFarland, M.; Weimer, M.B.; Redkar, A.; Fu, Y-M.; Meadows, G.G. Resveratrol is a potent inducer of apoptosis in human melanoma cells. Cancer Lett., 2003, 190(2), 157-163.
[http://dx.doi.org/10.1016/S0304-3835(02)00676-6] [PMID: 12565170]
[108]
Weidner, N.; Semple, J.P.; Welch, W.R.; Folkman, J. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N. Engl. J. Med., 1991, 324(1), 1-8.
[http://dx.doi.org/10.1056/NEJM199101033240101] [PMID: 1701519]
[109]
Weidner, N. Angiogenesis as a predictor of clinical outcome in cancer patients. Hum. Pathol., 2000, 31(4), 403-405.
[http://dx.doi.org/10.1053/hp.2000.6724] [PMID: 10821484]
[110]
Neufeld, G.; Cohen, T.; Gengrinovitch, S.; Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J., 1999, 13(1), 9-22.
[http://dx.doi.org/10.1096/fasebj.13.1.9] [PMID: 9872925]
[111]
Volm, M.; Koomägi, R.; Mattern, J. Prognostic value of vascular endothelial growth factor and its receptor Flt-1 in squamous cell lung cancer. Int. J. Cancer, 1997, 74(1), 64-68.
[http://dx.doi.org/10.1002/(SICI)10970215(19970220)-74:1<64:AID-IJC11>3.0.CO;2-I] [PMID: 9036871]
[112]
Pelletier, F.; Bermont, L.; Puzenat, E.; Blanc, D.; Cairey-Remonnay, S.; Mougin, C.; Laurent, R.; Humbert, P.; Aubin, F. Circulating vascular endothelial growth factor in cutaneous malignant melanoma. Br. J. Dermatol., 2005, 152(4), 685-689.
[http://dx.doi.org/10.1111/j.1365-2133.2005.06507.x] [PMID: 15840099]
[113]
Sánchez-Puig, N.; Veprintsev, D.B.; Fersht, A.R. Binding of natively unfolded HIF-1alpha ODD domain to p53. Mol. Cell, 2005, 17(1), 11-21.
[http://dx.doi.org/10.1016/j.molcel.2004.11.019] [PMID: 15629713]
[114]
Hansson, L.O.; Friedler, A.; Freund, S.; Rudiger, S.; Fersht, A.R. Two sequence motifs from HIF-1alpha bind to the DNA-binding site of p53. Proc. Natl. Acad. Sci. USA, 2002, 99(16), 10305-10309.
[http://dx.doi.org/10.1073/pnas.122347199] [PMID: 12124396]
[115]
Graeber, T.G.; Peterson, J.F.; Tsai, M.; Monica, K.; Fornace, A.J., Jr; Giaccia, A.J. Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol. Cell. Biol., 1994, 14(9), 6264-6277.
[http://dx.doi.org/10.1128/MCB.14.9.6264] [PMID: 8065358]
[116]
Tokunaga, T.; Nakamura, M.; Oshika, Y.; Tsuchida, T.; Kazuno, M.; Fukushima, Y.; Kawai, K.; Abe, Y.; Kijima, H.; Yamazaki, H.; Tamaoki, N.; Ueyama, Y. Alterations in tumour suppressor gene p53 correlate with inhibition of thrombospondin-1 gene expression in colon cancer cells. Virchows Arch., 1998, 433(5), 415-418.
[http://dx.doi.org/10.1007/s004280050268]
[117]
Iruela-Arispe, M.L.; Lombardo, M.; Krutzsch, H.C.; Lawler, J.; Roberts, D.D. Inhibition of angiogenesis by thrombospondin-1 is mediated by 2 independent regions within the type 1 repeats. Circulation, 1999, 100(13), 1423-1431.
[http://dx.doi.org/10.1161/01.CIR.100.13.1423] [PMID: 10500044]
[118]
Sid, B.; Sartelet, H.; Bellon, G.; El Btaouri, H.; Rath, G.; Delorme, N.; Haye, B.; Martiny, L. Thrombospondin 1: a multifunctional protein implicated in the regulation of tumor growth. Crit. Rev. Oncol. Hematol., 2004, 49(3), 245-258.
[http://dx.doi.org/10.1016/j.critrevonc.2003.09.009] [PMID: 15036264]
[119]
Grant, S.W.; Kyshtoobayeva, A.S.; Kurosaki, T.; Jakowatz, J.; Fruehauf, J.P. Mutant p53 correlates with reduced expression of thrombospondin-1, increased angiogenesis, and metastatic progression in melanoma. Cancer Detect. Prev., 1998, 22(3), 185-194.
[http://dx.doi.org/10.1046/j.1525-1500.1998.0oa18.x] [PMID: 9618039]
[120]
Cao, Z.; Fang, J.; Xia, C.; Shi, X.; Jiang, B.H. Trans-3,4,5′-Trihydroxystibene inhibits hypoxia-inducible factor 1alpha and vascular endothelial growth factor expression in human ovarian cancer cells. Clin. Cancer Res., 2004, 10(15), 5253-5263.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0588] [PMID: 15297429]
[121]
Wu, H.; Liang, X.; Fang, Y.; Qin, X.; Zhang, Y.; Liu, J. Resveratrol inhibits hypoxia-induced metastasis potential enhancement by restricting hypoxia-induced factor-1 alpha expression in colon carcinoma cells. Biomed. Pharmacother., 2008, 62(9), 613-621.
[http://dx.doi.org/10.1016/j.biopha.2008.06.036] [PMID: 18674879]
[122]
Trapp, V.; Parmakhtiar, B.; Papazian, V.; Willmott, L.; Fruehauf, J.P. Anti-angiogenic effects of resveratrol mediated by decreased VEGF and increased TSP1 expression in melanoma-endothelial cell co-culture. Angiogenesis, 2010, 13(4), 305-315.
[http://dx.doi.org/10.1007/s10456-010-9187-8] [PMID: 20927579]
[123]
Ivanov, V.N.; Partridge, M.A.; Johnson, G.E.; Huang, S.X.; Zhou, H.; Hei, T.K. Resveratrol sensitizes melanomas to TRAIL through modulation of antiapoptotic gene expression. Exp. Cell Res., 2008, 314(5), 1163-1176.
[http://dx.doi.org/10.1016/j.yexcr.2007.12.012] [PMID: 18222423]
[124]
Fulda, S.; Debatin, K-M. Sensitization for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by the chemopreventive agent resveratrol. Cancer Res., 2004, 64(1), 337-346.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-1656] [PMID: 14729643]
[125]
Wang, M.; Yu, T.; Zhu, C.; Sun, H.; Qiu, Y.; Zhu, X.; Li, J. Resveratrol triggers protective autophagy through the ceramide/Akt/mTOR pathway in melanoma B16 cells. Nutr. Cancer, 2014, 66(3), 435-440.
[http://dx.doi.org/10.1080/01635581.2013.878738] [PMID: 24579778]
[126]
Osmond, G.W.; Augustine, C.K.; Zipfel, P.A.; Padussis, J.; Tyler, D.S. Enhancing melanoma treatment with resveratrol. J. Surg. Res., 2012, 172(1), 109-115.
[http://dx.doi.org/10.1016/j.jss.2010.07.033] [PMID: 20855085]
[127]
Fang, Y.; Bradley, M.J.; Cook, K.M.; Herrick, E.J.; Nicholl, M.B. A potential role for resveratrol as a radiation sensitizer for melanoma treatment. J. Surg. Res., 2013, 183(2), 645-653.
[http://dx.doi.org/10.1016/j.jss.2013.02.037] [PMID: 23522452]
[128]
Lei, M.J.; Dong, Y.; Sun, C.X.; Zhang, X.H. Resveratrol inhibits proliferation, promotes differentiation and melanogenesis in HT-144 melanoma cells through inhibition of MEK/ERK kinase pathway. Microb. Pathog., 2017, 111, 410-413.
[http://dx.doi.org/10.1016/j.micpath.2017.09.029] [PMID: 28919486]
[129]
Lee, T.H.; Seo, J.O.; Baek, S-H.; Kim, S.Y. Inhibitory effects of resveratrol on melanin synthesis in ultraviolet B-induced pigmentation in Guinea pig skin. Biomol. Ther. (Seoul), 2014, 22(1), 35-40.
[http://dx.doi.org/10.4062/biomolther.2013.081] [PMID: 24596619]
[130]
Salado, C.; Olaso, E.; Gallot, N.; Valcarcel, M.; Egilegor, E.; Mendoza, L.; Vidal-Vanaclocha, F. Resveratrol prevents inflammation-dependent hepatic melanoma metastasis by inhibiting the secretion and effects of interleukin-18. J. Transl. Med., 2011, 9(1), 59.
[http://dx.doi.org/10.1186/1479-5876-9-59] [PMID: 21569399]
[131]
Luo, H.; Umebayashi, M.; Doi, K.; Morisaki, T.; Shirasawa, S.; Tsunoda, T. Resveratrol overcomes cellular resistance to vemurafenib through dephosphorylation of akt in BRAF-mutated melanoma cells. Anticancer Res., 2016, 36(7), 3585-3589.
[PMID: 27354627]
[132]
Junco, J.J.; Mancha-Ramirez, A.; Malik, G.; Wei, S-J.; Kim, D.J.; Liang, H.; Slaga, T.J. Ursolic acid and resveratrol synergize with chloroquine to reduce melanoma cell viability. Melanoma Res., 2015, 25(2), 103-112.
[http://dx.doi.org/10.1097/CMR.0000000000000137] [PMID: 25647735]
[133]
Chen, M-C.; Chang, W-W.; Kuan, Y-D.; Lin, S-T.; Hsu, H-C.; Lee, C-H. Resveratrol inhibits LPS-induced epithelial-mesenchymal transition in mouse melanoma model. Innate Immun., 2012, 18(5), 685-693.
[http://dx.doi.org/10.1177/1753425912436589] [PMID: 22344225]
[134]
Cheng, Y.J.; Chang, M.Y.; Chang, W.W.; Wang, W.K.; Liu, C.F.; Lin, S.T.; Lee, C.H. Resveratrol enhances chemosensitivity in mouse melanoma model through connexin 43 upregulation. Environ. Toxicol., 2015, 30(8), 877-886.
[http://dx.doi.org/10.1002/tox.21952] [PMID: 24449132]
[135]
Chen, Y-J.; Chen, Y-Y.; Lin, Y-F.; Hu, H-Y.; Liao, H-F. Resveratrol inhibits alpha-melanocyte-stimulating hormone signaling, viability and invasiveness in melanoma cells. Evid. Based Complement. Alternat. Med., 2013, 2013632121
[http://dx.doi.org/10.1155/2013/632121] [PMID: 23762150]
[136]
Habibie, H.; Yokoyama, S.; Abdelhamed, S.; Awale, S.; Sakurai, H.; Hayakawa, Y.; Saiki, I. Survivin suppression through STAT3/β-catenin is essential for resveratrol-induced melanoma apoptosis. Int. J. Oncol., 2014, 45(2), 895-901.
[http://dx.doi.org/10.3892/ijo.2014.2480] [PMID: 24946930]
[137]
Menicacci, B.; Laurenzana, A.; Chillà, A.; Margheri, F.; Peppicelli, S.; Tanganelli, E.; Fibbi, G.; Giovannelli, L.; Del Rosso, M.; Mocali, A. Chronic resveratrol treatment inhibits MRC5 fibroblast SASP-related protumoral effects on melanoma cells. J. Gerontol. A Biol. Sci. Med. Sci., 2017, 72(9), 1187-1195.
[http://dx.doi.org/10.1093/gerona/glw336] [PMID: 28329136]
[138]
Lee, S.H.; Koo, B.S.; Park, S.Y.; Kim, Y.M. Anti-angiogenic effects of resveratrol in combination with 5-fluorouracil on B16 murine melanoma cells. Mol. Med. Rep., 2015, 12(2), 2777-2783.
[http://dx.doi.org/10.3892/mmr.2015.3675] [PMID: 25936796]
[139]
Sim, D.Y.; Sohng, J.K.; Jung, H.J. Anticancer activity of 7,8-dihydroxyflavone in melanoma cells via downregulation of α-MSH/cAMP/MITF pathway. Oncol. Rep., 2016, 36(1), 528-534.
[http://dx.doi.org/10.3892/or.2016.4825] [PMID: 27220989]
[140]
Lee, H.; Zhang, P.; Herrmann, A.; Yang, C.; Xin, H.; Wang, Z.; Hoon, D.S.; Forman, S.J.; Jove, R.; Riggs, A.D.; Yu, H. Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters and inhibition by resveratrol results in demethylation. Proc. Natl. Acad. Sci. USA, 2012, 109(20), 7765-7769.
[http://dx.doi.org/10.1073/pnas.1205132109] [PMID: 22547799]
[141]
Guan, H.; Singh, N.P.; Singh, U.P.; Nagarkatti, P.S.; Nagarkatti, M. Resveratrol prevents endothelial cells injury in high-dose interleukin-2 therapy against melanoma. PLoS One, 2012, 7(4)e35650
[http://dx.doi.org/10.1371/journal.pone.0035650] [PMID: 22532866]
[142]
Wu, F.; Cui, L. Resveratrol suppresses melanoma by inhibiting NF-κB/miR-221 and inducing TFG expression. Arch. Dermatol. Res., 2017, 309(10), 823-831.
[http://dx.doi.org/10.1007/s00403-017-1784-6] [PMID: 28936555]
[143]
Yang, Z.; Yang, S.; Misner, B.J.; Chiu, R.; Liu, F.; Meyskens, F.L. Jr Nitric oxide initiates progression of human melanoma via a feedback loop mediated by apurinic/apyrimidinic endonuclease-1/redox factor-1, which is inhibited by resveratrol. Mol. Cancer Ther., 2008, 7(12), 3751-3760.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0562] [PMID: 19074850]
[144]
Fuggetta, M.P.; D’Atri, S.; Lanzilli, G.; Tricarico, M.; Cannavò, E.; Zambruno, G.; Falchetti, R.; Ravagnan, G. In vitro antitumour activity of resveratrol in human melanoma cells sensitive or resistant to temozolomide. Melanoma Res., 2004, 14(3), 189-196.
[http://dx.doi.org/10.1097/01.cmr.0000130007.54508.b2] [PMID: 15179187]
[145]
Hsieh, T.C.; Wang, Z.; Hamby, C.V.; Wu, J.M. Inhibition of melanoma cell proliferation by resveratrol is correlated with upregulation of quinone reductase 2 and p53. Biochem. Biophys. Res. Commun., 2005, 334(1), 223-230.
[http://dx.doi.org/10.1016/j.bbrc.2005.06.073] [PMID: 15993843]
[146]
Yang, S.; Meyskens, F.L. Jr Alterations in activating protein 1 composition correlate with phenotypic differentiation changes induced by resveratrol in human melanoma. Mol. Pharmacol., 2005, 67(1), 298-308.
[http://dx.doi.org/10.1124/mol.104.006023] [PMID: 15492115]
[147]
Ogas, T.; Kondratyuk, T.P.; Pezzuto, J.M. Resveratrol analogs: promising chemopreventive agents. Ann. N. Y. Acad. Sci., 2013, 1290, 21-29.
[http://dx.doi.org/10.1111/nyas.12196] [PMID: 23855462]
[148]
Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E. Jr.; Walle, U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos., 2004, 32(12), 1377-1382.
[http://dx.doi.org/10.1124/dmd.104.000885] [PMID: 15333514]
[149]
Neves, A.R.; Lucio, M.; Lima, J.L.; Reis, S. Resveratrol in medicinal chemistry: a critical review of its pharmacokinetics, drug-delivery, and membrane interactions. Curr. Med. Chem., 2012, 19(11), 1663-1681.
[http://dx.doi.org/10.2174/092986712799945085] [PMID: 22257059]
[150]
Szekeres, T.; Fritzer-Szekeres, M.; Saiko, P.; Jäger, W. Resveratrol and resveratrol analogues--structure-activity relationship. Pharm. Res., 2010, 27(6), 1042-1048.
[http://dx.doi.org/10.1007/s11095-010-0090-1] [PMID: 20232118]
[151]
Savio, M.; Coppa, T.; Bianchi, L.; Vannini, V.; Maga, G.; Forti, L.; Cazzalini, O.; Lazzè, M.C.; Perucca, P.; Prosperi, E.; Stivala, L.A. The resveratrol analogue 4,4′-dihydroxy-trans-stilbene inhibits cell proliferation with higher efficiency but different mechanism from resveratrol. Int. J. Biochem. Cell Biol., 2009, 41(12), 2493-2502.
[http://dx.doi.org/10.1016/j.biocel.2009.08.005] [PMID: 19679195]
[152]
Murias, M.; Jäger, W.; Handler, N.; Erker, T.; Horvath, Z.; Szekeres, T.; Nohl, H.; Gille, L. Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: structure-activity relationship. Biochem. Pharmacol., 2005, 69(6), 903-912.
[http://dx.doi.org/10.1016/j.bcp.2004.12.001] [PMID: 15748702]
[153]
Li, X-Z.; Wei, X.; Zhang, C-J.; Jin, X-L.; Tang, J-J.; Fan, G-J.; Zhou, B. Hypohalous acid-mediated halogenation of resveratrol and its role in antioxidant and antimicrobial activities. Food Chem., 2012, 135(3), 1239-1244.
[http://dx.doi.org/10.1016/j.foodchem.2012.05.043] [PMID: 22953849]
[154]
Nawaz, W.; Zhou, Z.; Deng, S.; Ma, X.; Ma, X.; Li, C.; Shu, X. Therapeutic versatility of resveratrol derivatives. Nutrients, 2017, 9(11), 1188.
[http://dx.doi.org/10.3390/nu9111188] [PMID: 29109374]
[155]
D’Mello, S.A.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling Pathways in Melanogenesis. Int. J. Mol. Sci., 2016, 17(7)E1144
[http://dx.doi.org/10.3390/ijms17071144] [PMID: 27428965]
[156]
Choi, J.; Bae, S.J.; Ha, Y.M.; No, J.K.; Lee, E.K.; Lee, J.S.; Song, S.; Lee, H.; Suh, H.; Yu, B.P.; Chung, H.Y. A newly synthesized, potent tyrosinase inhibitor: 5-(6-hydroxy-2-naphthyl)-1,2,3-benzenetriol. Bioorg. Med. Chem. Lett., 2010, 20(16), 4882-4884.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.087] [PMID: 20619644]
[157]
Kosuru, R.; Rai, U.; Prakash, S.; Singh, A.; Singh, S. Promising therapeutic potential of pterostilbene and its mechanistic insight based on preclinical evidence. Eur. J. Pharmacol., 2016, 789, 229-243.
[http://dx.doi.org/10.1016/j.ejphar.2016.07.046] [PMID: 27475678]
[158]
Estrela, J.M.; Ortega, A.; Mena, S.; Rodriguez, M.L.; Asensi, M. Pterostilbene: biomedical applications. Crit. Rev. Clin. Lab. Sci., 2013, 50(3), 65-78.
[http://dx.doi.org/10.3109/10408363.2013.805182] [PMID: 23808710]
[159]
Remsberg, C.M.; Yáñez, J.A.; Ohgami, Y.; Vega-Villa, K.R.; Rimando, A.M.; Davies, N.M. Pharmacometrics of pterostilbene: preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother. Res., 2008, 22(2), 169-179.
[http://dx.doi.org/10.1002/ptr.2277] [PMID: 17726731]
[160]
Lin, H.S.; Yue, B.D.; Ho, P.C. Determination of pterostilbene in rat plasma by a simple HPLC-UV method and its application in pre-clinical pharmacokinetic study. Biomed. Chromatogr., 2009, 23(12), 1308-1315.
[http://dx.doi.org/10.1002/bmc.1254] [PMID: 19488981]
[161]
Maccario, C.; Savio, M.; Ferraro, D.; Bianchi, L.; Pizzala, R.; Pretali, L.; Forti, L.; Stivala, L.A. The resveratrol analog 4,4′-dihydroxy-trans-stilbene suppresses transformation in normal mouse fibroblasts and inhibits proliferation and invasion of human breast cancer cells. Carcinogenesis, 2012, 33(11), 2172-2180.
[http://dx.doi.org/10.1093/carcin/bgs244] [PMID: 22828135]
[162]
Saha, B.; Pai, G.B.; Subramanian, M.; Gupta, P.; Tyagi, M.; Patro, B.S.; Chattopadhyay, S. Resveratrol analogue, trans-4,4′-dihydroxystilbene (DHS), inhibits melanoma tumor growth and suppresses its metastatic colonization in lungs. Biomed. Pharmacother., 2018, 107, 1104-1114.
[http://dx.doi.org/10.1016/j.biopha.2018.08.085]
[163]
Du, M.; Zhang, Z.; Gao, T. Piceatannol induced apoptosis through up-regulation of microRNA-181a in melanoma cells. Biol. Res., 2017, 50(1), 36.
[http://dx.doi.org/10.1186/s40659-017-0141-8] [PMID: 29041990]
[164]
Larrosa, M.; Tomás-Barberán, F.A.; Espín, J.C. The grape and wine polyphenol piceatannol is a potent inducer of apoptosis in human SK-Mel-28 melanoma cells. Eur. J. Nutr., 2004, 43(5), 275-284.
[http://dx.doi.org/10.1007/s00394-004-0471-5] [PMID: 15309446]
[165]
Wong, Y.; Osmond, G.; Brewer, K.I.; Tyler, D.S.; Andrus, M.B. Synthesis of 4′-ester analogs of resveratrol and their evaluation in malignant melanoma and pancreatic cell lines. Bioorg. Med. Chem. Lett., 2010, 20(3), 1198-1201.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.006] [PMID: 20022501]
[166]
Saha, B.; Pai, G.B.; Subramanian, M.; Gupta, P.; Tyagi, M.; Patro, B.S.; Chattopadhyay, S. Resveratrol analogue, trans-4,4′-dihydroxystilbene (DHS), inhibits melanoma tumor growth and suppresses its metastatic colonization in lungs. Biomed. Pharmacother., 2018, 107, 1104-1114.
[http://dx.doi.org/10.1016/j.biopha.2018.08.085] [PMID: 30257322]
[167]
Androutsopoulos, V.P.; Fragiadaki, I.; Tosca, A. Activation of ERK1/2 is required for the antimitotic activity of the resveratrol analogue 3,4,5,4′-tetramethoxystilbene (DMU-212) in human melanoma cells. Exp. Dermatol., 2015, 24(8), 632-634.
[http://dx.doi.org/10.1111/exd.12721] [PMID: 25865632]
[168]
Bae, S.J.; Ha, Y.M.; Kim, J-A.; Park, J.Y.; Ha, T.K.; Park, D.; Chun, P.; Park, N.H.; Moon, H.R.; Chung, H.Y. A novel synthesized tyrosinase inhibitor: (E)-2-((2,4-dihydroxyphenyl)diazenyl)phenyl 4-methylbenzene-sulfonate as an azo-resveratrol analog. Biosci. Biotechnol. Biochem., 2013, 77(1), 65-72.
[http://dx.doi.org/10.1271/bbb.120547] [PMID: 23291747]
[169]
Moriyama, H.; Moriyama, M.; Ninomiya, K.; Morikawa, T.; Hayakawa, T. Inhibitory effects of oligostilbenoids from the bark of Shorea roxburghii on malignant melanoma cell growth: Implications for novel topical anticancer candidates. Biol. Pharm. Bull., 2016, 39(10), 1675-1682.
[http://dx.doi.org/10.1248/bpb.b16-00420] [PMID: 27725445]
[170]
Nath, L.R.; Kumar, S.N.; Das, A.A.; Nambisan, B.; Shabna, A.; Mohandas, C.; Anto, R.J. In vitro evaluation of the antioxidant, 3,5-dihydroxy-4-ethyl-trans-stilbene (DETS) isolated from bacillus cereus as a potent candidate against malignant melanoma. Front. Microbiol., 2016, 7, 452.
[http://dx.doi.org/10.3389/fmicb.2016.00452] [PMID: 27148169]
[171]
Androutsopoulos, V.P.; Fragiadaki, I.; Spandidos, D.A.; Tosca, A. The resveratrol analogue, 3,4,5,4′ trans-tetramethoxystilbene, inhibits the growth of A375 melanoma cells through multiple anticancer modes of action. Int. J. Oncol., 2016, 49(4), 1305-1314.
[http://dx.doi.org/10.3892/ijo.2016.3635] [PMID: 27498704]
[172]
Liu, Q.; Kim, C.; Jo, Y.H.; Kim, S.B.; Hwang, B.Y.; Lee, M.K. Synthesis and biological evaluation of resveratrol derivatives as melanogenesis inhibitors. Molecules, 2015, 20(9), 16933-16945.
[http://dx.doi.org/10.3390/molecules200916933] [PMID: 26393543]
[173]
Nivelle, L.; Hubert, J.; Courot, E.; Borie, N.; Renault, J-H.; Nuzillard, J-M.; Harakat, D.; Clément, C.; Martiny, L.; Delmas, D.; Jeandet, P.; Tarpin, M. Cytotoxicity of labruscol, a new resveratrol dimer produced by grapevine cell suspensions, on human skin melanoma cancer cell line HT-144. Molecules, 2017, 22(11), 1940.
[http://dx.doi.org/10.3390/molecules22111940] [PMID: 29120391]
[174]
Osmond, G.W.; Masko, E.M.; Tyler, D.S.; Freedland, S.J.; Pizzo, S. In vitro and in vivo evaluation of resveratrol and 3, 5-dihydroxy-4′-acetoxy-trans-stilbene in the treatment of human prostate carcinoma and melanoma. J. Surg. Res., 2013, 179(1), e141-e148.
[http://dx.doi.org/10.1016/j.jss.2012.02.057] [PMID: 22482756]
[175]
Morris, V.L.; Toseef, T.; Nazumudeen, F.B.; Rivoira, C.; Spatafora, C.; Tringali, C.; Rotenberg, S.A. Anti-tumor properties of cis-resveratrol methylated analogs in metastatic mouse melanoma cells. Mol. Cell. Biochem., 2015, 402(1-2), 83-91.
[http://dx.doi.org/10.1007/s11010-014-2316-8] [PMID: 25567208]
[176]
Park, J.; Park, J.H.; Suh, H-J.; Lee, I.C.; Koh, J.; Boo, Y.C. Effects of resveratrol, oxyresveratrol, and their acetylated derivatives on cellular melanogenesis. Arch. Dermatol. Res., 2014, 306(5), 475-487.
[http://dx.doi.org/10.1007/s00403-014-1440-3] [PMID: 24414332]
[177]
Park, S.; Seok, J.K.; Kwak, J.Y.; Choi, Y-H.; Hong, S.S.; Suh, H-J.; Park, W.; Boo, Y.C. Anti-melanogenic effects of resveratryl triglycolate, a novel hybrid compound derived by esterification of resveratrol with glycolic acid. Arch. Dermatol. Res., 2016, 308(5), 325-334.
[http://dx.doi.org/10.1007/s00403-016-1644-9] [PMID: 27059716]
[178]
Yoon, H-S.; Hyun, C-G.; Lee, N-H.; Park, S-S.; Shin, D-B. Comparative depigmentation effects of resveratrol and its two methyl analogues in α-melanocyte stimulating hormone-triggered b16/f10 murine melanoma cells. Prev. Nutr. Food Sci., 2016, 21(2), 155-159.
[http://dx.doi.org/10.3746/pnf.2016.21.2.155] [PMID: 27390733]
[179]
Chen, X.; Li, W.; Xu, C.; Wang, J.; Zhu, B.; Huang, Q.; Chen, D.; Sheng, J.; Zou, Y.; Lee, Y.M.; Tan, R.; Shen, P.; Wong, Y.K.; Lin, Q.; Wang, J.; Hua, Z. Comparative profiling of analog targets: a case study on resveratrol for mouse melanoma metastasis suppression. Theranostics, 2018, 8(13), 3504-3516.
[http://dx.doi.org/10.7150/thno.24336] [PMID: 30026862]
[180]
Benlloch, M.; Obrador, E.; Valles, S.L.; Rodriguez, M.L.; Sirerol, J.A.; Alcácer, J.; Pellicer, J.A.; Salvador, R.; Cerdá, C.; Sáez, G.T. Pterostilbene decreases the antioxidant defenses of aggressive cancer cells in vivo: a physiological glucocorticoids-and Nrf2-dependent mechanism. Antioxidants & redox signaling, , 2016, 24(17), 974-990.
[http://dx.doi.org/10.1089/ars.2015.6437]
[181]
Mena, S.; Rodríguez, M.L.; Ponsoda, X.; Estrela, J.M.; Jäättela, M.; Ortega, A.L. Pterostilbene-induced tumor cytotoxicity: a lysosomal membrane permeabilization-dependent mechanism. PLoS One, 2012, 7(9)e44524
[http://dx.doi.org/10.1371/journal.pone.0044524] [PMID: 22957077]
[182]
Nivelle, L.; Aires, V.; Rioult, D.; Martiny, L.; Tarpin, M.; Delmas, D. Molecular analysis of differential antiproliferative activity of resveratrol, epsilon viniferin and labruscol on melanoma cells and normal dermal cells. . Food Chem. Toxicol., 2018, 116(8), 323-334.
[http://dx.doi.org/10.1016/j.fct.2018.04.043]
[183]
Larrosa, M.; Tomás-Barberán, F.A.; Espín, J.C. Grape polyphenol resveratrol and the related molecule 4-hydroxystilbene induce growth inhibition, apoptosis, S-phase arrest, and upregulation of cyclins A, E, and B1 in human SK-Mel-28 melanoma cells. J. Agric. Food Chem., 2003, 51(16), 4576-4584.
[http://dx.doi.org/10.1021/jf030073c] [PMID: 14705880]
[184]
Amri, A.; Chaumeil, J.C.; Sfar, S.; Charrueau, C. Administration of resveratrol: What formulation solutions to bioavailability limitations? J. Control. Release, 2012, 158(2), 182-193.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.083] [PMID: 21978644]
[185]
Davidov-Pardo, G.; McClements, D.J. Nutraceutical delivery systems: resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chem., 2015, 167, 205-212.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.082] [PMID: 25148980]
[186]
Rius, C.; Abu-Taha, M.; Hermenegildo, C.; Piqueras, L.; Cerda-Nicolas, J.M.; Issekutz, A.C.; Estan, L.; Cortijo, J.; Morcillo, E.J.; Orallo, F.; Sanz, M.J. Trans- but not cis-resveratrol impairs angiotensin-II-mediated vascular inflammation through inhibition of NF-kappaB activation and peroxisome proliferator-activated receptor-gamma upregulation. J. Immunol., 2010, 185(6), 3718-3727.
[http://dx.doi.org/10.4049/jimmunol.1001043] [PMID: 20709957]
[187]
Camont, L.; Cottart, C.H.; Rhayem, Y.; Nivet-Antoine, V.; Djelidi, R.; Collin, F.; Beaudeux, J.L.; Bonnefont-Rousselot, D. Simple spectrophotometric assessment of the trans-/cis-resveratrol ratio in aqueous solutions. Anal. Chim. Acta, 2009, 634(1), 121-128.
[http://dx.doi.org/10.1016/j.aca.2008.12.003] [PMID: 19154820]
[188]
Planas, J.M.; Alfaras, I.; Colom, H.; Juan, M.E. The bioavailability and distribution of trans-resveratrol are constrained by ABC transporters. Arch. Biochem. Biophys., 2012, 527(2), 67-73.
[http://dx.doi.org/10.1016/j.abb.2012.06.004] [PMID: 22750234]
[189]
Radko, Y.; Christensen, K.B.; Christensen, L.P. Semi-preparative isolation of dihydroresveratrol-3-O-β-d-glucuronide and four resveratrol conjugates from human urine after oral intake of a resveratrol-containing dietary supplement. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 930, 54-61.
[http://dx.doi.org/10.1016/j.jchromb.2013.05.002] [PMID: 23727867]
[190]
Ruotolo, R.; Calani, L.; Fietta, E.; Brighenti, F.; Crozier, A.; Meda, C.; Maggi, A.; Ottonello, S.; Del Rio, D. Anti-estrogenic activity of a human resveratrol metabolite. Nutr. Metab. Cardiovasc. Dis., 2013, 23(11), 1086-1092.
[http://dx.doi.org/10.1016/j.numecd.2013.01.002] [PMID: 23465317]
[191]
Paolino, D.; Cosco, D.; Muzzalupo, R.; Trapasso, E.; Picci, N.; Fresta, M. Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int. J. Pharm., 2008, 353(1-2), 233-242.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.037] [PMID: 18191509]
[192]
González-Paredes, A.; Manconi, M.; Caddeo, C.; Ramos-Cormenzana, A.; Monteoliva-Sánchez, M.; Fadda, A.M. Archaeosomes as carriers for topical delivery of betamethasone dipropionate: in vitro skin permeation study. J. Liposome Res., 2010, 20(4), 269-276.
[http://dx.doi.org/10.3109/08982100903402962] [PMID: 19954402]
[193]
Marianecci, C.; Rinaldi, F.; Mastriota, M.; Pieretti, S.; Trapasso, E.; Paolino, D.; Carafa, M. Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: human and murine models. J. Control. Release, 2012, 164(1), 17-25.
[http://dx.doi.org/10.1016/j.jconrel.2012.09.018] [PMID: 23041542]
[194]
Sinico, C.; Fadda, A.M. Vesicular carriers for dermal drug delivery. Expert Opin. Drug Deliv., 2009, 6(8), 813-825.
[http://dx.doi.org/10.1517/17425240903071029] [PMID: 19569979]
[195]
Elsayed, M.M.; Abdallah, O.Y.; Naggar, V.F.; Khalafallah, N.M. Deformable liposomes and ethosomes as carriers for skin delivery of ketotifen. Pharmazie, 2007, 62(2), 133-137.
[PMID: 17341034]
[196]
Ainbinder, D.; Paolino, D.; Fresta, M.; Touitou, E. Drug delivery applications with ethosomes. J. Biomed. Nanotechnol., 2010, 6(5), 558-568.
[http://dx.doi.org/10.1166/jbn.2010.1152] [PMID: 21329048]
[197]
Cevc, G.; Vierl, U. Nanotechnology and the transdermal route: A state of the art review and critical appraisal. J. Control. Release, 2010, 141(3), 277-299.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.016] [PMID: 19850095]
[198]
El Zaafarany, G.M.; Awad, G.A.; Holayel, S.M.; Mortada, N.D. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int. J. Pharm., 2010, 397(1-2), 164-172.
[http://dx.doi.org/10.1016/j.ijpharm.2010.06.034] [PMID: 20599487]
[199]
Benson, H.A. Transfersomes for transdermal drug delivery. Expert Opin. Drug Deliv., 2006, 3(6), 727-737.
[http://dx.doi.org/10.1517/17425247.3.6.727] [PMID: 17076595]
[200]
Cosco, D.; Paolino, D.; Maiuolo, J.; Marzio, L.D.; Carafa, M.; Ventura, C.A.; Fresta, M. Ultradeformable liposomes as multidrug carrier of resveratrol and 5-fluorouracil for their topical delivery. Int. J. Pharm., 2015, 489(1-2), 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.056] [PMID: 25899287]
[201]
Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine (Lond.), 2012, 8(2), 147-166.
[http://dx.doi.org/10.1016/j.nano.2011.05.016] [PMID: 21703993]
[202]
Mattos, A.C.; Altmeyer, C.; Tominaga, T.T.; Khalil, N.M.; Mainardes, R.M. Polymeric nanoparticles for oral delivery of 5-fluorouracil: formulation optimization, cytotoxicity assay and pre-clinical pharmacokinetics study. Eur. J. Pharm. Sci., 2016, 84, 83-91.
[http://dx.doi.org/10.1016/j.ejps.2016.01.012] [PMID: 26775869]
[203]
Feng, S.S. Nanoparticles of biodegradable polymers for new-concept chemotherapy. Expert Rev. Med. Devices, 2004, 1(1), 115-125.
[http://dx.doi.org/10.1586/17434440.1.1.115] [PMID: 16293015]
[204]
Figueiró, F.; Bernardi, A.; Frozza, R.L.; Terroso, T.; Zanotto-Filho, A.; Jandrey, E.H.; Moreira, J.C.; Salbego, C.G.; Edelweiss, M.I.; Pohlmann, A.R.; Guterres, S.S.; Battastini, A.M. Resveratrol-loaded lipid-core nanocapsules treatment reduces in vitro and in vivo glioma growth. J. Biomed. Nanotechnol., 2013, 9(3), 516-526.
[http://dx.doi.org/10.1166/jbn.2013.1547] [PMID: 23621009]
[205]
Sanna, V.; Siddiqui, I.A.; Sechi, M.; Mukhtar, H. Resveratrol-loaded nanoparticles based on poly(epsilon-caprolactone) and poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) blend for prostate cancer treatment. Mol. Pharm., 2013, 10(10), 3871-3881.
[http://dx.doi.org/10.1021/mp400342f] [PMID: 23968375]
[206]
Carletto, B.; Berton, J.; Ferreira, T.N.; Dalmolin, L.F.; Paludo, K.S.; Mainardes, R.M.; Farago, P.V.; Favero, G.M. Resveratrol-loaded nanocapsules inhibit murine melanoma tumor growth. Colloids Surf. B Biointerfaces, 2016, 144, 65-72.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.001] [PMID: 27070053]
[207]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[208]
Leibowitz-Amit, R.; Sidi, Y.; Avni, D. Aberrations in the micro-RNA biogenesis machinery and the emerging roles of micro-RNAs in the pathogenesis of cutaneous malignant melanoma. Pigment Cell Melanoma Res., 2012, 25(6), 740-757.
[http://dx.doi.org/10.1111/pcmr.12018] [PMID: 22958787]
[209]
Lujambio, A.; Lowe, S.W. The microcosmos of cancer. Nature, 2012, 482(7385), 347-355.
[http://dx.doi.org/10.1038/nature10888] [PMID: 22337054]
[210]
Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol., 2014, 15(8), 509-524.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[211]
Li, J.; Chen, J.; Wang, S.; Li, P.; Zheng, C.; Zhou, X.; Tao, Y.; Chen, X.; Sun, L.; Wang, A.; Cao, K.; Tang, S.; Zhou, J. Blockage of transferred exosome-shuttled miR-494 inhibits melanoma growth and metastasis. J. Cell. Physiol., 2019. Epub ahead of print
[http://dx.doi.org/10.1002/jcp.28234] [PMID: 30723916]
[212]
Ushio, N.; Rahman, M.M.; Maemura, T.; Lai, Y.C.; Iwanaga, T.; Kawaguchi, H.; Miyoshi, N.; Momoi, Y.; Miura, N. Identification of dysregulated microRNAs in canine malignant melanoma. Oncol. Lett., 2019, 17(1), 1080-1088.
[http://dx.doi.org/10.3892/ol.2018.9692] [PMID: 30655868]
[213]
Weber, C.E.; Luo, C.; Hotz-Wagenblatt, A.; Gardyan, A.; Kordaß, T.; Holland-Letz, T.; Osen, W.; Eichmüller, S.B. miR-339-3p is a tumor suppressor in melanoma. Cancer Res., 2016, 76(12), 3562-3571.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2932] [PMID: 27197185]
[214]
Mattia, G.; Errico, M.C.; Felicetti, F.; Petrini, M.; Bottero, L.; Tomasello, L.; Romania, P.; Boe, A.; Segnalini, P.; Di Virgilio, A.; Colombo, M.P.; Carè, A. Constitutive activation of the ETS-1-miR-222 circuitry in metastatic melanoma. Pigment Cell Melanoma Res., 2011, 24(5), 953-965.
[http://dx.doi.org/10.1111/j.1755-148X.2011.00881.x] [PMID: 21711453]
[215]
Quintavalle, C.; Garofalo, M.; Zanca, C.; Romano, G.; Iaboni, M.; del Basso De Caro, M.; Martinez-Montero, J.C.; Incoronato, M.; Nuovo, G.; Croce, C.M.; Condorelli, G. miR-221/222 overexpession in human glioblastoma increases invasiveness by targeting the protein phosphate PTPμ. Oncogene, 2012, 31(7), 858-868.
[http://dx.doi.org/10.1038/onc.2011.280] [PMID: 21743492]
[216]
Babapoor, S.; Wu, R.; Kozubek, J.; Auidi, D.; Grant-Kels, J.M.; Dadras, S.S. Identification of microRNAs associated with invasive and aggressive phenotype in cutaneous melanoma by next-generation sequencing. Lab. Invest., 2017, 97(6), 636-648.
[http://dx.doi.org/10.1038/labinvest.2017.5] [PMID: 28218741]
[217]
Garofalo, M.; Quintavalle, C.; Romano, G.; Croce, C.M.; Condorelli, G. miR221/222 in cancer: their role in tumor progression and response to therapy. Curr. Mol. Med., 2012, 12(1), 27-33.
[http://dx.doi.org/10.2174/156652412798376170] [PMID: 22082479]
[218]
Panday, A.; Inda, M.E.; Bagam, P.; Sahoo, M.K.; Osorio, D.; Batra, S. Transcription factor NF-κB: an update on intervention strategies. Arch. Immunol. Ther. Exp. (Warsz.), 2016, 64(6), 463-483.
[http://dx.doi.org/10.1007/s00005-016-0405-y] [PMID: 27236331]
[219]
Mobley, A.K.; Braeuer, R.R.; Kamiya, T.; Shoshan, E.; Bar-Eli, M. Driving transcriptional regulators in melanoma metastasis. Cancer Metastasis Rev., 2012, 31(3-4), 621-632.
[http://dx.doi.org/10.1007/s10555-012-9358-8] [PMID: 22684365]
[220]
Bassères, D.S.; Ebbs, A.; Levantini, E.; Baldwin, A.S. Requirement of the NF-κB subunit p65/RelA for K-Ras–induced lung tumorigenesis. Cancer Res., 2010, 70(9), 3537-3546.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4290] [PMID: 20406971]
[221]
Gallagher, S.J.; Mijatov, B.; Gunatilake, D.; Gowrishankar, K.; Tiffen, J.; James, W.; Jin, L.; Pupo, G.; Cullinane, C.; McArthur, G.A.; Tummino, P.J.; Rizos, H.; Hersey, P. Control of NF-kB activity in human melanoma by bromodomain and extra-terminal protein inhibitor I-BET151. Pigment Cell Melanoma Res., 2014, 27(6), 1126-1137.
[http://dx.doi.org/10.1111/pcmr.12282] [PMID: 24924589]
[222]
Zehavi, L.; Schayek, H.; Jacob-Hirsch, J.; Sidi, Y.; Leibowitz-Amit, R.; Avni, D. MiR-377 targets E2F3 and alters the NF-kB signaling pathway through MAP3K7 in malignant melanoma. Mol. Cancer, 2015, 14(1), 68.
[http://dx.doi.org/10.1186/s12943-015-0338-9] [PMID: 25889255]
[223]
Giles, K.M.; Brown, R.A.; Ganda, C.; Podgorny, M.J.; Candy, P.A.; Wintle, L.C.; Richardson, K.L.; Kalinowski, F.C.; Stuart, L.M.; Epis, M.R.; Haass, N.K.; Herlyn, M.; Leedman, P.J. microRNA-7-5p inhibits melanoma cell proliferation and metastasis by suppressing RelA/NF-κB. Oncotarget, 2016, 7(22), 31663-31680.
[http://dx.doi.org/10.18632/oncotarget.9421] [PMID: 27203220]
[224]
Ren, Z.; Wang, L.; Cui, J.; Huoc, Z.; Xue, J.; Cui, H.; Mao, Q.; Yang, R. Resveratrol inhibits NF-kB signaling through suppression of p65 and IkappaB kinase activities. Pharmazie, 2013, 68(8), 689-694.
[PMID: 24020126]
[225]
Takeuchi, S.; Masuda, C.; Maebayashi, H.; Tooyama, I. Immunohistochemical mapping of TRK-fused gene products in the rat brainstem. Acta Histochem. Cytochem., 2012, 45(1), 57-64.
[http://dx.doi.org/10.1267/ahc.11051] [PMID: 22489105]
[226]
Dutton-Regester, K.; Aoude, L.G.; Nancarrow, D.J.; Stark, M.S.; O’Connor, L.; Lanagan, C.; Pupo, G.M.; Tembe, V.; Carter, C.D.; O’Rourke, M.; Scolyer, R.A.; Mann, G.J.; Schmidt, C.W.; Herington, A.; Hayward, N.K. Identification of TFG (TRK-fused gene) as a putative metastatic melanoma tumor suppressor gene. Genes Chromosomes Cancer, 2012, 51(5), 452-461.
[http://dx.doi.org/10.1002/gcc.21932] [PMID: 22250051]
[227]
Tili, E.; Michaille, J.J.; Gandhi, V.; Plunkett, W.; Sampath, D.; Calin, G.A. miRNAs and their potential for use against cancer and other diseases. Future Oncol., 2007, 3(5), 521-537.
[http://dx.doi.org/10.2217/14796694.3.5.521] [PMID: 17927518]
[228]
Otsuka, K.; Yamamoto, Y.; Ochiya, T. Regulatory role of resveratrol, a microRNA-controlling compound, in HNRNPA1 expression, which is associated with poor prognosis in breast cancer. Oncotarget, 2018, 9(37), 24718-24730.
[http://dx.doi.org/10.18632/oncotarget.25339] [PMID: 29872500]
[229]
Wu, H.; Wang, Y.; Wu, C.; Yang, P.; Li, H.; Li, Z. Resveratrol induces cancer cell apoptosis through MiR-326/PKM2-mediated ER stress and mitochondrial fission. J. Agric. Food Chem., 2016, 64(49), 9356-9367.
[http://dx.doi.org/10.1021/acs.jafc.6b04549] [PMID: 27960279]
[230]
Karimi Dermani, F.; Saidijam, M.; Amini, R.; Mahdavinezhad, A.; Heydari, K.; Najafi, R. Resveratrol inhibits proliferation, invasion, and epithelial-mesenchymal transition by increasing miR-200c expression in HCT-116 colorectal cancer cells. J. Cell. Biochem., 2017, 118(6), 1547-1555.
[http://dx.doi.org/10.1002/jcb.25816] [PMID: 27918105]
[231]
Yang, S.; Li, W.; Sun, H.; Wu, B.; Ji, F.; Sun, T.; Chang, H.; Shen, P.; Wang, Y.; Zhou, D. Resveratrol elicits anti-colorectal cancer effect by activating miR-34c-KITLG in vitro and in vivo. BMC Cancer, 2015, 15, 969.
[http://dx.doi.org/10.1186/s12885-015-1958-6] [PMID: 26674205]
[232]
Zhou, W.; Wang, S.; Ying, Y.; Zhou, R.; Mao, P. miR-196b/miR-1290 participate in the antitumor effect of resveratrol via regulation of IGFBP3 expression in acute lymphoblastic leukemia. Oncol. Rep., 2017, 37(2), 1075-1083.
[http://dx.doi.org/10.3892/or.2016.5321] [PMID: 28000876]
[233]
Dhar, S.; Kumar, A.; Rimando, A.M.; Zhang, X.; Levenson, A.S. Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting oncomiRs of the miR-17 family in prostate cancer. Oncotarget, 2015, 6(29), 27214-27226.
[http://dx.doi.org/10.18632/oncotarget.4877] [PMID: 26318586]
[234]
Yang, S.F.; Lee, W.J.; Tan, P.; Tang, C.H.; Hsiao, M.; Hsieh, F.K.; Chien, M.H. Upregulation of miR-328 and inhibition of CREB-DNA-binding activity are critical for resveratrol-mediated suppression of matrix metalloproteinase-2 and subsequent metastatic ability in human osteosarcomas. Oncotarget, 2015, 6(5), 2736-2753.
[http://dx.doi.org/10.18632/oncotarget.3088] [PMID: 25605016]
[235]
Ren, X.; Bai, X.; Zhang, X.; Li, Z.; Tang, L.; Zhao, X.; Li, Z.; Ren, Y.; Wei, S.; Wang, Q.; Liu, C.; Ji, J. Quantitative nuclear proteomics identifies that miR-137-mediated EZH2 reduction regulates resveratrol-induced apoptosis of neuroblastoma cells. Mol. Cell. Proteomics, 2015, 14(2), 316-328.
[http://dx.doi.org/10.1074/mcp.M114.041905] [PMID: 25505154]