[3]
Rogers HW, Weinstock MA, Feldman SR, Coldiron BM. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population. JAMA Dermatol 2012; 151: 1010-81.
[12]
Welzel J. Optical coherence tomography in dermatology: a review. Skin Res Technol 2001; 7(2001): 1-9.
[15]
Rani J, Ram K, Talukdar FA, Dey N. The brain tumor segmentation using fuzzy c-means technique: a study Recent advances in applied thermal imaging for industrial applications. Pennsylvania: IGI Global 2017; pp. 1-22.
[19]
Mirbeik-Sabzevari A, Oppelaar E, Ashinoff R, Tavassolian N. High- contrast, low-cost, 3D visu- alization of skin cancer using ultra-high- resolution millimeter-wave imaging. IEEE Trans Med Imaging 2019; 38(9): 2188-97.
[21]
Society AC. Cancer facts figures. Society 2019.
[24]
Dey N, Karâa W B. Biomedical Image analysis and mining techniques for improved health outcomes. Pennsylvania IGI Global 2015.
[25]
Dey N, Ashour AS, Borra S, et al. Classification in BioApps: Automation of Decision Making. In Classification in BioApps: Automation of Decision Making. Springer 2017.
[32]
Klinger T. Image processing with LabVIEW and IMAQ vision. 1st ed. Upper Saddle River: Prentice Hall Inc. 2003.
[34]
Codella NC, Gutman D, Celebi ME, et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 International Symposium on Biomedical Imaging (ISBI). International Symposium on Biomedical Imaging (ISBI 2018) hosted by the International Skin Imaging Collaboration (ISIC); 2018; New Jersey: IEEE; pp. 168-72. arXiv:1902.03368.
[36]
Gutman D, Codella NC, Celebi E, et al. Skin lesion analysis toward melanoma detection: A challenge at the International Symposium on Biomedical Imaging (ISBI). Hosted by the International Skin Imaging Collaboration (ISIC); 2016; New Jersey: IEEE. arXiv preprint arXiv:1605 2016; 01397.
[41]
DERMOFIT. A cognitive prosthesis to aid focal skin lesion diagnosis. 2019 Available fromhttps://homepages.inf.ed.ac.uk/rbf/DERMOFIT/
[45]
Karargyris A, Karargyris O, Pantelopoulos A. Derma/care: An advanced image-processing mobile application for monitoring skin cancer. 24th International Conference on Tools with Artificial Intelligence 2012 Nov 7-9 Athens, Greece New Jersey IEEE 2013
[46]
Martin ME, Wabuyele MB, Chen K, et al. Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection. Ann Biomed Eng 2006; 34: 6-1061.
[50]
Chaki J, Dey N. A Beginner’s Guide to Image Shape Feature Extraction Techniques. Boca Raton: CRC Press 2019.
[57]
Gao W, Tedrake R. FilterReg: Robust and efficient probabilistic point-set registration using gaussian filter and twist parameterization. arXiv:1811.10136.
[60]
Zhang B, Allebach JP. Adaptive bilateral filter for sharpness enhancement and noise removal. IEEE Trans Image Process 2008; 17(5): 664-78.
[63]
Schowengerdt RA. Techniques for image processing and classifications in remote sensing. Cambridge: Academic Press 2012.
[68]
Lin BS, Michael K, Kalra S, Tizhoosh HR. Skin lesion segmentation: U-nets versus clustering. Symposium Series on Computational Intelligence (SSCI) 2017 Nov27-Dec 1; Honolulu, HI, USA New Jersey: IEEE 2018.
[70]
Sankaran S, Sethumadhavan G. Entropy-based colour splitting in dermoscopy images to identify internal borders. International Conference on Inventive Research in Computing Applications (ICIRCA) 2018 July 11-12 Coimbatore, India New Jersey: IEEE. 2019.
[73]
Aima A, Sharma AK. Predictive approach for melanoma skin cancer detection using CNN. SSRN Electronic J 2019; 20193352407
[77]
Santosh KC, Antani S, Guru DS, Dey N. Medical Imaging: Artificial Intelligence. In: Image recognition, and machine learning techniques. Boca Raton CRC Press 2019.
[79]
Satapathy SC, Raja N S M, Rajinikanth V, Ashour A S, Dey N. Multi-level image thresholding using Otsu and chaotic. Neural Comput Applic 2018; 29: 1285-307.
[80]
Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J Ambient Intell Humaniz Comput 2018; 2018: 1-12.
[83]
Roy P, Dutta S, Dey N, et al. Adaptive thresholding: a comparative study IEEE. International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT) 2014 July 10-11 Kanyakumari, India New Jersey: IEEE 2014.
[85]
Vesal S, Patil SM, Ravikumar N, Maier AK. A multi-task framework for skin lesion detection and segmentation. Berlin: Springer 2018.
[86]
He Y, Xie F. Automatic skin lesion segmentation based on texture analysis and supervised learning. Berlin: Springer 2012.
[87]
Hu K, Liu S, Zhang Y, et al. A skin lesion segmentation method based on saliency and adaptive thresholding in wavelet domain. Berlin: Springer 2018.
[89]
Tushar FI. Automatic skin lesion segmentation using grabcut in HSV colour space. arXiv preprint arXiv 1810.
[90]
Ho L. Fully automated growcut-based segmentation of melanoma in dermoscopic images. J Young Investig 2019; 36(2): 1-10.
[91]
Dey N, Maji P, Das P, Biswas S, Das A, Chaudhuri SS. An edge based blind watermarking technique of medical images without devalorizing diagnostic parameters. International Conference on Advances in Technology and Engineering (ICATE) 2013 Jan 23-25 Mumbai, India New Jersey: IEEE 2013.
[92]
Mishra N K, Kaur R, Kasmi R, et al. Automatic lesion border selection in dermoscopy images using morphology and color features. Skin Res Technol 2019; 25(4): 544-52.
[93]
Masood A, Al-Jumaily A. Orientation sensitive fuzzy c means based fast level set evolution for segmentation of histopathological images to detect skin cancer. Berlin: Springer 2018.
[94]
Chatterjee S, Sarkar S, Dey N, Ashour AS. Application of cuckoo search in water quality prediction using artificial neural network. Int J Comput Intell Stud 2017; 6(2-3): 229-44.
[95]
Dey N, Ashour A S, Bhattacharyya S. Applied nature-inspired computing: algorithms and case studies. Berlin: Springer 2020.
[97]
Xu H, Hwang T H. Automatic skin lesion segmentation using deep fully convolutional networks. arXiv:1807.06466.
[98]
Bolelli F, Pollastri F, Palacios R P, Grana C. Improving skin lesion segmentation with generative adversarial networks. 31st International Symposium on Computer-Based Medical Systems (CBMS) 2018 June 18-21 Karlstad, Sweden New Jersey: IEEE 2018.
[100]
Kawahara J, Hamarneh G. Fully convolutional neural networks to detect clinical dermoscopic features. IEEE J Biomed Health Inform 2019; 23(2): 578-85.
[101]
Xie Y, Zhang J, Xia Y, Shen C. Semi-and weakly supervised directional bootstrapping model for automated skin lesion segmentation Ground A1 2019; 2019; 1-8.
[102]
Vesal S, Patil SM, Ravikumar N, Maier AK. A multi-task framework for skin lesion detection and segmentation. Berlin: Springer 2018.
[103]
Goyal M, Yap MH. Region of interest detection in dermoscopic images for natural data- augmentation. arXiv preprint arXiv:1807 10711.
[104]
Bi L, Feng D, Kim J. Improving automatic skin lesion segmentation using adversarial learning based data argumentation. arXiv p 2018.
[110]
Rajinikanth V, Satapathy SC, Dey N, Fernandes SL, Manic KS. Skin melanoma assessment using kapur’s entropy and level set-a study with bat algorithm. Singapore: Springer 2019.
[112]
Wang D, He T, Li Z, et al. Image feature-based affective retrieval employing improved parameter and structure identification of adaptive neuro-fuzzy inference system. Neural Comput Applic 2018; 29: 1087-102.
[113]
Chaki J, Dey N. A beginner’s guide to image shape feature extraction techniques. Boca Raton: CRC Press 2019.
[120]
Grochowski M, Mikołajczyk A, Kwasigroch A. Diagnosis of malignant melanoma by neural network ensemble-based system utilising hand-crafted skin lesion features. Metrol Meas Syst 2019; 26(1): 2-12.
[122]
Argenziano G, Catricalà C, Ardigo M. Seven-point checklist of dermoscopy revisited. Br J Dermatol 2011; 164(4): 785-90.
[132]
Moraru L, Moldovanu S. a Culea-Florescu A-L, et al. Textureanalysis of parasitological liver fibrosis images. Microscopy research 2017; 80(8): 862-9.
[133]
Ahmed HM, Al-azawi RJ, Abdulhameed AA. Evaluation methodology between globalization and localization features approaches for skin cancer lesions classification. Bristol, UK: IOP Publishing 2018.
[135]
Khan MA, Akram T, Sharif M, et al. Construction of saliency map and hybrid set of features for efficient segmentation and classification of skin lesion. Microsc Res Tech 2019; 82(6): 741-63.
[136]
Plants identification using feature fusion technique and bagging classifier. Beni Suef, Egypt 2016 2016; 461-71.
[137]
Dey N, Borra S AS, Ashour , Shi F. Machine learning in bio-signal analysis and diagnostic imaging. Cambridge: Academic Press 2018.
[138]
Dey N, Wagh S, Mahalle PN, Pathan MS. Applied machine learning for smart data analysis. Boca Raton: CRC Press 2019.
[139]
Noreen K, Azween A, Belhaouari BS. Ensemble clustering algorithm with supervised classification of clinical data for early diagnosis of coronary artery disease. J. Med. Imaging Health Inf. 2014; 2014: 226-39.
[140]
Mishra N K, Celebi M E. An overview of melanoma detection in dermoscopy images using image processing and machine learning. arXiv:1601.07843.
[143]
Barata C, Marques JS, Rozeira J. Evaluation of color based key- points and features for the classification of melanomas using the bag- of-features model. Berlin Springer 2013.
[147]
Alfed N, Khelifi F. Bagged textural and color features for melanoma skin cancer detection in dermoscopic and standard images. Expert Syst Appl 2017; 2017: 90.
[155]
Dey N, Wagh S, Mahalle PN, Pathan MS. Applied machine learning for smart data analysis. Boca Raton: CRC Press/Taylor Francis Group 2019.
[156]
Borra S, Lakshmi H, Dey N, Ashour A, Shi F. Digital image watermarking tools: state-of-the-art. 2nd International Conference on Information Technology and Intelligent Transportation Systems (ITITS 2017) 2017 June 10; Xian, China. Netherlands: IOS Press. 2017.
[161]
Mahbod A, Ecker R, Ellinger I. Skin lesion classification using hybrid deep neural networks. arXiv:1702.08434.
[164]
Pomponiu V, Nejati H, Cheung N M. Deepmole: Deep neural networks for skin mole lesion classification. International Conference on Image Processing (ICIP) 2016 Sep 25-28 Phoenix, AZ, USA New Jersey: IEEE 2016.
[167]
Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK. Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. arXiv:1802.06955.
[169]
Cruz-Roa AA, Ovalle JEA, Madabhushi A, Osorio FAG. A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. Berlin: Springer 2013.
[171]
Lopez AR, Giro-i-Nieto X, Burdick J, Marques O. Skin lesion classification from dermoscopic images using deep learning techniques. 13th IASTED International Conference on Biomedical Engineering (BioMed) 2017 Feb 20-21 Innsbruck, Austria, Austria New Jersey: IEEE 2017.
[172]
Bi L, Kim J, Ahn E, Feng D. Automatic skin lesion analysis using large-scale dermoscopy images and deep residual networks. arXiv:1703.04197.
[177]
Majtner T, Yildirim-Yayilgan S, Hardeberg J Y. Combining deep learning and hand-crafted fea-tures for skin lesion classification. Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA) 2016 Dec 12-15 Oulu, Finland New Jersey: IEEE 2017.
[179]
Harangi B. Skin lesion detection based on an ensemble of deep convolutional neural network. arXiv:1705.03360.
[180]
Qi J, Le M, Li C, Zhou P. Global and local information based deep network for skin lesion segmentation. arXiv:1703.05467.
[181]
Liao H. A deep learning approach to universal skin disease classification. CSC 400-Graduate Problem Seminar - Project Report 2015; pp. 1-8.
[186]
Aima A, Sharma A K. Predictive Approach for Melanoma Skin Cancer Detection using CNN. SSRN Electronic J 2019; 2019: 1-7.
[187]
Carrera E. A computer aided diagnosis system for skin cancer detection. 4th International Conference on Technology Trends. 2018 Aug 29-31; Babahoyo, Ecuador.
[190]
Ekici S. Multi-class support vector machines for classification of transmission line faults. Energy Educ Sci Technol Part A Energy Sci Res 2012; 2012: 1015-26.
[191]
Codella N C, Gutman D, Dusza S, et al. Skin lesion analysis toward melanoma detection. 2nd International Conference on Engineering Innovation (ICEI) 2018 July 5-6 Bangkok, Thailand New Jersey: IEEE 2018.
[196]
Li F, Yang Y. A loss function analysis for classification methods in text categorization. Proceedings of the 20th international conference on machine learning (ICML-03) 2019 San Diego, California, USA. Bellingham: SPIE Dig Lib pp. 472-9
[198]
Moldovanu S, Moraru L, Bibicu D. Characterization of myocardium muscle biostructure using first order features. Dig J Nanomater Biostruct 2011; 6(3): 1357-65.