Facile Synthesis of Cu2O nanoparticle-loaded Carbon Nanotubes Composite Catalysts for Reduction of 4-Nitrophenol

Page: [617 - 624] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: 4-nitrophenol (4-NP) is one of the pollutants in sewage and harmful to human health and the environment. Cu is a non-noble metal with catalytic reduction effect on nitro compounds, and has the advantages of simple preparation, abundant reserves, and low price. Carbon nanotubes (CNT) are widely used for substrate due to their excellent mechanical stability and high surface area. In this study, a simple method to prepare CNT-Cu2O by controlling different reaction time was reported. The prepared nanocomposites were used to catalyze 4-NP.

Methods: CNTs and CuCl2 solution were put into a beaker, and then ascorbic acid and NaOH were added while continuously stirring. The reaction was carried out for a sufficiently long period of time at 60°C. The prepared samples were dried in a vacuum at 50°C for 48 h after washing with ethyl alcohol and deionized water.

Results: Nanostructures of these composites were characterized by scanning electron microscope and transmission electron microscopy techniques, and the results at a magnification of 200 nanometers showed that Cu2O was distributed on the surface of the CNTs. In addition, X-ray diffraction was performed to further confirm the formation of Cu2O nanoparticles. The results of ultraviolet spectrophotometry showed that the catalytic effect of the compound on 4-NP was obvious.

Conclusions: CNTs acted as a huge template for loading Cu2O nanoparticles, which could improve the stability and cycle performance of Cu2O. The formation of nanoparticles was greatly affected by temperature and the appropriate concentration, showing great reducibility for the 4-NP reduction reaction.

Keywords: Carbon nanotubes, CuCl2, Cu2O, nanocomposite, catalyst, 4-NP.

Graphical Abstract

[1]
Feng, X.; Jiang, K.; Fan, S.; Kanan, M.W. A direct grain-boundary activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent. Sci., 2016, 2(3), 169-174.
[http://dx.doi.org/10.1021/acscentsci.6b00022] [PMID: 27163043]
[2]
Xu, P.; Chen, N.; Lin, H.; Cen, C.; Wu, Z.; Xu, N.; Tang, J.; Teng, Z. Multiple silver nanoparticles anchored hollow mesoporous silica nanospheres by polyacrylic acid aggregate templating approach for catalytic reduction of p-Nitrophenol. J. Nanosci. Nanotechnol., 2018, 18(12), 8307-8312.
[http://dx.doi.org/10.1166/jnn.2018.16412] [PMID: 30189952]
[3]
Han, W.; Chen, L.; Song, W.; Wang, S.; Fan, X.; Li, Y.; Zhang, F.; Zhang, G.; Peng, W. Synthesis of nitrogen and sulfur Co-doped reduced graphene oxide as efficient metal-free cocatalyst for the photo-activity enhancement of CdS. Appl. Catal. B, 2018, 236, 212-221.
[http://dx.doi.org/10.1016/j.apcatb.2018.05.021]
[4]
Zhao, X.; Jiao, T.; Xing, R.; Huang, H.; Hu, J.; Qu, Y.; Zhou, J.; Zhang, L.; Peng, Q. Preparation of diamond-based AuNP-modified nanocomposites with elevated catalytic performances. RSC Advances, 2017, 7, 49923-49930.
[http://dx.doi.org/10.1039/C7RA10770F]
[5]
Xu, J.; Liu, Y.; Tao, F.; Sun, Y. Kinetics and reaction pathway of Aroclor 1254 removal by novel bimetallic catalysts supported on activated carbon. Sci. Total Environ., 2019, 651(Pt 1), 749-755.
[http://dx.doi.org/10.1016/j.scitotenv.2018.09.200] [PMID: 30245430]
[6]
Lu, H.; Sui, M.; Yuan, B.; Wang, J.; Lv, Y. Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals. Chem. Eng. J., 2018, 357, 140-149.
[http://dx.doi.org/10.1016/j.cej.2018.09.111]
[7]
Niu, Y.; Qian, X.; Xu, C.; Liu, H.; Wu, W.; Hou, L. Cu-Ni-CoSex quaternary porous nanocubes as enhanced Pt-free electrocatalysts for highly efficient dye-sensitized solar cells and hydrogen evolution in alkaline medium. Chem. Eng. J., 2018, 357, 11-20.
[http://dx.doi.org/10.1016/j.cej.2018.09.116]
[8]
Li, K.; Jiao, T.; Xing, R.; Zou, G.; Zhou, J.; Zhang, L.; Peng, Q. Fabrication of tunable hierarchical MXene@AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Sci. China Mater., 2018, 61, 728-736.
[http://dx.doi.org/10.1007/s40843-017-9196-8]
[9]
Sun, Y.; Zhang, F.; Xu, L.; Yin, Z.; Song, X. Roughness-controlled copper nanowires and Cu nanowires-Ag heterostructures: synthesis and their enhanced catalysis. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2, 18583-18592.
[http://dx.doi.org/10.1039/C4TA03689A]
[10]
McCann, S.D.; Stahl, S.S. Copper-catalyzed aerobic oxidations of organic molecules: Pathways for two-electron oxidation with a four-electron oxidant and a one-electron redox-active catalyst. Acc. Chem. Res., 2015, 48(6), 1756-1766.
[http://dx.doi.org/10.1021/acs.accounts.5b00060] [PMID: 26020118]
[11]
Manikandan, M.; Prabu, M.; Kumar, S.K.A.; Sangeetha, P.; Vijayaraghavan, R. Tuning the basicity of Cu-based mixed oxide catalysts towards the efficient conversion of glycerol to glycerol carbonate. Mol. Catal., 2018, 460, 53-62.
[http://dx.doi.org/10.1016/j.mcat.2018.09.002]
[12]
Salomao, R.; Milena, L.M.; Wakamatsu, M.H.; Pandolfelli, V.C. Hydrotalcite synthesis via Co-precipitation reactions using MgO and Al(OH)3 precursors. Ceram. Int., 2011, 37, 3063-3070.
[http://dx.doi.org/10.1016/j.ceramint.2011.05.034]
[13]
Jiang, X.; Yu, A. Low dimensional silver nanostructures: synthesis, growth mechanism, properties and applications. J. Nanosci. Nanotechnol., 2010, 10(12), 7829-7875.
[http://dx.doi.org/10.1166/jnn.2010.3568] [PMID: 21121275]
[14]
Cao, Y.; Fan, D.; Tian, P.; Cao, L.; Sun, T.; Xu, S.; Yang, M.; Liu, Z. The influence of low-temperature hydration methods on the stability of Cu-SAPO-34 SCR catalyst. Chem. Eng. J., 2018, 354, 85-92.
[http://dx.doi.org/10.1016/j.cej.2018.07.195]
[15]
Pandian, L.; Rajasekaran, R.; Govindan, P. Synthesis, characterization and aapplication of Cu doped ZnO nanocatalyst for photocatalytic ozonation of textile dye and Study of its reusability. Mater. Res. Express, 2018. 5115505
[http://dx.doi.org/10.1088/2053-1591/aadcdf]
[16]
Karimi-Maleh, H.; Amini, F.; Akbari, A.; Shojaei, M. Amplified electrochemical sensor employing CuO/SWCNTs and 1-butyl-3-methylimidazolium hexafluorophosphate for selective analysis of sulfisoxazole in the presence of folic acid. J. Colloid Interface Sci., 2017, 495, 61-67.
[http://dx.doi.org/10.1016/j.jcis.2017.01.119] [PMID: 28189110]
[17]
Bavandpour, R.; Karimi-Maleh, H.; Asif, M.; Gupta, V.K.; Atar, N.; Abbasghorbani, M. Liquid phase determination of adrenaline uses a voltammetric sensor employing CuFe2O4 nanoparticles and room temperature ionic liquids. J. Mol. Liq., 2016, 213, 369-373.
[http://dx.doi.org/10.1016/j.molliq.2015.07.054]
[18]
Huang, X.; Zhang, L.; Zhang, Z.; Guo, S.; Shang, H.; Li, Y.; Liu, J. Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes. Biosens. Bioelectron., 2019, 124-125, 40-52.
[http://dx.doi.org/10.1016/j.bios.2018.09.086] [PMID: 30343155]
[19]
Xiang, X.; Zhang, W.; Yang, Z.; Zhang, Y.; Zhang, H.; Zhang, H.; Guo, H.; Zhang, X.; Li, Q. Smart and flexible supercapacitor based on a porous carbon nanotube film and polyaniline hydrogel. RSC Advances, 2016, 6, 24946-24951.
[http://dx.doi.org/10.1039/C6RA00705H]
[20]
Pan, X.; Bao, X. The effects of confinement inside carbon nanotubes on catalysis. Acc. Chem. Res., 2011, 44(8), 553-562.
[http://dx.doi.org/10.1021/ar100160t] [PMID: 21707038]
[21]
Kang, X.; Mai, Z.; Zou, X.; Cai, P.; Mo, J. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal. Biochem., 2007, 363(1), 143-150.
[http://dx.doi.org/10.1016/j.ab.2007.01.003] [PMID: 17288983]
[22]
Fu, P.; Xiao, Z.; Liu, Y.; Wang, L.; Zhang, X.; Li, G. Support independent surface functionalization for efficient Pd loading in catalytic hydrogenation. Chemistry Select, 2018, 3, 3351-3361.
[http://dx.doi.org/10.1002/slct.201800106]
[23]
Chen, W.; Wang, Z.; Duan, X.; Qian, G.; Chen, D.; Zhou, X. Structural and kinetic insights into Pt/CNT catalysts during hydrogen generation from ammonia borane. Chem. Eng. Sci., 2018, 192, 1242-1251.
[http://dx.doi.org/10.1016/j.ces.2017.05.056]
[24]
Deng, Z.; Yi, Q.; Li, G.; Chen, Y.; Yang, X.; Nie, H. NiCo-ddoped C-N nano-composites for cathodic catalysts of Zn-air batteries in neutral media. Electrochim. Acta, 2018, 279, 1-9.
[http://dx.doi.org/10.1016/j.electacta.2018.05.069]
[25]
Li, H.; Cooper-White, J.J. Hyperbranched polymer mediated fabrication of water soluble carbon nanotube-metal nanoparticle hybrids. Nanoscale, 2013, 5(7), 2915-2920.
[http://dx.doi.org/10.1039/c3nr00407d] [PMID: 23450249]
[26]
Gholami, Z.; Luo, G. Low-temperature selective catalytic reduction of NO by CO in the presence of O2 over Cu:Ce catalysts supported by multi-walled carbon nanotubes. Ind. Eng. Chem. Res., 2018, 57, 8871-8883.
[http://dx.doi.org/10.1021/acs.iecr.8b01343]
[27]
Wang, Q.; Dong, R.; Wang, C.; Xu, S.; Chen, D.; Liang, Y.; Ren, B.; Gao, W.; Cai, Y. Glucose-fueled micromotors with highly efficient visible light photocatalytic propulsion. ACS Appl. Mater. Interfaces, 2019, 11(6), 6201-6207.
[http://dx.doi.org/10.1021/acsami.8b17563] [PMID: 30672287]
[28]
Xi, Q.; Gao, G.; Jin, M.; Zhang, Y.; Zhou, H.; Wu, C.; Zhao, Y.; Wang, L.; Guo, P.; Xu, J. Design of graphitic carbon nitride supported Ag-Cu2O composites with hierarchical structures for enhanced photocatalytic properties. Appl. Surf. Sci., 2019, 471, 714-725.
[http://dx.doi.org/10.1016/j.apsusc.2018.12.033]
[29]
Zhang, D.; Wang, B.; Gong, X.; Yang, Z.; Liu, Y. Selective reduction of nitrate to nitrogen gas by novel Cu2O-Cu0@ Fe0 composite combined with HCOOH under UV radiation. Chem. Eng. J., 2019, 359, 1195-1204.
[http://dx.doi.org/10.1016/j.cej.2018.11.058]
[30]
Sheikh, A.H.; Bose, M.; Sarkar, S.; Begum, A. Preparation of iron sulfur cubane nanoclusters and their immobilization on functionalized carbon nanotubes. J. Nanosci. Nanotechnol., 2019, 19(5), 2895-2902.
[http://dx.doi.org/10.1166/jnn.2019.16024] [PMID: 30501797]
[31]
Veisi, H.; Safarimehr, P.; Hemmati, S. Buchwald-Hartwig C-N cross coupling reactions catalyzed by palladium nanoparticles immobilized on thio modified-multi walled carbon nanotubes as heterogeneous and recyclable nanocatalyst. Mater. Sci. Eng. C, 2019, 96, 310-318.
[http://dx.doi.org/10.1016/j.msec.2018.11.026] [PMID: 30606538]
[32]
Feng, Y.; Jiao, T.; Yin, J.; Zhang, L.; Zhang, L.; Zhou, J.; Peng, Q. Facile preparation of carbon nanotube-Cu2O nanocomposites as new catalyst materials for reduction of p-nitrophenol. Nanoscale Res. Lett., 2019, 14(1), 78.
[http://dx.doi.org/10.1186/s11671-019-2914-1] [PMID: 30838470]
[33]
Wang, C.; Sun, S.; Zhang, L.; Yin, J.; Jiao, T.; Zhang, L.; Xu, Y.; Zhou, J.; Peng, Q. Facile preparation and catalytic performance characterization of AuNPs-loaded hierarchical electrospun composite fibers by solvent vapor annealing treatment. Colloid Surf. A, 2019, 561, 283-291.
[http://dx.doi.org/10.1016/j.colsurfa.2018.11.002]
[34]
Chen, K.; Li, J.; Zhang, L.; Xing, R.; Jiao, T.; Gao, F.; Peng, Q. Facile synthesis of self-assembled carbon nanotubes/dye composite films for sensitive electrochemical determination of Cd(II) ions. Nanotechnology, 2018, 29(44) 445603
[http://dx.doi.org/10.1088/1361-6528/aadbf7] [PMID: 30129923]
[35]
Chen, K.; Jiao, T.; Li, J.; Han, D.; Wang, R.; Tian, G.; Peng, Q. Chiral nanostructured composite films via solvent-tuned sel fassembly and their enantioselective performances. Langmuir, 2019, 35(9), 3337-3345.
[http://dx.doi.org/10.1021/acs.langmuir.9b00014] [PMID: 30730141]
[36]
Xu, Y.; Ren, B.; Wang, R.; Zhang, L.; Jiao, T.; Liu, Z. Facile preparation of rod-like MnO nanomixtures via hydrothermal approach and highly efficient removal of methylene blue for wastewater treatment. Nanomaterials (Basel), 2018, 9(1), 10.
[http://dx.doi.org/10.3390/nano9010010] [PMID: 30583526]
[37]
Zhan, F.; Wang, R.; Yin, J.; Han, Z.; Zhang, L.; Jiao, T.; Zhou, J.; Zhang, L.; Peng, Q. Facile solvothermal preparation of Fe3O4-Ag nanocomposite with excellent catalytic performance. RSC Advances, 2019, 9, 878-883.
[http://dx.doi.org/10.1039/C8RA08516A]
[38]
Xing, R.; Liu, K.; Jiao, T.; Zhang, N.; Ma, K.; Zhang, R.; Zou, Q.; Ma, G.; Yan, X. An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv. Mater., 2016, 28(19), 3669-3676.
[http://dx.doi.org/10.1002/adma.201600284] [PMID: 26991248]
[39]
Huo, S.; Duan, P.; Jiao, T.; Peng, Q.; Liu, M. Self-assembled luminescent quantum dots to generate full-color and white circularly polarized light. Angew. Chem. Int. Ed. Engl., 2017, 56(40), 12174-12178.
[http://dx.doi.org/10.1002/anie.201706308] [PMID: 28759134]
[40]
Guo, R.; Wang, R.; Yin, J.; Jiao, T.; Huang, H.; Zhao, X.; Zhang, L.; Li, Q.; Zhou, J.; Peng, Q. Fabrication and highly efficient dye removal characterization of beta-cyclodextrin-based composite polymer fibers by electrospinning. Nanomaterials (Basel), 2019, 9(1), 127.
[http://dx.doi.org/10.3390/nano9010127] [PMID: 30669533]
[41]
Huang, X.; Wang, R.; Jiao, T.; Zou, G.; Zhan, F.; Yin, J.; Zhang, L.; Zhou, J.; Peng, Q. Facile preparation of hierarchical AgNPs-loaded MXene/Fe3O4/polymer nanocomposites by electrospinning with enhanced catalytic performance for wastewater treatment. ACS Omega, 2019, 4(1), 1897-1906.
[http://dx.doi.org/10.1021/acsomega.8b03615] [PMID: 31459444]
[42]
Wang, C.; Yin, J.; Wang, R.; Jiao, T.; Huang, H.; Zhou, J.; Zhang, L.; Peng, Q. Facile preparation of self-assembled polydopamine-modified electrospun fibers for highly effective removal of organic dyes. Nanomaterials (Basel), 2019, 9(1), 116.
[http://dx.doi.org/10.3390/nano9010116] [PMID: 30669378]
[43]
Paul, B.; Purkayastha, D.D.; Dhar, S.S.; Das, S.; Haldar, S. Facile one-pot strategy to prepare Ag/Fe2O3 decorated reduced graphene oxide nanocomposite and its catalytic application in chemoselective reduction of nitroarenes. J. Alloys Compd., 2016, 681, 316-323.
[http://dx.doi.org/10.1016/j.jallcom.2016.04.229]
[44]
Chen, K.; Yan, X.; Li, J.; Jiao, T.; Cai, C.; Zou, G.; Wang, R.; Wang, M.; Zhang, L.; Peng, Q. Preparation of self-assembled composite films constructed by chemically modified MXene and dyes with surface-enhanced Raman scattering characterization. Nanomaterials (Basel), 2019, 9(2), 284.
[http://dx.doi.org/10.3390/nano9020284] [PMID: 30781665]
[45]
Sun, S.; Wang, C.; Han, S.; Jiao, T.; Wang, R.; Yin, J.; Li, Q.; Wang, Y.; Geng, L.; Yu, X.; Peng, Q. Interfacial nanostructures and acidichromism behaviors in self-assembled terpyridine derivatives Langmuir-Blodgett films. Colloid Surf. A, 2019, 564, 1-9.
[http://dx.doi.org/10.1016/j.colsurfa.2018.12.031]
[46]
Huang, X.; Jiao, T.; Liu, Q.; Zhang, L.; Zhou, J.; Li, B.; Peng, Q. Hierarchical electrospun nanofibers treated by solvent vapor annealing as air filtration mat for high-efficiency PM2.5 capture. Sci. China Mater., 2019, 62, 423-436.
[http://dx.doi.org/10.1007/s40843-018-9320-4]
[47]
Liu, K.; Yuan, C.; Zou, Q.; Xie, Z.; Yan, X. Self-assembled zinc/cystine-based chloroplast mimics capable of photoenzymatic reactions for sustainable fuel synthesis. Angew. Chem. Int. Ed. Engl., 2017, 56(27), 7876-7880.
[http://dx.doi.org/10.1002/anie.201704678] [PMID: 28544383]
[48]
Liu, K.; Xing, R.; Li, Y.; Zou, Q.; Möhwald, H.; Yan, X. Mimicking primitive photobacteria: Sustainable hydrogen evolution based on peptide-porphyrin Co-assemblies with self-mineralized reaction center. Angew. Chem. Int. Ed. Engl., 2016, 55(40), 12503-12507.
[http://dx.doi.org/10.1002/anie.201606795] [PMID: 27585308]
[49]
Liu, K.; Xing, R.; Chen, C.; Shen, G.; Yan, L.; Zou, Q.; Ma, G.; Möhwald, H.; Yan, X. Peptide-induced hierarchical long-range order and photocatalytic activity of porphyrin assemblies. Angew. Chem. Int. Ed. Engl., 2015, 54(2), 500-505.
[http://dx.doi.org/10.1002/ange.201409149] [PMID: 25377526]
[50]
Yan, X.; Wang, M.; Sun, X.; Wang, Y.; Shi, G.; Ma, W.; Hou, P. Sandwich-like Ag@Cu@CW SERS substrate with tunable nanogaps and component based on the Plasmonic nanonodule structures for sensitive detection crystal violet and 4-aminothiophenol. Appl. Surf. Sci., 2019, 479, 879-886.
[http://dx.doi.org/10.1016/j.apsusc.2019.02.072]
[51]
Shi, G.; Wang, M.; Zhu, Y.; Wang, Y.; Yan, X.; Sun, X.; Xu, H.; Ma, W. Biomimetic synthesis of Ag-coated glasswing butterfly arrays as ultra-sensitive SERS substrates for efficient trace detection of pesticides. Beilstein J. Nanotechnol., 2019, 10, 578-588.
[http://dx.doi.org/10.3762/bjnano.10.59] [PMID: 30873330]
[52]
Yin, Y.; Ma, N.; Xue, J.; Wang, G.; Liu, S.; Li, H.; Guo, P. Insights into the role of poly(vinylpyrrolidone) in the synthesis of palladium nanoparticles and their electrocatalytic properties. Langmuir, 2019, 35(3), 787-795.
[http://dx.doi.org/10.1021/acs.langmuir.8b04032] [PMID: 30600997]
[53]
Ma, K.; Chen, W.; Jiao, T.; Jin, X.; Sang, Y.; Yang, D.; Zhou, J.; Liu, M.; Duan, P. Boosting the circularly polarized luminescence of small organic molecules via multi-dimensional morphology control. Chem. Sci. (Camb.), 2019, 10(28), 6821-6827.
[http://dx.doi.org/10.1039/C9SC01577A] [PMID: 31391904]
[54]
He, Y.; Wang, R.; Jiao, T.; Yan, X.; Wang, M.; Zhang, L.; Bai, Z.; Zhang, Q.; Peng, Q. Facile preparation of self-assembled layered double hydroxide-based composite dye films as new chemical gas sensors. ACS Sustain. Chem. Eng., 2019, 7, 10888-10899.
[http://dx.doi.org/10.1021/acssuschemeng.9b01780]