Csaba, G. Hormonal imprinting: The first cellular-level evidence of epigenetic inheritance and its present state. Curr. Genomics, 2019, 19(6), 409-418. [http://dx.doi.org/10.2174/1389202920666191116113524]
[3]
Csaba, G. Phylogeny and ontogeny of hormone receptors: The selection theory of receptor formation and hormonal imprinting. Biol. Rev. Camb. Philos. Soc., 1980, 55(1), 47-63.
[4]
Şanlı, E.; Kabaran, S. Maternal obesity, maternal overnutrition and fetal programming: Effects of epigenetic mechanisms on development of metabolic disorders. Curr. Genomics, 2019, 19(6), 419-427. [http://dx.doi.org/10.2174/1389202920666191030092225]
[5]
Lecoutre, S.; Kwok, K.H.M.; Petrus, P.; Lambert, M.; Breton, C. Epigenetic programming of adipose tissue in the progeny of obese dams. Curr. Genomics, 2019, 19(6), 428-437. [http://dx.doi.org/10.2174/1389202920666191118092852]
[6]
Alsayegh, K.; Cortés-Medina, L.V.; Ramos-Mandujano, G.; Badraiq, H.; Li, M. Hematopoietic differentiation of human pluripotent stem cells: HOX and GATA transcription factors as master regulators. Curr. Genomics, 2019, 19(6), 438-452. [http://dx.doi.org/10.2174/1389202920666191017163837]
[7]
Kadayifci, F.Z.; Pan, Y-X.; Haggard, S.; Jeon, S.; Ranard, K.; Tao, D. Early-life programming of type 2 diabetes mellitus: Understanding the association between epigenetics/genetics and environmental factors. Curr. Genomics, 2019, 19(6), 453-463. [http://dx.doi.org/10.2174/1389202920666191009110724]