CNTs Supercapacitor Based on the PVDF/PVA Gel Electrolytes

Page: [163 - 170] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: In this paper, the supercapacitor based on the carbon nanotubes (CNTs) electrodes has been fabricated.

Objective: The Polyvinylidene Fluoride (PVDF) and Polyvinyl Alcohol (PVA) were used as a gel electrolyte.

Methods: The electrodes and electrolytes thin films were characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The specific Capacitance (Cs) of the CNTs-based supercapacitor has been measured using the cyclic voltammetry and galvanostatic methods. For the scan rate, 20 mV s-1 the Cs of the CNTs-based supercapacitor was 173 F g-1.

Results: Using the electrochemical impedance spectroscopy the Nyquist curve has been plotted. The reactance capacitance and the equivalent series resistance of the CNTs-based supercapacitor with PVDF/PVA gel electrolytes were 90 Ω and 25 Ω respectively.

Conclusion: Also, few patents for the CNTs-based supercapacitor have been reviewed and cited. The CNTs-based supercapacitor proposed a new structure solid-state and flexible supercapacitor with high performance.

Keywords: Carbon nanotubes, electrode, specific capacitance, performance, supercapacitor, CNTs.

Graphical Abstract

[1]
Aval LF, Ghoranneviss M, Pour GB. Graphite nanoparticles paper supercapacitor based on gel electrolyte. Mater Renew Sustain Energy 2018; 7(4): 29.
[http://dx.doi.org/10.1007/s40243-018-0136-6]
[2]
Behzadi G, Golnabi H. Comparison of invasive and non-invasive cylindrical capacitive sensors for electrical measurements of different water solutions and mixtures. Sens Actuators A Phys 2011; 167(2): 359-66.
[http://dx.doi.org/10.1016/j.sna.2011.03.031]
[3]
Behzadi G, Fekri L. Electrical parameter and permittivity measurement of water samples using the capacitive sensor. Int J Water Resour Environ Sci 2013; 2: 66-75.
[4]
Behzadi G, Fekri L, Golnabi H. Effect of the reactance term on the charge/discharge electrical measurement using cylindrical capacitive probes. J Appl Sci 2011; 11(18): 3293-300.
[http://dx.doi.org/10.3923/jas.2011.3293.3300]
[5]
Behzadi G, Golnabi H. Monitoring temperature variation of reactance capacitance of water using a cylindrical cell probe. J Appl Sci 2009; 9(2): 752-8.
[http://dx.doi.org/10.3923/jas.2009.752.758]
[6]
Behzadi G, Golnabi H. Investigation of conductivity effects on capacitance measurements of water liquids using a cylindrical capacitive sensor. J Appl Sci 2010; 10(4): 261-8.
[http://dx.doi.org/10.3923/jas.2010.261.268]
[7]
Pour GB, Aval LF. Highly sensitive work function hydrogen gas sensor based on PdNPs/SiO2/Si structure at room temperature. Results Phys 2017; 7: 1993-9.
[http://dx.doi.org/10.1016/j.rinp.2017.06.026]
[8]
Pour GB, Aval LF. Comparison of fast response and recovery Pd nanoparticles and Ni thin film hydrogen gas sensors based on metal-oxide-semiconductor structure. NANO: Brief Reports and Reviews 2017; 12(1750096): 1-8.
[9]
Pour GB, Aval LF. Monitoring of hydrogen concentration using capacitive nanosensor in a 1% H2–N2 mixture. Micro & Nano Lett 2018; 13(2): 149-53.
[http://dx.doi.org/10.1049/mnl.2017.0586]
[10]
Pour GB. Electrical properties of the MOS capacitor hydrogen sensor based on the Ni/SiO2/Si structure. J Nanoelectron Optoe 2017; 12(2): 130-5.
[http://dx.doi.org/10.1166/jno.2017.1975]
[11]
Pour GB, Aval LF, Eslami S. Sensitive capacitive-type hydrogen sensor based on Ni thin film in different hydrogen concentrations. Curr Nanosci 2018; 14(2): 136-42.
[http://dx.doi.org/10.2174/1573413713666171002124909] [PMID: 29755306]
[12]
Pour GB, Aval LF, Sarvi MN, Aval SF, Fard HN. Hydrogen sensors: Palladium-based electrode. J Mater Sci Mater Electron In press
[13]
Aval LF, Ghoranneviss M, Pour GB. High-performance supercapacitors based on the carbon nanotubes, graphene and graphite nanoparticles electrodes. Heliyon 2018; 4(11): e00862.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00862] [PMID: 30761358]
[14]
Chen T, Dai L. Carbon nanomaterials for high performance supercapacitors. Mater Today 2013; 16(7-8): 272-80.
[http://dx.doi.org/10.1016/j.mattod.2013.07.002]
[15]
Peng C, Zhang S, Jewell D, Chen GZ. Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 2008; 18(7): 777-88.
[http://dx.doi.org/10.1016/j.pnsc.2008.03.002]
[16]
Kalam AA, Bae J. Low-Cost, High-efficiency conductive papers fabricated using multi-walled carbon nanotubes, carbon blacks and polyvinyl alcohol as conducting agents. ECS J Solid State Sci Technol 2015; 4(7): M41-5.
[http://dx.doi.org/10.1149/2.0261507jss]
[17]
Pan H, Li J, Feng Y. Carbon nanotubes for supercapacitor. Nanoscale Res Lett 2010; 5(3): 654-68.
[http://dx.doi.org/10.1007/s11671-009-9508-2] [PMID: 20672061]
[18]
Becker HE. low voltage electrolytic capacitor us patent 2800616a 1957.
[19]
Kotz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochim Acta 2000; 45(15-16): 2483-98.
[http://dx.doi.org/10.1016/S0013-4686(00)00354-6]
[20]
Niu C, Sichel EK, Hoch R, Moy D, Tennent H. High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 1997; 70(11): 1480-2.
[http://dx.doi.org/10.1063/1.118568]
[21]
Obreja VVN. On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material-A review. Physica E 2008; 40(7): 2596-605.
[http://dx.doi.org/10.1016/j.physe.2007.09.044]
[22]
Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 2009; 38(9): 2520-31.
[http://dx.doi.org/10.1039/b813846j] [PMID: 19690733]
[23]
Pan N, Du C. high power density supercapacitors with carbon nanotube electrodes us patent 7553341b2 2009.
[24]
Wei B, Masarapu C. single-wall carbon nanotube supercapacitor us patent 8213157b2 2012.
[25]
Karthika P, Rajalakshmi N, Dhathathreyan KS. Flexible polyester cellulose paper supercapacitor with a gel electrolyte. ChemPhysChem 2013; 14(16): 3822-6.
[http://dx.doi.org/10.1002/cphc.201300622] [PMID: 24155269]
[26]
Li J, et al. Paper-based ultracapacitors with carbon nanotubes-graphene composites. J Appl Phys 2014; 115(16): 164301-5.
[http://dx.doi.org/10.1063/1.4871290]
[27]
Ikawa M, Matsui H, Minemawari H, et al. Simple push-coating for high-performance polymer thin-film transistors. extended abstracts of the 2012 International Conference on Solid State Devices and Materials international conference on solid state devices and materials.
[http://dx.doi.org/10.7567/ssdm.2012.m-1-2]
[28]
Pour GB, Aval LF, Mirzaee M. Flexible graphene supercapacitor based on the PVA electrolyte and BaTiO3/PEDOT: PSS composite separator. J Mater Sci Mater Electron 2018; 29(20): 17432-7.
[http://dx.doi.org/10.1007/s10854-018-9842-1]
[29]
Mirzaee M, Pour GB. Design and fabrication of ultracapacitor based on paper substrate and BaTiO3/PEDOT: PSS separator film. Recent Pat Nanotechnol 2018; 12(3): 192-9.
[http://dx.doi.org/10.2174/1872210512666180925103431] [PMID: 30251613]
[30]
Hu S, Rajamani R, Yu X. Flexible solid-state paper based carbon nanotube supercapacitor. Appl Phys Lett 2012; 100(10): 104103-4.
[http://dx.doi.org/10.1063/1.3691948]
[31]
Taberna PL, Simon P, Fauvarque JF. electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 2003; 150(3): A292-300.
[http://dx.doi.org/10.1149/1.1543948]
[32]
He X, et al. all solid state symmetric supercapacitors based on compress-ible and flexible free standing 3d carbon nanotubes (cnts)/poly(3,4-ethylenedioxythiophene) (pedot) spong electrods. j power source 2018; 376: 138-46.
[33]
Li X, et al. Self-supporting activated carbon/carbon nanotubes/reduced graphene oxide flexible electrode for high performance supercapacitor. Carbon 2018; 129: 236-44.
[http://dx.doi.org/10.1016/j.carbon.2017.11.099]
[34]
Meng CZ, Liu CH, Fan SS. carbon nanotube based supercapacitor us patent 8488300b2, 2013.
[35]
Lee KS, Shin MJ, Park CW, Kim JD. Simple and direct synthesis of ZnO decorated multi-walled carbon nanotube for supercapacitor electrodes. Colloids Surf A Physicochem Eng Asp 2018; 538: 23-7.
[http://dx.doi.org/10.1016/j.colsurfa.2017.10.075]
[36]
Kang YJ, Chung H, Kim W. 1.8-V flexible supercapacitors with asymmetric configuration based on manganese oxide, carbon nanotubes and a gel electrolyte. Synth Met 2018; 166: 40-4.
[http://dx.doi.org/10.1016/j.synthmet.2013.01.013]
[37]
Frueh J, Nakashima N, He Q, Möhwald H. Effect of linear elongation on carbon nanotube and polyelectrolyte structures in PDMS-supported nanocomposite LbL films. J Phys Chem B 2012; 116(40): 12257-62.
[http://dx.doi.org/10.1021/jp3071458] [PMID: 22978605]
[38]
Frueh J, Rühm A, He Q, Möhwald H, Krastev R, Köhler R. Elastic to plastic deformation in uniaxially stressed polylelectrolyte multilayer films. Langmuir 2018; 34(40): 11933-42.
[http://dx.doi.org/10.1021/acs.langmuir.8b01296] [PMID: 30125507]
[39]
Frueh J, Reiter G, Möhwald H, He Q, Krastev R. Novel controllable auxetic effect of linearly elongated supported polyelectrolyte multilayers with amorphous structure. Phys Chem Chem Phys 2013; 15(2): 483-8.
[http://dx.doi.org/10.1039/C2CP43302H] [PMID: 23172557]
[40]
Ermakov A, Lim SH, Gorelik S, et al. Polyelectrolyte- graphene oxide multilayer composites for array of microchambers which are mechanically robust and responsive to NIR light. Macromol Rapid Commun 2019; 40(5): e1700868.
[http://dx.doi.org/10.1002/marc.201700868] [PMID: 29575380]
[41]
Gai M, Frueh J, Tao T, et al. Polylactic acid nano- and microchamber arrays for encapsulation of small hydrophilic molecules featuring drug release via high intensity focused ultrasound. Nanoscale 2017; 9(21): 7063-70.
[http://dx.doi.org/10.1039/C7NR01841J] [PMID: 28513733]
[42]
Chen P, Chen H, Qiu J, Zhou C. Inkjet printing of single-walled carbon nanotube/RuO 2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res 2010; 3(8): 594-603.
[http://dx.doi.org/10.1007/s12274-010-0020-x]
[43]
Liu Q, Nayfeh O, Nayfeh MH, Yau ST. Flexible supercapacitor sheets based on hybrid nanocomposite materials. Nano Energy 2013; 2(1): 133-7.
[http://dx.doi.org/10.1016/j.nanoen.2012.08.007]
[44]
Sun J, et al. High-performance stretchable yarn supercapacitor based on PPy@ CNTs@ urethane elastic fiber core spun yarn. Nano Energy 2016; 27: 230-7.
[http://dx.doi.org/10.1016/j.nanoen.2016.07.008]
[45]
Choi C, Lee JA, Choi AY, et al. Flexible supercapacitor made of carbon nanotube yarn with internal pores. Adv Mater 2014; 26(13): 2059-65.
[http://dx.doi.org/10.1002/adma.201304736] [PMID: 24353070]
[46]
Yilmaz G, Guo CX, Lu X. High‐performance solid‐state supercapacitors based on V2O5/carbon nanotube composites. ChemElectroChem 2016; 3(1): 158-64.
[http://dx.doi.org/10.1002/celc.201500334]
[47]
Kang YJ, Chung H, Han CH, Kim W. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes. Nanotechnology 2012; 23(6): 065401.
[http://dx.doi.org/10.1088/0957-4484/23/6/065401] [PMID: 22248712]
[48]
Niu Z, Dong H, Zhu B, et al. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv Mater 2013; 25(7): 1058-64.
[http://dx.doi.org/10.1002/adma.201204003] [PMID: 23255187]