Geminiviruses: Taxonomic Structure and Diversity in Genomic Organization

Page: [86 - 98] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Geminiviridae is one of the best-characterized and hence, one of the largest plant-virus families with the highest economic importance. Its members characteristically have a circular ssDNA genome within the encapsidation of twinned quasi-icosaheadral virions (18-38 nm size-range).

Objective: Construction of a narrative review on geminiviruses, to have a clearer picture of their genomic structure and taxonomic status.

Methods: A thorough search was conducted for papers and patents regarding geminiviruses, where relevant information was used to study their genomic organization, diversity and taxonomic structure.

Results: Geminiviruses have been classified into nine genera (viz., genus Begomovirus, Mastrevirus, Curtovirus, Topocuvirus, Becurtovirus, Turncurtovirus, Capulavirus, Eragrovirus and Grablovirus) having distinct genomic organizations, host ranges and insect vectors. Genomic organization of all genera generally shows the presence of 4-6 ORFs encoding for various proteins. For now, Citrus chlorotic dwarf-associated virus (CCDaV), Camellia chlorotic dwarf-associated virus (CaCDaV) and few other geminiviruses are still unassigned to any genera. The monopartite begomoviruses (and few mastreviruses) have been found associated with aplhasatellites and betasatellites (viz., ~1.3 kb circular ssDNA satellites). Recent reports suggest that deltasatellites potentially reduce the accumulation of helper-Begomovirus species in host plants. Some patents have revealed the methods to generate transgenic plants resistant to geminiviruses.

Conclusion: Geminiviruses rapidly evolve and are a highly diverse group of plant-viruses. However, research has shown new horizons in tackling the acute begomoviral diseases in plants by generating a novel bio-control methodology in which deltasatellites can be used as bio-control agents and generate transgenic plants resistant to geminiviruses.

Keywords: Geminiviridae, begomoviruses, aplhasatellites, betasatellites, deltasatellites, ssDNA.

Graphical Abstract

[1]
Goodman RM. Single-stranded DNA genome in a whitefly-transmitted plant virus. Virology 1977; 83(1): 171-9.
[http://dx.doi.org/10.1016/0042-6822(77)90220-3] [PMID: 18625485]
[2]
García-Arenal F, Zerbini FM. Life on the edge: geminiviruses at the interface between crops and wild plant hosts. Annu Rev Virol 2019; 6(1): 411-33.
[http://dx.doi.org/10.1146/annurev-virology-092818-015536] [PMID: 31180812]
[3]
Fauquet CM, Stanley J. Geminivirus classification and nomenclature: progress and problems. Ann Appl Biol 2003; 142: 165-89.
[http://dx.doi.org/10.1111/j.1744-7348.2003.tb00241.x]
[4]
Stanley J, Bisaro DM, Briddon RW, Brown T, Fauquet C, Harrison B, et al. Family geminiviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA, Eds. Virus taxonomy, eighth report of the international committee on taxonomy of viruses. London: Elsevier/Academic Press 2005.
[5]
Abouzid AM, Frischmuth T, Jeske H. A putative replicative form of the Abutilon mosaic virus (Gemini group) in a chromatin-like structure. Mol Gen Genet 1988; 212: 252-8.
[http://dx.doi.org/10.1007/BF00334693]
[6]
Pilartz M, Jeske H. Abutilon mosaic geminivirus double-stranded DNA is packed into minichromosomes. Virology 1992; 189(2): 800-2.
[http://dx.doi.org/10.1016/0042-6822(92)90610-2] [PMID: 1641992]
[7]
Saunders DA, Hobbs RJ, Margules CR. Biological consequences of ecosystem fragmentation - a review. Conserv Biol 1991; 5(1): 18-32.
[http://dx.doi.org/10.1111/j.1523-1739.1991.tb00384.x]
[8]
Stenger DC, Revington GN, Stevenson MC, Bisaro DM. Replicational release of geminivirus genomes from tandemly repeated copies: evidence for rolling-circle replication of a plant viral DNA. Proc Natl Acad Sci USA 1991; 88(18): 8029-33.
[http://dx.doi.org/10.1073/pnas.88.18.8029] [PMID: 1896448]
[9]
Seal SE, Vanden-Bosch F, Jeger MJ. Factors influencing begomovirus evolution and their increasing global significance: implications for sustainable control. Crit Rev Plant Sci 2006; 25: 23-46.
[http://dx.doi.org/10.1080/07352680500365257]
[10]
Kridl JC, Bruening G, Knauf VC. Geminivirus-based gene expression system. US005589379A 1996.
[11]
Tennant P, Gubba A, Roye M. Visuses as pathogens: plant viruses Viruses: molecular biology, host interactions and applications to biotechnology. The Netherlands: Elsevier 2018; pp. 135-56.
[http://dx.doi.org/10.1016/B978-0-12-811257-1.00006-1]
[12]
Varsani A, Roumagnac P, Fuchs M, et al. Capulavirus and Grablovirus: two new genera in the family Geminiviridae. Arch Virol 2017; 162(6): 1819-31.
[http://dx.doi.org/10.1007/s00705-017-3268-6] [PMID: 28213872]
[13]
Zerbini FM, Briddon RW, Idris A, et al. ICTV virus taxonomy profile: geminiviridae. J Gen Virol 2017; 98(2): 131-3.
[http://dx.doi.org/10.1099/jgv.0.000738] [PMID: 28284245]
[14]
Varsani A, Navas-Castillo J, Moriones E, et al. Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Arch Virol 2014; 159(8): 2193-203.
[http://dx.doi.org/10.1007/s00705-014-2050-2] [PMID: 24658781]
[15]
Rojas MR, Hagen C, Lucas WJ, Gilbertson RL. Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol 2005; 43: 361-94.
[http://dx.doi.org/10.1146/annurev.phyto.43.040204.135939] [PMID: 16078889]
[16]
Zhou X. Advances in understanding begomovirus satellites. Annu Rev Phytopathol 2013; 51: 357-81.
[http://dx.doi.org/10.1146/annurev-phyto-082712-102234] [PMID: 23915133]
[17]
Fiallo-Olivé E, Pan LL, Liu SS, Navas-Castillo J. Transmission of begomoviruses and other whitefly-borne viruses: dependence on the vector species. Phytopathology 2019; 110(1): 10-7.
[http://dx.doi.org/10.1094/PHYTO-07-19-0273-FI] [PMID: 31544592]
[18]
Nawaz-ul-Rehman MS, Mansoor S, Briddon RW, Fauquet CM. Maintenance of an old world betasatellite by a new world helper begomovirus and possible rapid adaptation of the betasatellite. J Virol 2009; 83(18): 9347-55.
[http://dx.doi.org/10.1128/JVI.00795-09] [PMID: 19570867]
[19]
Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D. Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol Biol 2000; 35(2): 105-40.
[PMID: 10821479]
[20]
Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 2013; 11(11): 777-88.
[http://dx.doi.org/10.1038/nrmicro3117] [PMID: 24100361]
[21]
Sanderfoot AA, Lazarowitz SG. Getting it together in plant virus movement: cooperative interactions between bipartite geminivirus movement proteins. Trends Cell Biol 1996; 6(9): 353-8.
[http://dx.doi.org/10.1016/0962-8924(96)10031-3] [PMID: 15157433]
[22]
Babu KSD, Manoharan P, Pandi G. Computational studies on Begomoviral AC2/C2 proteins. Bioinformation 2018; 14(6): 294-303.
[http://dx.doi.org/10.6026/97320630014294] [PMID: 30237675]
[23]
Mubin M, Briddon RW, Mansoor S. The V2 protein encoded by a monopartite begomovirus is a suppressor of both post-transcriptional and transcriptional gene silencing activity. Gene 2019; 686: 43-8.
[http://dx.doi.org/10.1016/j.gene.2018.11.002] [PMID: 30399424]
[24]
Brown JK, Zerbini FM, Navas-Castillo J, et al. Revision of Begomovirus taxonomy based on pairwise sequence alignment. Arch Virol 2015; 160(6): 1593-619.
[http://dx.doi.org/10.1007/s00705-015-2398-y] [PMID: 25894478]
[25]
Rybicki EP. A phylogenetic and evolutionary justification for three genera of Geminiviridae. Arch Virol 1994; 139(1-2): 49-77.
[http://dx.doi.org/10.1007/BF01309454] [PMID: 7826215]
[26]
Scussel S, Claverie S, Hoareau M, et al. Tomato leaf curl Mahé virus: a novel tomato-infecting monopartite begomovirus from the Seychelles. Arch Virol 2018; 163(12): 3451-3.
[http://dx.doi.org/10.1007/s00705-018-4007-3] [PMID: 30178119]
[27]
Mahmoud M, Zahir A. Method of inhibiting plant virus pathogen infections by CRISPR/Cas9 mediated interference. WO2016185411A1 2016.
[28]
Superak T, Fauve J, Lionneton E. Squash leaf curl virus (SLCV) resistance in cucurbits. US20120017 291A1 2012.
[29]
Assouline Y, Yossov E, Shoval S. Resistance to geminiviruses in watermelons. EP2910114A1, 2015.
[30]
Shepherd DN, Martin DP, Van Der Walt E, Dent K, Varsani A, Rybicki EP. Maize streak virus: an old and complex ‘emerging’ pathogen. Mol Plant Pathol 2010; 11(1): 1-12.
[http://dx.doi.org/10.1111/j.1364-3703.2009.00568.x] [PMID: 20078771]
[31]
Kvarnheden A, Lindblad M, Lindsten K, Valkonen JP. Genetic diversity of Wheat dwarf virus. Arch Virol 2002; 147(1): 205-16.
[http://dx.doi.org/10.1007/s705-002-8313-x] [PMID: 11858231]
[32]
Kumar J, Kumar J, Singh SP, Tuli R. Association of satellites with a mastrevirus in natural infection: complexity of Wheat dwarf India virus disease. J Virol 2014; 88(12): 7093-104.
[http://dx.doi.org/10.1128/JVI.02911-13] [PMID: 24719407]
[33]
Bennett A, Rodriguez D, Lister S, Boulton M, McKenna R, Agbandje-McKenna M. Assembly and disassembly intermediates of maize streak geminivirus. Virology 2018; 525: 224-36.
[http://dx.doi.org/10.1016/j.virol.2018.09.011] [PMID: 30300759]
[34]
Kanakala S, Kuria P. Chickpea chlorotic dwarf virus: an emerging monopartite dicot infecting Mastrevirus. Viruses 2018; 11(1): e5
[http://dx.doi.org/10.3390/v11010005] [PMID: 30577666]
[35]
Chen LF, Gilbertson RL. Curtovirus-cucurbit interaction: acquisition host plays a role in leafhopper transmission in a host-dependent manner. Phytopathology 2009; 99(1): 101-8.
[http://dx.doi.org/10.1094/PHYTO-99-1-0101] [PMID: 19055441]
[36]
Varsani A, Martin DP, Navas-Castillo J, et al. Revisiting the classification of curtoviruses based on genome-wide pairwise identity. Arch Virol 2014; 159(7): 1873-82.
[http://dx.doi.org/10.1007/s00705-014-1982-x] [PMID: 24463952]
[37]
Briddon RW, Bedford ID, Tsai JH, Markham PG. Analysis of the nucleotide sequence of the treehopper-transmitted geminivirus, tomato pseudo-curly top virus, suggests a recombinant origin. Virology 1996; 219(2): 387-94.
[http://dx.doi.org/10.1006/viro.1996.0264] [PMID: 8638404]
[38]
Yazdi HR, Heydarnejad J, Massumi H. Genome characterization and genetic diversity of beet curly top Iran virus: a geminivirus with a novel nonanucleotide. Virus Genes 2008; 36(3): 539-45.
[http://dx.doi.org/10.1007/s11262-008-0224-2] [PMID: 18401697]
[39]
Kamali M, Heydarnejad J, Massumi H, Kvarnheden A, Kraberger S, Varsani A. Molecular diversity of turncurtoviruses in Iran. Arch Virol 2016; 161(3): 551-61.
[http://dx.doi.org/10.1007/s00705-015-2686-6] [PMID: 26611911]
[40]
Razavinejad S, Heydarnejad J, Kamali M, Massumi H, Kraberger S, Varsani A. Genetic diversity and host range studies of turnip curly top virus. Virus Genes 2013; 46(2): 345-53.
[http://dx.doi.org/10.1007/s11262-012-0858-y] [PMID: 23225113]
[41]
Briddon RW, Heydarnejad J, Khosrowfar F, Massumi H, Martin DP, Varsani A. Turnip curly top virus, a highly divergent geminivirus infecting turnip in Iran. Virus Res 2010; 152(1-2): 169-75.
[http://dx.doi.org/10.1016/j.virusres.2010.05.016] [PMID: 20566344]
[42]
Roumagnac P, Granier M, Bernardo P, et al. Alfalfa leaf curl virus - an aphid-transmitted geminivirus. J Virol 2015; 89(18): 9683-8.
[http://dx.doi.org/10.1128/JVI.00453-15] [PMID: 26109720]
[43]
Bernardo P, Muhire B, François S, et al. Molecular characterization and prevalence of two capulaviruses: Alfalfa leaf curl virus from France and Euphorbia caput-medusae latent virus from South Africa. Virology 2016; 493: 142-53.
[http://dx.doi.org/10.1016/j.virol.2016.03.016] [PMID: 27038709]
[44]
Bernardo P, Golden M, Naimuddin AM, et al. Identification and characterisation of a highly divergent geminivirus: evolutionary and taxonomic implications. Virus Res 2013; 177(1): 35-45.
[http://dx.doi.org/10.1016/j.virusres.2013.07.006] [PMID: 23886668]
[45]
Varsani A, Shepherd DN, Dent K, Monjane AL, Rybicki EP, Martin DP. A highly divergent South African geminivirus species illuminates the ancient evolutionary history of this family. Virol J 2009; 6: 36.
[http://dx.doi.org/10.1186/1743-422X-6-36]
[46]
Bahder BW, Zalom FG, Jayanth M, Sudarshana MR. Phylogeny of geminivirus coat protein sequences and digital PCR aid in identifying Spissistilus festinus as a vector of Grapevine red blotch-associated virus. Phytopathology 2016; 106(10): 1223-30.
[http://dx.doi.org/10.1094/PHYTO-03-16-0125-FI] [PMID: 27111804]
[47]
Dry IB, Krake LR, Rigden JE, Rezaian MA. A novel subviral agent associated with a geminivirus: the first report of a DNA satellite. Proc Natl Acad Sci USA 1997; 94(13): 7088-93.
[http://dx.doi.org/10.1073/pnas.94.13.7088] [PMID: 9192696]
[48]
Krenz B, Thompson JR, McLane HL, Fuchs M, Perry KL. Grapevine red blotch-associated virus Is Widespread in the United States. Phytopathology 2014; 104(11): 1232-40.
[http://dx.doi.org/10.1094/PHYTO-02-14-0053-R] [PMID: 24805072]
[49]
Sudarshana MR, Perry KL, Fuchs MF. Grapevine red blotch-associated virus, an emerging threat to the grapevine industry. Phytopathology 2015; 105(7): 1026-32.
[http://dx.doi.org/10.1094/PHYTO-12-14-0369-FI] [PMID: 25738551]
[50]
Ma Y, Navarro B, Zhang Z, et al. Identification and molecular characterization of a novel monopartite geminivirus associated with mulberry mosaic dwarf disease. J Gen Virol 2015; 96(8): 2421-34.
[http://dx.doi.org/10.1099/vir.0.000175] [PMID: 25953916]
[51]
Loconsole G, Saldarelli P, Doddapaneni H, Savino V, Martelli GP, Saponari M. Identification of a single-stranded DNA virus associated with citrus chlorotic dwarf disease, a new member in the family Geminiviridae. Virology 2012; 432(1): 162-72.
[http://dx.doi.org/10.1016/j.virol.2012.06.005] [PMID: 22749878]
[52]
Guo J, Lai XP, Li JX, Yue JQ, Zhang SY, Li YY, et al. First report on citrus chlorotic dwarf associated virus on lemon in Dehong prefecture, Yunnan, China. Plant Dis 2015; 99: 1287.
[http://dx.doi.org/10.1094/PDIS-01-15-0011-PDN]
[53]
Liang P, Navarro B, Zhang Z, et al. Identification and characterization of a novel geminivirus with a monopartite genome infecting apple trees. J Gen Virol 2015; 96(8): 2411-20.
[http://dx.doi.org/10.1099/vir.0.000173] [PMID: 25934791]
[54]
Zhang S, Shen P, Li M, Tian X, Zhou C, Cao M. Discovery of a novel geminivirus associated with camellia chlorotic dwarf disease. Arch Virol 2018; 163(6): 1709-12.
[http://dx.doi.org/10.1007/s00705-018-3780-3] [PMID: 29500570]
[55]
Saunders K, Bedford ID, Yahara T, Stanley J. Aetiology: The earliest recorded plant virus disease. Nature 2003; 422(6934): 831.
[http://dx.doi.org/10.1038/422831a] [PMID: 12712190]
[56]
Sahu PP, Sharma N, Puranik S, Muthamilarasan M, Prasad M. Involvement of host regulatory pathways during geminivirus infection: a novel platform for generating durable resistance. Funct Integr Genomics 2014; 14(1): 47-58.
[http://dx.doi.org/10.1007/s10142-013-0346-z] [PMID: 24233104]
[57]
Briddon RW, Brown JK, Moriones E, et al. Recommendations for the classification and nomenclature of the DNA-β satellites of begomoviruses. Arch Virol 2008; 153(4): 763-81.
[http://dx.doi.org/10.1007/s00705-007-0013-6] [PMID: 18247103]
[58]
Hamza M, Tahir MN, Mustafa R, et al. Identification of a dicot infecting mastrevirus along with alpha- and betasatellite associated with leaf curl disease of spinach (Spinacia oleracea) in Pakistan. Virus Res 2018; 256: 174-82.
[http://dx.doi.org/10.1016/j.virusres.2018.08.017] [PMID: 30149045]
[59]
Briddon RW, Markham PG. Cotton leaf curl virus disease. Virus Res 2000; 71(1-2): 151-9.
[http://dx.doi.org/10.1016/S0168-1702(00)00195-7] [PMID: 11137169]
[60]
Saunders K, Bedford ID, Briddon RW, Markham PG, Wong SM, Stanley J. A unique virus complex causes Ageratum yellow vein disease. Proc Natl Acad Sci USA 2000; 97(12): 6890-5.
[http://dx.doi.org/10.1073/pnas.97.12.6890] [PMID: 10841581]
[61]
Cui X, Li G, Wang D, Hu D, Zhou X. A Begomovirus DNAbeta-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J Virol 2005; 79(16): 10764-75.
[http://dx.doi.org/10.1128/JVI.79.16.10764-10775.2005] [PMID: 16051868]
[62]
Saeed M, Zafar Y, Randles JW, Rezaian MA. A monopartite begomovirus-associated DNA β satellite substitutes for the DNA B of a bipartite begomovirus to permit systemic infection. J Gen Virol 2007; 88(Pt 10): 2881-9.
[http://dx.doi.org/10.1099/vir.0.83049-0] [PMID: 17872543]
[63]
Singh AK, Chattopadhyay B, Chakraborty S. Biology and interactions of two distinct monopartite begomoviruses and betasatellites associated with radish leaf curl disease in India. Virol J 2012; 9: 43.
[http://dx.doi.org/10.1186/1743-422X-9-43] [PMID: 22339942]
[64]
Briddon RW, Bull SE, Amin I, et al. Diversity of DNA beta, a satellite molecule associated with some monopartite begomoviruses. Virology 2003; 312(1): 106-21.
[http://dx.doi.org/10.1016/S0042-6822(03)00200-9] [PMID: 12890625]
[65]
Bhattacharyya D, Gnanasekaran P, Kumar RK, et al. A geminivirus betasatellite damages the structural and functional integrity of chloroplasts leading to symptom formation and inhibition of photosynthesis. J Exp Bot 2015; 66(19): 5881-95.
[http://dx.doi.org/10.1093/jxb/erv299] [PMID: 26113193]
[66]
Briddon RW, Bull SE, Amin I, et al. Diversity of DNA 1: a satellite-like molecule associated with monopartite begomovirus-DNA beta complexes. Virology 2004; 324(2): 462-74.
[http://dx.doi.org/10.1016/j.virol.2004.03.041] [PMID: 15207631]
[67]
Paprotka T, Metzler V, Jeske H. The first DNA 1-like α satellites in association with New World begomoviruses in natural infections. Virology 2010; 404(2): 148-57.
[http://dx.doi.org/10.1016/j.virol.2010.05.003] [PMID: 20553707]
[68]
Xie Y, Wu P, Liu P, Gong H, Zhou X. Characterization of alphasatellites associated with monopartite begomovirus/betasatellite complexes in Yunnan, China. Virol J 2010; 7: 178.
[http://dx.doi.org/10.1186/1743-422X-7-178] [PMID: 20678232]
[69]
Fiallo-Olivé E, Martínez-Zubiaur Y, Moriones E, Navas-Castillo J. A novel class of DNA satellites associated with New World begomoviruses. Virology 2012; 426(1): 1-6.
[http://dx.doi.org/10.1016/j.virol.2012.01.024] [PMID: 22330203]
[70]
Lozano G, Trenado HP, Fiallo-Olivé E, et al. Characterization of non-coding DNA satellites associated with sweepoviruses (genus Begomovirus, Geminiviridae)-Definition of a distinct class of Begomovirus-associated satellites. Front Microbiol 2016; 7: 162.
[http://dx.doi.org/10.3389/fmicb.2016.00162] [PMID: 26925037]
[71]
Fiallo-Olivé E, Tovar R, Navas-Castillo J. Deciphering the biology of deltasatellites from the New World: maintenance by New World begomoviruses and whitefly transmission. New Phytol 2016; 212(3): 680-92.
[http://dx.doi.org/10.1111/nph.14071] [PMID: 27400152]