Smartphone Digital Image Using for Determination of DCH by a Diazotization Reaction

Page: [988 - 995] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Simple, sensitive, and economic colorimetric device based on a smartphone digital image coupled with Color Grab™ application was developed for DCH drug determination. The method is based on the diazotization reaction of benzocaine with DCH drug to get an orange azo dye.

Methods: Variable parameters such as volumes of reagents, the internal walls and ambient light have been analyzed and optimized. From the optimized conditions, a calibration curve was created by the effective intensity (IG) of an orange azo dye, a correlation of determination is 0.999 and limit of detection 0.808 mg/L.

Results: The results of the Smartphone method were statistically compared with the reference method using a t-test and found to be a good agreement.

Conclusion: This method requires neither solvent extraction and temperature control, also it has achieved an extensive linear range and low limit of detection compared with different methods reported in the literature.

Keywords: Color grab, colorimetric analysis, DCH, digital image, RGB, smartphone.

Graphical Abstract

[1]
Priye, A.; Ball, C.S.; Meagher, R.J. Colorimetric-luminance readout for quantitative analysis of fluorescence signals with a smartphone CMOS sensor. Anal. Chem., 2018, 90(21), 12385-12389.
[http://dx.doi.org/10.1021/acs.analchem.8b03521] [PMID: 30272954]
[2]
Wongthanyakram, J.; Masawat, P. Rapid low-cost determination of Lead (II) in cassava by an ipod-based digital imaging colorimeter. Anal. Lett., 2019, 52(3), 550-561.
[http://dx.doi.org/10.1080/00032719.2018.1476526]
[3]
Acevedo, M.S.; Lima, M.J.; Nascimento, C.F.; Rocha, F.R. A green and cost-effective procedure for determination of anionic surfactants in milk with liquid-liquid microextraction and smartphone-based photometric detection. Microchem. J., 2018, 143, 259-263.
[http://dx.doi.org/10.1016/j.microc.2018.08.002]
[4]
Masawat, P.; Harfield, A.; Namwong, A. An iPhone-based digital image colorimeter for detecting tetracycline in milk. Food Chem., 2015, 184, 23-29.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.089] [PMID: 25872422]
[5]
Firdaus, M.L.; Aprian, A.; Meileza, N.; Hitsmi, M.; Elvia, R.; Rahmidar, L.; Khaydarov, R. Smartphone Coupled with a paper-based colorimetric device for sensitive and portable mercury ion sensing. Chemosensors (Basel), 2019, 7(2), 25.
[http://dx.doi.org/10.3390/chemosensors7020025]
[6]
Wongniramaikul, W.; Limsakul, W.; Choodum, A. A biodegradable colorimetric film for rapid low-cost field determination of formaldehyde contamination by digital image colorimetry. Food Chem., 2018, 249, 154-161.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.021] [PMID: 29407918]
[7]
Aziz, A.T.; Sultan, S. H. Spectrophotometric determination of mesalazine in pharmaceutical preparations by diazotization and coupling with 2, 6-Dihydroxytoluene as a new coupling agent. Raf. J. Sci., 2019, 47-55.
[8]
Abbas, R.F.; Hami, H.K.; Mahdi, N.I. Removal of doxycycline hyclate by adsorption onto cobalt oxide at three different temperatures: isotherm, thermodynamic and error analysis. Int. J. Environ. Sci. Technol., 2019, 16(10), 5439-5446.
[http://dx.doi.org/10.1007/s13762-018-2079-y]
[9]
Jantratid, E.; Strauch, S.; Becker, C.; Dressman, J.B.; Amidon, G.L.; Junginger, H.E.; Kopp, S.; Midha, K.K.; Shah, V.P.; Stavchansky, S.; Barends, D.M. Biowaiver monographs for immediate release solid oral dosage forms: Doxycycline hyclate. J. Pharm. Sci., 2010, 99(4), 1639-1653.
[http://dx.doi.org/10.1002/jps.21954] [PMID: 19798752]
[10]
Gajda, A.; Posyniak, A.; Pietruszka, K. Analytical procedure for the determination of doxycycline residues in animal tissues by liquid chromatography. Bull. Vet. Inst. Pulawy, 2008, 52, 417-420.
[11]
Eticha, T.; Kahsay, G.; Asefa, F.; Hailu, T.; Gebretsadik, H.; Gebretsadikan, T.; Thangabalan, B. Chemometric-Assisted spectrophotometric method for the simultaneous determination of ciprofloxacin and doxycycline hyclate in pharmaceutical formulations. J. Anal. Methods Chem., 2018, 20189538435
[http://dx.doi.org/10.1155/2018/9538435] [PMID: 30662790]
[12]
Ali, T.A.; Mohamed, G.G.; El-Sonbati, A.Z.; Diab, M.A.; Elkfass, A.M. A Potentiometric sensor for determination of doxycycline hydrochloride in pharmaceutical preparation and biological fluids. Russ. J. Electrochem., 2018, 54(12), 1081-1095.
[http://dx.doi.org/10.1134/S1023193518120029]
[13]
Gürler, B.; Özkorucuklu, S.P.; Kır, E. Voltammetric behavior and determination of doxycycline in pharmaceuticals at molecularly imprinted and non-imprinted overoxidized polypyrrole electrodes. J. Pharm. Biomed. Anal., 2013, 84, 263-268.
[http://dx.doi.org/10.1016/j.jpba.2013.06.009] [PMID: 23856456]
[14]
Kogawa, A.C.; de Mello, N.; Salgado, H.R. Quantification of doxycycline in raw material by an eco-friendly method of infrared spectroscopy. Pharm. Anal. Acta, 2016, 7(2), 463-466.
[15]
Omar, M.A.; Badr El-Din, K.M.; Salem, H.; Abdelmageed, O.H. Spectrophotometric and spectrofluorimetric methods for determination of certain biologically active phenolic drugs in their bulk powders and different pharmaceutical formulations. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 192, 108-116.
[http://dx.doi.org/10.1016/j.saa.2017.10.065] [PMID: 29127827]
[16]
Mohammad, A.; Yen, C.H.; Schneider, M.; Lowry, B.; Yerlikaya, F.; Whitesell, G.; Leisssa, B.; Faustino, P.J.; Khan, S.R. Development and validation of a stability-indicating ultra-performance liquid chromatography (UPLC) method for doxycycline hyclate: An optimization of the analytical methodology for a medical countermeasure (MCM) drug. Anal. Methods, 2018, 10(16), 1842-1851.
[http://dx.doi.org/10.1039/C8AY00078F]
[17]
Hasan, K.M.; Haque, M.A.; Kobir, S.A.; Hossain, M. Quantification of doxycycline hyclate in different pharmaceutical samples by UV assay. Eur. J. Biol. Res., 2016, 6(4), 275-286.
[http://dx.doi.org/10.25258/ijddt.v6i4.8899]
[18]
Apichai, S.; Thajee, K.; Wongwilai, W.; Wangkarn, S.; Paengnakorn, P.; Saenjum, C.; Grudpan, K. A simple platform with moving drops for downscaling chemical analysis incorporating smartphone detection. Talanta, 2019, 201, 226-229.
[http://dx.doi.org/10.1016/j.talanta.2019.04.014] [PMID: 31122415]
[19]
Abbas, R.F.; Wheeb, A.A.; Jasim, A.A. Spectrophotometric determination of doxycycline hyclate in pure and capsule using diazotization reaction. Al-Mustansiriyah J. Sci., 2017, 27(5), 50-54.
[http://dx.doi.org/10.23851/mjs.v27i5.167]
[20]
Al-Abachi, M.Q.; Al-Nedawi, Z.A. Batch and flow injection spectrophotometric determination of doxycycline hyclate in pharmaceutical preparations. Al-Nahrain J. Sci., 2015, 18(3), 24-32.
[21]
Ravazzi, C.G.; Krambeck Franco, M.O.; Vieira, M.C.R.; Suarez, W.T. Smartphone application for captopril determination in dosage forms and synthetic urine employing digital imaging. Talanta, 2018, 189, 339-344.
[http://dx.doi.org/10.1016/j.talanta.2018.07.015] [PMID: 30086928]
[22]
Kogawa, A.C.; Salgado, H.R. Quantification of doxycycline hyclate in tablets by HPLC-UV method. J. Chromatogr. Sci., 2013, 51(10), 919-925.
[http://dx.doi.org/10.1093/chromsci/bms190] [PMID: 23192739]
[23]
Dhal, C.; Ahmad, F.J.; Chauhan, A.; Jyothi, M.; Singh, R.M.; Saini, P.K.; Mathur, S.C.; Singh, G.N. Quality by design approach for simultaneous estimation of doxycycline hyclate and curcumin by RP-HPLC method. Indian J. Pharm. Sci., 2015, 77(6), 723-728.
[http://dx.doi.org/10.4103/0250-474X.174992] [PMID: 26997700]
[24]
Palamy, S.; Ruengsitagoon, W. A novel flow injection spectrophotometric method using plant extracts as green reagent for the determination of doxycycline. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 171, 200-206.
[http://dx.doi.org/10.1016/j.saa.2016.08.011] [PMID: 27529768]
[25]
Ramesh, P.J.; Basavaiah, K.; Tharpa, K.; Vinay, K.B.; Revanasiddappa, H.D. Development and validation of RP-HPLC method for the determination of doxycycline hyclate in spiked human urine and pharmaceuticals. J. Pre-Clin. Clin. Res., 2010, 4(2), 101-107.