Photocatalytic Partial Oxidation of 5-hydroxymethyl-2-furfural Under UV and Natural Solar Irradiation in Aqueous Suspension of K Containing C3N4

Page: [16 - 29] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: The influence of the potassium metal cation on the graphitic carbon nitride (g-C3N4) photocatalyst has been studied in the partial oxidation of 5-hydroxymethyl-2-furfural (HMF) to 2,5-furandicarboxaldehyde (FDC).

Objective: The aim of this study was to understand if the presence of K in C3N4 could increase the oxidative conversion of HMF to high added value species.

Methods: Two sets of photocatalysts were prepared by following two different methodologies. In both series of the materials, the precursor of C3N4 was melamine with different types of the K containing species including KCl and KOH in one case and KNO3 alone in the other case. However, for both series of photocatalysts, materials were prepared with different amounts of potassium.

Results: The results obtained by using materials prepared by the two different methodologies indicate that in both cases the presence of K was almost irrelevant at least for the lower amounts of potassium content. On the contrary, its presence was beneficial for the activity versus the photocatalytic partial oxidation reaction of the alcohol for the highest K content.

Conclusion: Some of the prepared K containing g-C3N4 materials showed increased photocatalytic activity for the partial oxidation reaction of HMF in water, particularly by using natural solar light as the irradiation source.

Keywords: Photocatalysis, carbon nitride, partial photocatalytic oxidation, 5-hydroxymethyl-2-furfural, 2, 5-furandicarboxaldehyde (FDC), graphitic carbon.

Graphical Abstract

[1]
Parrino, F.; Bellardita, M.; García-López, E.I.; Marcì, G.; Loddo, V.; Palmisano, L. Heterogeneous Photocatalysis for selective formation of high-value-added molecules: Some chemical and engineering aspects. ACS Catal., 2018, 8, 11191-11225.
[http://dx.doi.org/10.1021/acscatal.8b03093]
[2]
Hao, H.; Zhang, L.; Wang, W.; Zeng, S. Modification of heterogeneous photocatalysts for selective organic synthesis. Catal. Sci. Technol., 2018, 8, 1229-1250.
[http://dx.doi.org/10.1039/C7CY01853C]
[3]
Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Metal-free catalysis of sustainable Friedel-Crafts reactions: direct activation of benzene by carbon nitrides to avoid the use of metal chlorides and halogenated compounds. Chem. Commun. (Camb.), 2006, (43), 4530-4532.
[http://dx.doi.org/10.1039/B608532F] [PMID: 17283808]
[4]
Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, K. Domen, M. Antonietti. Nat. Mater., 2009, 8, 76-80.
[http://dx.doi.org/10.1038/nmat2317] [PMID: 18997776]
[5]
Hollmann, D.; Karnahl, M.; Tschierlei, S.; Kailasam, K.; Schneider, M.; Radnik, J.; Grabow, K.; Bentrup, U.; Junge, H.; Beller, M.; Lochbrunner, S.; Thomas, A.; Brückner, A. Structure activity relationships in bulk polymeric and sol-gel derived carbon nitrides during photocatalytic hydrogen production. Chem. Mater., 2014, 26, 1727-1733.
[http://dx.doi.org/10.1021/cm500034p]
[6]
Wang, X.; Blechert, S.; Antonietti, M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal., 2012, 2, 1596-1606.
[http://dx.doi.org/10.1021/cs300240x]
[7]
Verma, S.; Baig, R.B.N.; Nadagouda, M.N.; Varma, R.S. Selective oxidation of alcohols using photoactive VO@g-C3N4. ACS Sustain. Chem.& Eng., 2016, 4, 1094-1098.
[http://dx.doi.org/10.1021/acssuschemeng.5b01163]
[8]
Su, F.; Mathew, S.C.; Lipner, G.; Fu, X.; Antonietti, M.; Blechert, S.; Wang, X. mgp-C3N4-Catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc., 2010, 132(46), 16299-16301.
[http://dx.doi.org/10.1021/ja102866p] [PMID: 21043489]
[9]
Jiang, L.; Yuan, Y.; Pan, Y.; Liang, J.; Zeng, G.; Wu, Z.; Wang, H. Doping of graphitic carbon nitride for photocatalysis: A review. Appl. Catal. B, 2018, 217, 388-406.
[http://dx.doi.org/10.1016/j.apcatb.2017.06.003]
[10]
Hu, S.; Li, F.; Fan, Z.; Wang, F.; Zhao, Y.; Lv, Z. Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability. Dalton Trans., 2015, 44(3), 1084-1092.
[http://dx.doi.org/10.1039/C4DT02658F] [PMID: 25409884]
[11]
Zhang, M.; Bai, X.; Liu, D.; Wang, J.; Zhu, Y. Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position. Appl. Catal. B, 2015, 164, 77-81.
[http://dx.doi.org/10.1016/j.apcatb.2014.09.020]
[12]
Xiong, T.; Cen, W.L.; Zhang, Y.X.; Dong, F. Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal., 2016, 6, 2462-2472.
[http://dx.doi.org/10.1021/acscatal.5b02922]
[13]
Wang, Y.; Zhao, S.; Zhang, Y.; Fang, J.; Zhou, Y.; Yuan, S.; Zhang, C.; Chen, W. One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation. Appl. Surf. Sci., 2018, 440, 258-265.
[http://dx.doi.org/10.1016/j.apsusc.2018.01.091]
[14]
Wang, W.; Xu, P.; Chen, M.; Zeng, G.; Zhang, C.; Zhou, C.; Yang, Y.; Huang, D.; Lai, C.; Cheng, M.; Hu, L.; Xiong, W.; Guo, H.; Zhou, M. Alkali metal-assisted synthesis of graphite carbon nitride with tunable band-gap for enhanced visible-light-driven photocatalytic performance. ACS Sustain. Chem.& Eng., 2018, 6(11), 15503-15516.
[http://dx.doi.org/10.1021/acssuschemeng.8b03965]
[15]
Sun, X.; Jiang, D.; Zhang, L.; Wang, W. Alkaline modified g-C3N4 photocatalyst for high selective oxide coupling of benzyl alcohol to benzoin. Appl. Catal. B, 2018, 220, 553-560.
[http://dx.doi.org/10.1016/j.apcatb.2017.08.057]
[16]
Chen, Z.; Savateev, A.; Pronkin, S.; Papaefthimiou, V.; Wolff, C.; Willinger, M.G.; Willinger, E.; Neher, D.; Antonietti, M.; Dontsova, D. “The Easier the Better” preparation of efficient photocatalysts-metastable poly(heptazine imide) salts. Adv. Mater., 2017, 29(32), 1700555-1700563.
[http://dx.doi.org/10.1002/adma.201700555] [PMID: 28632318]
[17]
Savateev, A.; Pronkin, S.; Epping, D.; Willinger, M.G.; Wolff, C.; Neher, D.; Antonietti, M.; Dontsova, D. Potassium poly(heptazine imides) from aminotetrazoles: Shifting band gaps of carbon nitride‐like materials for more efficient solar hydrogen and oxygen evolution. ChemCatChem, 2017, 9, 16.
[http://dx.doi.org/10.1002/cctc.201601165]
[18]
García-López, E.I.; Marcì, G.; Palmisano, L. Polymeric carbon nitride (C3N4) as heterogeneous photocatalyst for selective oxidation of alcohols to aldehydes. Catal. Today, 2018, 315, 126-137.
[http://dx.doi.org/10.1016/j.cattod.2018.03.038]
[19]
Bellardita, M.; García-López, E.I.; Marcì, G.; Krivtsov, I.; García, J.R.; Palmisano, L. Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4. Appl. Catal. B, 2018, 220, 222-233.
[http://dx.doi.org/10.1016/j.apcatb.2017.08.033]
[20]
Krivtsov, I.; García-López, E.I.; Marcì, G.; Palmisano, L.; Amghouz, Z.; García, J.R.; Ordóñez, S.; Díaz, E. Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural to 2,5-furandicarboxyaldehy-de in aqueous suspension of g-C3N4. Appl. Catal. B, 2017, 204, 430-439.
[http://dx.doi.org/10.1016/j.apcatb.2016.11.049]
[21]
Ilkaeva, M.; Krivtsov, I.; García, J.R.; Díaz, E.; Ordóñez, S.; García-López, E.I.; Marcì, G.; Palmisano, L.; Maldonado, M.I.; Malato, S. Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural in aqueous suspension of polymeric carbon nitride and its adduct with H2O2 in a solar pilot plant. Catal. Today, 2018, 315, 138-148.
[http://dx.doi.org/10.1016/j.cattod.2018.03.013]
[22]
Li, Y.; Ouyang, S.; Xu, H.; Wang, X.; Bi, Y.; Zhang, Y.; Ye, J. Constructing solid-gas-interfacial fenton reaction over alkalinized-C3N4 photocatalyst to achieve apparent quantum yield of 49% at 420 nm. J. Am. Chem. Soc., 2016, 138(40), 13289-13297.
[http://dx.doi.org/10.1021/jacs.6b07272] [PMID: 27643711]
[23]
Augugliaro, V.; García-López, E.; Loddo, V.; Malato-Rodriguez, S.; Maldonado, I.; Marcì, G.; Molinari, R.; Palmisano, L. Degradation of lyncomycin in aqueous medium: coupling of solar photocatalysis and membrane separation. Sol. Energy, 2005, 79, 402-408.
[http://dx.doi.org/10.1016/j.solener.2005.02.020]
[24]
Sun, H.; Zhou, G.; Wang, Y.; Suvorova, A.; Wang, S. A new metal-free carbon hybrid for enhanced photocatalysis. ACS Appl. Mater. Interfaces, 2014, 6(19), 16745-16754.
[http://dx.doi.org/10.1021/am503820h] [PMID: 25212502]
[25]
Nakamoto, K. Infra-Red Spectra of Inorganic and Coordination Compounds; Wiley: New York, 1963.
[26]
Kubelka, P.; Munk, F. An article on optics of paint layers. Z. Tech. Phys, 1931, 12, 593-603.
[27]
Tauc, R.; Grigorovici, A.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi, 1966, 15, 627-637.
[http://dx.doi.org/10.1002/pssb.19660150224]
[28]
Marcì, G.; García-López, E.I.; Pomilla, F.R.; Palmisano, L.; Zaffora, A.; Santamaria, M.; Krivtsov, I.; Ilkaeva, M.; Barbiericová, S.; Brezová, V. Photoelectrochemical and EPR features of polymeric C3N4 and O-modified C3N4 employed for selective photocatalytic oxidation of alcohols to aldehydes. Catal. Today, 2019, 328, 21-28.
[http://dx.doi.org/10.1016/j.cattod.2019.01.075]