Synthesis of Allenes by 1,2-Elimination

Page: [3027 - 3039] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Allenes represent an extremely important class of organic molecules, which, as a result of their twisted orthogonal π-systems can possess axial chirality. A wide array of methods for allene synthesis have been reported, such as the substitution of propargylic electrophiles, isomerization of alkynes and sigmatropic rearrangement. An alternative approach for the synthesis of allenes is 1,2-elimination of an appropriately substituted precursor. This mini-review highlights recent examples of 1,2-elimination processes, which target allenes including both polar and radical processes. The main focus is upon how control over the stereospecificity (e.g. syn- or anti-) of the 1,2-elimination process can enable the synthesis of enantioenriched axially chiral allenes. Recent developments in this field are presented including both enantiospecific and catalytic asymmetric methods.

Keywords: Allenes, cumulenes, elimination, stereospecific, enantiospecific, axial chirality.

Graphical Abstract

[1]
(a) Krause, N.; Hashmi, A.S.K. Modern Allene Chemistry; Eds.; Wiley- VCH: Weinheim, Germany, 2004.
(b) Hoffmann-Röder, A.; Krause, N. Synthesis and properties of allenic natural products and pharmaceuticals. Angew. Chem. Int. Ed. Engl., 2004, 43(10), 1196-1216.
[http://dx.doi.org/10.1002/anie.200300628] [PMID: 14991780]
(c) Rivera-Fuentes, P.; Diederich, F. Allenes in molecular materials. Angew. Chem. Int. Ed. Engl., 2012, 51(12), 2818-2828.
[http://dx.doi.org/10.1002/anie.201108001] [PMID: 22308109]
[2]
(a) Krause, N.; Hoffmann-Röder, A. Synthesis of allenes with organometallic reagents. Tetrahedron, 2004, 60(51), 11671-11694.
[http://dx.doi.org/10.1016/j.tet.2004.09.094]
(b) Yang, M.; Yokokawa, N.; Ohmiya, H.; Sawamura, M. Synthesis of conjugated allenes through copper-catalyzed γ-selective and stereospecific coupling between propargylic phos-phates and aryl- or alkenylboronates. Org. Lett., 2012, 14(3), 816-819.
[http://dx.doi.org/10.1021/ol2033465] [PMID: 22256782]
(c) Partridge, B.M.; Chausset-Boissarie, L.; Burns, M.; Pulis, A.P.; Aggarwal, V.K. Enan-tioselective synthesis and cross-coupling of tertiary propargylic boronic es-ters using lithiation-borylation of propargylic carbamates. Angew. Chem. Int. Ed. Engl., 2012, 51(47), 11795-11799.
[http://dx.doi.org/10.1002/anie.201203198] [PMID: 23076714]
[3]
Xing, Y.; Wei, Y.; Zhou, H. Applications of the in situ propargyl-allenyl isomerization in organic synthesis. Curr. Org. Chem., 2012, 16(13), 1594-1608.
[http://dx.doi.org/10.2174/138527212800840973]
[4]
(a) Hossain, M.L.; Wang, J. Cu(I)-catalyzed cross-coupling of diazo com-pounds with terminal alkynes: an efficient access to allenes. Chem. Rec., 2018, 18(11), 1548-1559.
[http://dx.doi.org/10.1002/tcr.201800023] [PMID: 29808531]
(b) Chu, W-D.; Zhang, L.; Zhang, Z.; Zhou, Q.; Mo, F.; Zhang, Y.; Wang, J. Enantioselective synthesis of trisubstituted allenes via Cu(I)-catalyzed coupling of di-azoalkanes with terminal alkynes. J. Am. Chem. Soc., 2016, 138(44), 14558-14561.
[http://dx.doi.org/10.1021/jacs.6b09674] [PMID: 27788320]
[5]
(a) Tejedor, D.; Méndez-Abt, G.; Cotos, L.; García-Tellado, F. Propargyl Claisen rearrangement: allene synthesis and beyond. Chem. Soc. Rev., 2013, 42(2), 458-471.
[http://dx.doi.org/10.1039/C2CS35311C] [PMID: 23034723]
(b) Myers, A.G.; Zheng, B. New and stereospecific synthesis of allenes in a single step from propargylic alcohols. J. Am. Chem. Soc., 1996, 118(18), 4492-4493.
[http://dx.doi.org/10.1021/ja960443w]
(c) Tang, X.; Zhu, C.; Cao, T.; Kuang, J.; Lin, W.; Ni, S.; Zhang, J.; Ma, S. Cadmium iodide-mediated al-lenylation of terminal alkynes with ketones. Nat. Commun., 2013, 4, 2450.
[http://dx.doi.org/10.1038/ncomms3450] [PMID: 24042852]
[6]
(a) Brummond, K.M.; DeForrest, J.E. Synthesizing allenes today (1982-2006). Synthesis, 2007, 6, 795-818.
[http://dx.doi.org/10.1055/s-2007-965963]
(b) Yu, S.; Ma, S. How easy are the syntheses of allenes? Chem. Commun. (Camb.), 2011, 47(19), 5384-5418.
[http://dx.doi.org/10.1039/c0cc05640e] [PMID: 21409186]
(c) Neff, R.K.; Frantz, D.E. Recent Advances in the catalytic syntheses of allenes: a critical assessment. ACS Catal., 2014, 4(2), 519-528.
[http://dx.doi.org/10.1021/cs401007m]
(d) Ye, J.; Ma, S. Conquering three-carbon axial chirality of allenes. Org. Chem. Front., 2014, 1(10), 1210-1224.
[http://dx.doi.org/10.1039/C4QO00208C]
(e) Chu, W-D.; Zhang, Y.; Wang, J. Recent advances in catalytic asymmetric synthesis of allenes. Catal. Sci. Technol., 2017, 7(20), 4570-4579.
[http://dx.doi.org/10.1039/C7CY01319A]
[7]
(a) Pillot, J-P.; Bennetau, B.; Dunogues, J.; Calas, R. Nouvelle voie d’acces aux cetones α-alleniques. Tetrahedron Lett., 1981, 22(35), 3401-3404.
[http://dx.doi.org/10.1016/S0040-4039(01)81916-X]
(b) Stang, P.J.; Har-grove, R.J. Vinyl triflates in synthesis. ii. 1,1-di-, tri-, tetrasubstituted and deuterio allenes from ketones via vinyl triflates. J. Org. Chem., 1975, 40(5), 657-658.
[http://dx.doi.org/10.1021/jo00893a026]
(c) Witt, O.; Mauser, H.; Friedl, T.; Wilhelm, D.; Clark, T. Reactions of the lithium salts of the tribenzylidene-methane dianion, diphenylacetone dianion, and related compounds. J. Org. Chem., 1998, 63(4), 959-967.
[http://dx.doi.org/10.1021/jo971113c]
(d) Langer, P.; Döring, M.; Seyferth, D.; Görls, H. Direct transformation of silyl enol ethers into functionalized al-lenes. Chemistry, 2001, 7(3), 573-584.
[http://dx.doi.org/10.1002/1521-3765(20010202)7:3<573:AID-CHEM573>3.0.CO;2-I] [PMID: 11261654]
[8]
Brummond, K.M.; Dingess, E.A.; Kent, J.L. Strategy for the preparation of allenes from α, β-unsaturated and saturated ketones via enol phosphates. J. Org. Chem., 1996, 61(18), 6096-6097.
[http://dx.doi.org/10.1021/jo9610265] [PMID: 11667439]
[9]
(a) Buono, G. A new convenient synthesis of 1,2-pentadien-4-one (acety-lallene). Synthesis, 1981, 11, 872-872.
[http://dx.doi.org/10.1055/s-1981-29624]
(b) Ma, S.; Li, L.; Xie, H. Hydro-halogenation reaction of 1,2-allenyl ketones revisited. efficient and highly stereoselective synthesis of β, γ-unsaturated β-haloketones. J. Org. Chem., 1999, 64(14), 5325-5328.
[http://dx.doi.org/10.1021/jo9903205]
(c) Ma, S.; Yu, S.; Yin, S. Studies on K2CO3-catalyzed 1,4-addition of 1,2-allenic ketones with diethyl malonate: controlled selective synthesis of β, γ-unsaturated enones and α-pyrones. J. Org. Chem., 2003, 68(23), 8996-9002.
[http://dx.doi.org/10.1021/jo034633i] [PMID: 14604373]
[10]
Kim, H.Y.; Li, J-Y.; Oh, K. Studies on elimination pathways of β-halovinyl ketones leading to allenyl and propargyl ketones and furans under the action of mild bases. J. Org. Chem., 2012, 77(24), 11132-11145.
[http://dx.doi.org/10.1021/jo302253c] [PMID: 23198987]
[11]
(a) Komatsu, N.; Nishibayashi, Y.; Sugita, T.; Uemura, S. The first example of asymmetric selenoxide elimination: application to the synthesis of chiral allenes. J. Chem. Soc. Chem. Commun., 1992, 46-47
[http://dx.doi.org/10.1039/c39920000046]
(b) Komatsu, N.; Murakami, T.; Nishibayashi, Y.; Sugita, T.; Uemura, S. Asymmetric selenoxide elimina-tion leading to chiral allenic sulfones. J. Org. Chem., 1993, 58(14), 3697-3702.
[http://dx.doi.org/10.1021/jo00066a023]
[12]
(a) Nishibayashi, Y.; Deo Singh, J.; Uemura, S.; Fukuzawa, S. Synthesis of chiral diferrocenyl diselenides and their application to asymmetric reactions. Tetrahedron Lett., 1994, 35(19), 3115-3118.
[http://dx.doi.org/10.1016/S0040-4039(00)76844-4]
(b) Nishibayashi, Y.; Singh, J.D.; Fukuzawa, S.; Uemura, S. Synthesis of [R,S;R,S]- and [S,R;S,R]-bis[2-[1-(dimethylamino)ethyl]ferrocenyl] diselenides and their application to asymmetric selenoxide elimination and [2,3]-sigmatropic rear-rangement. J. Org. Chem., 1995, 60(13), 4114-4120.
[http://dx.doi.org/10.1021/jo00118a031]
[13]
Honda, M.; Nishizawa, T.; Nishii, Y.; Fujinami, S.; Segi, M. Reaction behav-ior of cyclopropylmethyl cations derived 1-phenylselenocyclopropyl-methanols with acids. Tetrahedron, 2009, 65(45), 9403-9411.
[http://dx.doi.org/10.1016/j.tet.2009.08.082]
[14]
Crouch, I.T.; Neff, R.K.; Frantz, D.E. Pd-catalyzed asymmetric β-hydride elimination en route to chiral allenes. J. Am. Chem. Soc., 2013, 135(13), 4970-4973.
[http://dx.doi.org/10.1021/ja401606e] [PMID: 23488914]
[15]
El Arba, M.; Dibrell, S.E.; Crouch, I.T.; Frantz, D.E. Unified approach to substituted allenoates via Pd-catalyzed β-hydride elimination of (E)-enol tri-flates. Org. Lett., 2017, 19(19), 5446-5449.
[http://dx.doi.org/10.1021/acs.orglett.7b02736] [PMID: 28953409]
[16]
(a) Tao, W.; Silverberg, L.J.; Rheingold, A.L.; Heck, R.F. Alkyne reactions with arylpalladium compounds. Organometallics, 1989, 8(11), 2550-2559.
[http://dx.doi.org/10.1021/om00113a006]
(b) Pivsa-Art, S.; Satoh, T.; Miura, M.; Nomura, M. Palladium-catalyzed reaction of aryl bromides with dialkylacetylenes to produce allenic com-pounds. Chem. Lett., 1997, 26(8), 823-824.
[http://dx.doi.org/10.1246/cl.1997.823]
(c) Chapman, L.M.; Adams, B.; Kliman, L.T.; Makriyannis, A.; Hamblett, C.L. Intramolecular Heck reactions of aryl chlorides with alkynes. Tetrahedron Lett., 2010, 51(11), 1517-1522.
[http://dx.doi.org/10.1016/j.tetlet.2010.01.050]
[17]
Nella, N.; Parker, E.; Hitce, J.; Larini, P.; Jazzar, R.; Baudoin, O. Efficient Pd-catalyzed allene synthesis from alkynes and aryl bromides through an in-tramolecular base-assisted deprotonation (iBAD) mechanism. Chemistry, 2014, 20(41), 13272-13278.
[http://dx.doi.org/10.1002/chem.201403213] [PMID: 25168845]
[18]
Neff, R.K.; Frantz, D.E. Cationic alkynyl Heck reaction toward substituted allenes using BobCat: A new hybrid Pd (0)-catalyst incorporating a water-soluble dba ligand. J. Am. Chem. Soc., 2018, 140(50), 17428-17432.
[http://dx.doi.org/10.1021/jacs.8b11759] [PMID: 30521312]
[19]
(a) Liu, B.; Wang, K.K.; Petersen, J.L. Synthesis of (4Z)-1,1-diphenyl-1,2,4-heptatrien-6-ynes and their facile cycloaromatizations to α,3-didehydrotoluene biradicals having a triarylmethyl radical center. J. Org. Chem., 1996, 61(24), 8503-8507.
[http://dx.doi.org/10.1021/jo961073x]
(b) Wang, K.K.; Zhang, H-R.; Petersen, J.L. Thermolysis of benzoenyne-allenes to form biradicals and sub-sequent intramolecular trapping with a tetraarylallene to generate two tri-arylmethyl radical centers. J. Org. Chem., 1999, 64(5), 1650-1656.
[http://dx.doi.org/10.1021/jo982326k] [PMID: 11674232]
[20]
(a) Inoue, H.; Tsubouchi, H.; Nagaoka, Y.; Tomioka, K. Synthesis of allenes by double Horner-Wadsworth-Emmons reaction. Tetrahedron, 2002, 58(1), 83-90.
[http://dx.doi.org/10.1016/S0040-4020(01)01089-4]
(b) Nagaoka, Y.; Tomioka, K. Baylis-Hillman-type carbon-carbon bond formation of alkenyl-phosphonates by the action of lithium diisopropylamide. J. Org. Chem., 1998, 63(19), 6428-6429.
[http://dx.doi.org/10.1021/jo981028k]
[21]
Hirama, M. Regioselective conjugate addition of sulfonylallyl carbanions to α, β-unsaturated ketones. Tetrahedron Lett., 1981, 22(20), 1905-1908.
[http://dx.doi.org/10.1016/S0040-4039(01)90474-5]
[22]
Huang, X.; Xiong, Z-C. Facile synthesis of sulfur-substituted allenes by a three-component reaction. Tetrahedron Lett., 2003, 44(31), 5913-5915.
[http://dx.doi.org/10.1016/S0040-4039(03)01410-2]
[23]
Huang, X.; Xiong, Z-C. A novel one-pot three-component tandem Mi-chael/Aldol/Horner-Wadsworth-Emmons (HWE) reaction of lithium alkyl-selenolates with 1-alkynylphosphine oxides and aldehydes: facile synthesis of selenium-substituted allenes. Chem. Commun. (Camb.), 2003, 14, 1714-1715.
[http://dx.doi.org/10.1039/B304527G]
[24]
Xi, Z.; Zhang, W-X.; Song, Z.; Zheng, W.; Kong, F.; Takahashi, T. Prepara-tion of vinyl allenes from 1-lithio-1,3-dienyl phosphine oxides and aldehydes by the Wittig-Horner reaction. J. Org. Chem., 2005, 70(22), 8785-8789.
[http://dx.doi.org/10.1021/jo051178c] [PMID: 16238310]
[25]
Reynolds, K.A.; Dopico, P.G.; Brody, M.S.; Finn, M.G. Vinylphosphonium salts and allenes from carbonyl compounds using titanium-substituted ylides. J. Org. Chem., 1997, 62(8), 2564-2573.
[http://dx.doi.org/10.1021/jo961000d] [PMID: 11671598]
[26]
Jiang, H.; Wang, W.; Yin, B.; Liu, W. Facile synthesis of trisubstituted allenynes by phosphane-mediated deoxygenation of 2,4-pentadiyn-1-ol. Eur. J. Org. Chem., 2010, 2010(23), 4450-4453.
[http://dx.doi.org/10.1002/ejoc.201000483]
[27]
Kim, H.; Jin, K.Y.; Ha, T.H.; Yu, C-M. A convenient method for the synthe-sis of allenoates from 4-hydroxyalk-2-ynoates with PPh3. Bull. Korean Chem. Soc., 2013, 34(3), 719-720.
[http://dx.doi.org/10.5012/bkcs.2013.34.3.719]
[28]
Fox, D.J.; Medlock, J.A.; Vosser, R.; Warren, S. Allene synthesis by an asymmetric Baylis-Hillman style reaction on vinylphosphine oxides. J. Chem. Soc., Perkin Trans. 1, 2001, 2240-2249.
[http://dx.doi.org/10.1039/b104436m]
[29]
(a) Wadsworth, W.S.; Emmons, W.D. The utility of phosphonate carbanions in olefin synthesis. J. Am. Chem. Soc., 1961, 83(7), 1733-1738.
[http://dx.doi.org/10.1021/ja01468a042]
(b) Bestmann, H.J.; Hartung, H. Neue synthese von allencarbonsäureestern. Angew. Chem., 1963, 75(6), 297-297.
[http://dx.doi.org/10.1002/ange.19630750613]
(c) Liu, W-B.; He, H.; Dai, L-X.; You, S-L. A one-pot palladium-catalyzed allylic alkylation and Wittig reaction of phosphorus ylides. Chemistry, 2010, 16(25), 7376-7379.
[http://dx.doi.org/10.1002/chem.201000316] [PMID: 20486236]
(d) Zhang, K.; Lu, L-Q.; Yao, S.; Chen, J-R.; Shi, D-Q.; Xiao, W-J. Enantioconvergent copper catalysis: in situ generation of the chiral phosphorus ylide and its wit-tig reactions. J. Am. Chem. Soc., 2017, 139(36), 12847-12854.
[http://dx.doi.org/10.1021/jacs.7b08207] [PMID: 28825817]
(e) Pierrot, D.; Presset, M.; Rodriguez, J.; Bonne, D.; Coquerel, Y. Normal, abnormal, and cascade wittig olefinations of α-oxoketenes. Chemistry, 2018, 24(43), 11110-11118.
[http://dx.doi.org/10.1002/chem.201801533] [PMID: 29968938]
[30]
Sano, S.; Matsumoto, T.; Yano, T.; Toguchi, M.; Nakao, M. Synthesis of allenyl esters by Horner-Wadsworth-Emmons reactions of ketenes mediated by isopropylmagnesium bromide. Synlett, 2015, 26(15), 2135-2138.
[http://dx.doi.org/10.1055/s-0034-1378803]
[31]
Cardoso, A.L.; Henriques, M.S.C.; Paixão, J.A.; Pinho, E. Melo, T.M.V.D. (1H-Tetrazol-5-yl)-Allenes: Building blocks for tetrazolyl heterocycles. J. Org. Chem., 2016, 81(19), 9028-9036.
[http://dx.doi.org/10.1021/acs.joc.6b01679] [PMID: 27606692]
[32]
(a) Tömösközi, I.; Bestmann, H.J. Partielle asymetrische synthese und abso-lute konfiguration von allencarbonsauren. Tetrahedron Lett., 1964, 5(20), 1293-1295.
[http://dx.doi.org/10.1016/S0040-4039(00)90468-4]
(b) Jürgen, H. Best-mann; Tömösközi, I. Reaktionen mit alkylidenephosphoranen-xviii: ki-netische racematspaltungen durch umsetzung von alkylidenphosphoranen mit optisch aktiven säurechloriden. Tetrahedron, 1968, 24(8), 3299-3319.
[33]
(a) Musierowicz, S.; Wróblewski, A.E. Asymmetric synthesis of 4,4-disubstituted alka-2,3-dienoates. Tetrahedron, 1980, 36(10), 1375-1380.
[http://dx.doi.org/10.1016/0040-4020(80)85051-4]
(b) Musierowicz, S.; Wróblewski, A.; Krawczyk, H. Stereochemistry of P-chiral phosphinylacetic acid esters i asymmetric synthesis of substituted alkadiene-1,2-carboxylic-1 and δ-chiral α, β-unsaturated carboxylic acid esters. Tetrahedron Lett., 1975, 16(7), 437-440.
[http://dx.doi.org/10.1016/S0040-4039(00)71887-9]
[34]
Tanaka, K.; Otsubo, K.; Fuji, K. Enantioselective preparation of allenecar-boxylates by asymmetric Horner-Wadsworth-Emmons reaction. Tetrahedron Lett., 1996, 37(21), 3735-3738.
[http://dx.doi.org/10.1016/0040-4039(96)00672-7]
[35]
Yamazaki, J.; Watanabe, T.; Tanaka, K. Enantioselective synthesis of allene-carboxylates from phenyl acetates through C-C bond forming reactions. Tetrahedron Asymmetry, 2001, 12(4), 669-675.
[http://dx.doi.org/10.1016/S0957-4166(01)00114-8]
[36]
(a) Pinho e Melo, T.M.V.D.; Cardoso, A.L.; Rocha Gonsalves, A.M. d’A.; Storr, R.C.; Pessoa, J.C.; Paixão, J.A.; Beja, A.M.; Silva, M.R. Contribution to the synthesis of chiral allenic esters. Tetrahedron Lett., 2003, 44(34), 6409-6412.
[http://dx.doi.org/10.1016/S0040-4039(03)01585-5]
(b) Pinho e Melo, T.M.V.D.; Cardoso, A.L.; Gonsalves, A.M. d’A R.; Pessoa, J. C.; Paixão, J.A.; Beja, A.M. Novel asymmetric wittig reaction: synthesis of chiral allenic esters. Eur. J. Org. Chem., 2004, 2004(23), 4830-4839.
[37]
(a) Li, C-Y.; Sun, X-L.; Jing, Q.; Tang, Y. Enantioselective synthesis of allenic esters via an ylide route. Chem. Commun. (Camb.), 2006, (28), 2980-2982.
[http://dx.doi.org/10.1039/b603659g] [PMID: 16832510]
(b) Li, C-Y.; Zhu, B-H.; Ye, L-W.; Jing, Q.; Sun, X-L.; Tang, Y.; Shen, Q. Olefination of ketenes for the enantioselective synthesis of allenes via an ylide route. Tetrahedron, 2007, 63(33), 8046-8053.
[http://dx.doi.org/10.1016/j.tet.2007.05.053]
[38]
Li, C-Y.; Wang, X-B.; Sun, X-L.; Tang, Y.; Zheng, J-C.; Xu, Z-H.; Zhou, Y-G.; Dai, L-X. Iron porphyrin-catalyzed olefination of ketenes with diazoace-tate for the enantioselective synthesis of allenes. J. Am. Chem. Soc., 2007, 129(6), 1494-1495.
[http://dx.doi.org/10.1021/ja068642v] [PMID: 17283983]
[39]
Tsubouchi, A.; Kira, T.; Takeda, T. Peterson allenation using (z)-(1-lithio-1-alkenyl) trimethylsilanes. Synlett, 2006, (16), 2577-2580.
[40]
Lee, D.; Danishefsky, S.J. Cascade resulting in the reductive ethynylation of aldehydes: dissection of its components. J. Am. Chem. Soc., 2010, 132(12), 4427-4430.
[http://dx.doi.org/10.1021/ja910825g] [PMID: 20201522]
[41]
(a) Chan, T.H.; Mychajlowskij, W. The synthesis of alkenes from carbonyl compounds and carbanions alpha to silicon, ii: 1,2-Alkadienes. Tetrahedron Lett., 1974, 15(2), 171-174.
[http://dx.doi.org/10.1016/S0040-4039(01)82165-1]
(b) Chan, T.H.; Mycha-jlowskij, W.; Ong, B.S.; Harpp, D.N. Synthesis of alkenes from carbonyl compounds and carbanions alpha to silicon 6. Synthesis of Terminal Allenes and Allyl Chlorides. J. Org. Chem., 1978, 43(8), 1526-1532.
[42]
Tius, M.A.; Pal, S.K. Allenes from ynals. Tetrahedron Lett., 2001, 42(14), 2605-2608.
[http://dx.doi.org/10.1016/S0040-4039(01)00252-0]
[43]
Torres, E.; Larson, G.L.; McGarvey, G.J. An asymmetric hydrogen equiva-lent: use of the 1-naphthylphenylmethylsilyl group in the preparation of opti-cally active allyl alcohols and (s)-1-phenyl-1,2-butadiene. Tetrahedron Lett., 1988, 29(12), 1355-1358.
[http://dx.doi.org/10.1016/S0040-4039(00)80295-6]
[44]
Bratovanov, S.; Bienz, S. Synthesis of chiral allenes by peterson-type olefi-nations. Main Group Met. Chem., 2011, 19(12), 769-784.
[45]
Suginome, M.; Matsumoto, A.; Ito, Y. Palladium-catalyzed intramolecular bis-silylation of propargylic alcohols: A new stereospecific access to chiral allenylsilanes. J. Org. Chem., 1996, 61(15), 4884-4885.
[http://dx.doi.org/10.1021/jo960778w]
[46]
Barber, J.S.; Yamano, M.M.; Ramirez, M.; Darzi, E.R.; Knapp, R.R.; Liu, F.; Houk, K.N.; Garg, N.K. Diels-Alder cycloadditions of strained azacyclic al-lenes. Nat. Chem., 2018, 10(9), 953-960.
[http://dx.doi.org/10.1038/s41557-018-0080-1] [PMID: 30061614]
[47]
(a) Schreck, M.; Christl, M. Generation and interception of 1-oxa-3,4-cyclohexadiene. Angew. Chem. Int. Ed. Engl., 1987, 26(7), 690-692.
[http://dx.doi.org/10.1002/anie.198706901]
(b) Quintana, I.; Peña, D.; Pérez, D.; Guitián, E. Generation and reactivity of 1,2-cyclohexadiene under mild reaction conditions. Eur. J. Org. Chem., 2009, 32, 5519-5524.
[http://dx.doi.org/10.1002/ejoc.200900631]
(c) Barber, J.S.; Styduhar, E.D.; Pham, H.V.; McMahon, T.C.; Houk, K.N.; Garg, N.K. Nitrone Cycloaddi-tions of 1,2-Cyclohexadiene. J. Am. Chem. Soc., 2016, 138(8), 2512-2515.
[http://dx.doi.org/10.1021/jacs.5b13304] [PMID: 26854652]
[48]
Konoike, T.; Araki, Y. Concise allene synthesis from propargylic alcohols by hydrostannation and deoxystannylation: a new route to chiral allenes. Tetrahedron Lett., 1992, 33(35), 5093-5096.
[http://dx.doi.org/10.1016/S0040-4039(00)61198-X]
[49]
(a) Fletcher, M.T.; McGrath, M.J.; König, W.A.; Moore, C.J.; Cribb, B.W.; Allsopp, P.G.; Kitching, W. A novel group of allenic hydrocarbons from five Australian (Melolonthine) beetles. Chem. Commun., 2001, 885-886
[http://dx.doi.org/10.1039/b101801i]
(b) McGrath, M.J.; Fletcher, M.T.; König, W.A.; Moore, C.J.; Cribb, B.W.; Allsopp, P.G.; Kitching, W. A suite of novel allenes from Australian melolonthine scarab beetles. Structure, synthesis, and stereochemistry. J. Org. Chem., 2003, 68(10), 3739-3748.
[http://dx.doi.org/10.1021/jo026213j] [PMID: 12737550]
[50]
Rigby, J.H.; Laurent, S.B.; Kamal, Z.; Heeg, M.J. Chromium(0)-promoted [6π + 2π] cycloadditions of allenes with cycloheptatriene. Org. Lett., 2008, 10(24), 5609-5612.
[http://dx.doi.org/10.1021/ol802401a] [PMID: 19053724]
[51]
Zhao, Y.; Quayle, P. Kuo (née Mason), E.A. The stereoselective functionali-sation of 1,1-bis-(tributylstannyl). Ethenes. Tetrahedron Lett., 1994, 35(22), 3797-3800.
[http://dx.doi.org/10.1016/S0040-4039(00)73102-9]
[52]
Hailes, H.C.; Isaac, B.; Javaid, M.H. The synthesis of 2-alkylated cyclopen-tene-1,3-diones: novel compounds with olfactory properties. Synth. Commun., 2003, 33(1), 29-41.
[http://dx.doi.org/10.1081/SCC-120015556]
[53]
Endo, T.; Sasaki, F.; Hara, H.; Suzuki, J.; Tamura, S.; Nagata, Y.; Iyoshi, T.; Saigusa, A.; Nakano, T. A highly efficient synthesis of (z)-1-aryl-2-silyl-1-stannylethenes and their conversion to (E)-2-arylethenyl-, (Z)-2-(2-pyridyl) ethenyl- and allenyl-silanes. Appl. Organomet. Chem., 2007, 21(3), 183-197.
[http://dx.doi.org/10.1002/aoc.1186]
[54]
Nativi, C.; Ricci, A.; Taddei, M. A simple synthesis of 1-trimethylsilyl-2,3-dienes. Tetrahedron Lett., 1987, 28(24), 2751-2752.
[http://dx.doi.org/10.1016/S0040-4039(00)96199-9]
[55]
Pelter, A.; Smith, K.; Jones, K.D. Allene synthesis via boron-stabilised alkenyl carbanions. J. Chem. Soc., Perkin Trans. 1, 1992, 747-748
[http://dx.doi.org/10.1039/p19920000747]
[56]
Kim, B-S.; Hussain, M.M.; Hussain, N.; Walsh, P.J. Palladium-catalyzed chemoselective allylic substitution, Suzuki-Miyaura cross-coupling, and al-lene formation of bifunctional 2-B(pin)-substituted allylic acetate derivatives. Chemistry, 2014, 20(37), 11726-11739.
[http://dx.doi.org/10.1002/chem.201402353] [PMID: 25077980]
[57]
Wesquet, A.O.; Kazmaier, U. Distannylations and silastannylations of in situ generated allenes. Angew. Chem. Int. Ed. Engl., 2008, 47(16), 3050-3053.
[http://dx.doi.org/10.1002/anie.200705976] [PMID: 18330881]
[58]
Armstrong, R.J.; Nandakumar, M.; Dias, R.M.P.; Noble, A.; Myers, E.L.; Aggarwal, V.K. Enantiodivergent synthesis of allenes by point-to-axial chirality transfer. Angew. Chem. Int. Ed. Engl., 2018, 57(27), 8203-8208.
[http://dx.doi.org/10.1002/anie.201804446] [PMID: 29719111]
[59]
Armstrong, R.J.; García-Ruiz, C.; Myers, E.L.; Aggarwal, V.K. Stereodiver-gent olefination of enantioenriched boronic esters. Angew. Chem. Int. Ed. Engl., 2017, 56(3), 786-790.
[http://dx.doi.org/10.1002/anie.201610387] [PMID: 27958668]
[60]
Shono, T.; Ito, K.; Tsubouchi, A.; Takeda, T. Titanocene(II)-promoted carbonyl allenation utilizing 1,1-dichloroalk-1-enes. Org. Biomol. Chem., 2005, 3(16), 2914-2916.
[http://dx.doi.org/10.1039/b508820h] [PMID: 16186920]
[61]
Buchwald, S.L.; Grubbs, R.H. A titanium vinylidene route to substituted allenes. J. Am. Chem. Soc., 1983, 105(16), 5490-5491.
[http://dx.doi.org/10.1021/ja00354a057]
[62]
Yoshida, T.; Negishi, E. 1,1-dimetalloalkenes containing aluminum as well as titanium or zirconium. Their structures and use as novel alkenylidene and alkenyl transfer agents. J. Am. Chem. Soc., 1981, 103(5), 1276-1277.
[http://dx.doi.org/10.1021/ja00395a074]
[63]
Petasis, N.A.; Hu, Y-H. Allenation of carbonyl compounds with alkenyltita-nocene derivatives. J. Org. Chem., 1997, 62(4), 782-783.
[http://dx.doi.org/10.1021/jo9620876]
[64]
Ogata, A.; Nemoto, M.; Kobayashi, K.; Tsubouchi, A.; Takeda, T. Titano-cene(II)-promoted multicomponent reactions utilizing alkynyl sulfones, alkenyl sulfones, and carbonyl compounds: a novel method for the synthesis of vinylallenes. Chemistry, 2007, 13(4), 1320-1325.
[http://dx.doi.org/10.1002/chem.200601326] [PMID: 17072934]
[65]
Tucker, C.E.; Greve, B.; Klein, W.; Knochel, P. Preparation of polyfunc-tional olefins and allenes using 1,1-bimetallics of zinc and zirconium. Organometallics, 1994, 13(1), 94-101.
[http://dx.doi.org/10.1021/om00013a020]
[66]
Zhou, H.; Liu, G.; Zeng, C. Bismetalated carbon for tandem wittig-type reaction via allylgallation of magnesium acetylides: a convenient and effi-cient method to allyl allenes. J. Organomet. Chem., 2008, 693(4), 787-791.
[http://dx.doi.org/10.1016/j.jorganchem.2007.12.003]
[67]
Pu, X.; Ready, J.M. Direct and stereospecific synthesis of allenes via reduc-tion of propargylic alcohols with Cp2Zr(H)Cl. J. Am. Chem. Soc., 2008, 130(33), 10874-10875.
[http://dx.doi.org/10.1021/ja8035527] [PMID: 18652467]
[68]
Satoh, T.; Sakamoto, T.; Watanabe, M. A novel synthesis of allenes by alkenylation of magnesium alkylidene carbenoids with lithium α-sulfonyl carbanions. Tetrahedron Lett., 2002, 43(11), 2043-2046.
[http://dx.doi.org/10.1016/S0040-4039(02)00103-X]
[69]
Satoh, T.; Kaneta, H.; Matsushima, A.; Yajima, M. A new synthesis of β, γ-unsaturated esters and allenic esters with construction of a carbon-carbon bond between α- and β-positions by the reaction of magnesium alkylidene carbenoids with lithium ester enolates. Tetrahedron Lett., 2009, 50(46), 6280-6285.
[http://dx.doi.org/10.1016/j.tetlet.2009.08.102]
[70]
Mori, N.; Obuchi, K.; Katae, T.; Sakurada, J.; Satoh, T. Alkenylation of thiophenes and furans at the 2-position and a synthesis of allenes conjugated with α, β-unsaturated ester with magnesium alkylidene carbenoids. Tetrahedron, 2009, 65(17), 3509-3517.
[http://dx.doi.org/10.1016/j.tet.2009.02.019]
[71]
Kimura, T.; Kobayashi, G.; Ishigaki, M.; Inumaru, M.; Sakurada, J.; Satoh, T. Coupling reaction of magnesium alkylidene carbenoids with α-sulfonyl-allyllithiums: an efficient route to multi-substituted vinylallenes. Synthesis, 2012, 44(23), 3623-3632.
[http://dx.doi.org/10.1055/s-0032-1317507]
[72]
Zhu, M.; Liu, L.; Yu, H-T.; Zhang, W-X.; Xi, Z. Alkenyl magnesium com-pounds: generation and synthetic application. Chemistry, 2018, 24(72), 19122-19135.
[http://dx.doi.org/10.1002/chem.201802536] [PMID: 29984536]
[73]
(a) Satoh, T.; Kuramochi, Y.; Inoue, Y. A new method for synthesis of allenes, including an optically active form, from aldehydes and alkenyl aryl sulfoxides with carbon-carbon bond-formation. Tetrahedron Lett., 1999, 40(50), 8815-8818.
[http://dx.doi.org/10.1016/S0040-4039(99)01666-4]
(b) Satoh, T.; Hanaki, N.; Kuramochi, Y.; Inoue, Y.; Hosoya, K.; Sakai, K. A new method for syn-thesis of allenes, including an optically active form, from aldehydes and alkenyl aryl sulfoxides by sulfoxide-metal exchange as the key reaction and an application to a total synthesis of male bean weevil sex attractant. Tetrahedron, 2002, 58(13), 2533-2549.
[http://dx.doi.org/10.1016/S0040-4020(02)00151-5]
[74]
Zhang, Y.; Wu, Y. An Elimination approach to the synthesis of scorodonin. Chin. J. Chem., 2010, 28(9), 1635-1639.
[http://dx.doi.org/10.1002/cjoc.201090277]
[75]
Zhang, Y.; Hao, H-D.; Wu, Y. An 1,2-elimination approach to the enantiose-lective synthesis of 1,3-disubstituted linear allenes. Synlett, 2010, (6), 905-908.
[76]
Zhang, Y.; Wu, Y. An enantioselective total synthesis of natural antibiotic marasin. Org. Biomol. Chem., 2010, 8(20), 4744-4752.
[http://dx.doi.org/10.1039/c0ob00151a] [PMID: 20725668]
[77]
(a) Hässig, R.; Seebach, D.; Siegel, H. Herstellung von allenen aus gemi-nalen dibromolefinen und aldehyden. Chem. Ber., 1984, 117(5), 1877-1884.
[http://dx.doi.org/10.1002/cber.19841170515]
(b) Gabbutt, C.D.; Hep-worth, J.D.; Heron, B.M.; Rahman, M.M. Allenes from 3-bromo-2H-1-benzopyrans. J. Chem. Soc., Perkin Trans. 1, 1994, 13, 1733-1737.
[http://dx.doi.org/10.1039/p19940001733]
[78]
Barluenga, J.; Fernández, J.R.; Yus, M. Alka-2,3-dienes from crotonalde-hyde. J. Chem. Soc. Chem. Commun., 1985, 4, 203-204.
[http://dx.doi.org/10.1039/C39850000203]
[79]
Yokota, M.; Fuchibe, K.; Ueda, M.; Mayumi, Y.; Ichikawa, J. Facile synthe-sis of 1,1-difluoroallenes via the difluorovinylidenation of aldehydes and ke-tones. Org. Lett., 2009, 11(17), 3994-3997.
[http://dx.doi.org/10.1021/ol9016673] [PMID: 19708707]
[80]
Oh, K.; Fuchibe, K.; Ichikawa, J. A facile synthesis of 1,1-difluoroallenes from commercially available 1,1,1-trifluoro-2-iodoethane. Synthesis, 2011, 6, 881-886.
[81]
Fuchibe, K.; Mayumi, Y.; Zhao, N.; Watanabe, S.; Yokota, M.; Ichikawa, J. Domino synthesis of fluorine-substituted polycyclic aromatic hydrocarbons: 1,1-difluoroallenes as synthetic platforms. Angew. Chem. Int. Ed. Engl., 2013, 52(30), 7825-7828.
[http://dx.doi.org/10.1002/anie.201302740] [PMID: 23776151]
[82]
Yamazaki, T.; Yamamoto, T.; Ichihara, R. Preparation of CF3-containing 1,3-di- and 1,1,3-trisubstituted allenes. J. Org. Chem., 2006, 71(16), 6251-6253.
[http://dx.doi.org/10.1021/jo060909l] [PMID: 16872213]
[83]
Yoshimatsu, M.; Hibino, M. First synthesis of a α-trifluoromethyl allenol ether via the Julia-Lythgoe process. Chem. Pharm. Bull. (Tokyo), 2000, 48(9), 1395-1398.
[http://dx.doi.org/10.1248/cpb.48.1395] [PMID: 10993250]
[84]
Sam, B.; Montgomery, T.P.; Krische, M.J. Ruthenium catalyzed reductive coupling of paraformaldehyde to trifluoromethyl allenes: CF3-bearing all-carbon quaternary centers. Org. Lett., 2013, 15(14), 3790-3793.
[http://dx.doi.org/10.1021/ol401771a] [PMID: 23841678]
[85]
Lin, M-H.; Tsai, W-S.; Lin, L-Z.; Hung, S-F.; Chuang, T-H.; Su, Y-J. Meth-ods for the preparation of allenes employing indium- and zinc-mediated de-halogenation reactions in aqueous solutions. J. Org. Chem., 2011, 76(20), 8518-8523.
[http://dx.doi.org/10.1021/jo2015104] [PMID: 21895004]
[86]
(a) Varghese, J.P.; Knochel, P.; Marek, I. New allene synthesis via carbocu-pration-zinc carbenoid homologation and β-elimination sequence. Org. Lett., 2000, 2(18), 2849-2852.
[http://dx.doi.org/10.1021/ol006276t] [PMID: 10964381]
(b) Varghese, J.P.; Zouev, I.; Aufauvre, L.; Knochel, P.; Marek, I. Carbocupration/zinc carbenoid homologation and β-elimination reactions for a new synthesis of allenes − application to the enantioselective synthesis of chiral allenes by deracemization of sp3-organometallic derivatives. Eur. J. Org. Chem., 2002, 24, 4151-4158.
[http://dx.doi.org/10.1002/1099-0690(200212)2002:24<4151:AID-EJOC4151>3.0.CO;2-S]
[87]
Ohno, H.; Toda, A.; Oishi, S.; Tanaka, T.; Takemoto, Y.; Fujii, N.; Ibuka, T. novel synthesis of chiral terminal allenes via palladium (0)-catalyzed reduc-tion of mesylates of 2-bromoalk-2-en-1-ols bearing a protected amino group, using diethylzinc. Tetrahedron Lett., 2000, 41(26), 5131-5134.
[http://dx.doi.org/10.1016/S0040-4039(00)00790-5]
[88]
Ohno, H.; Miyamura, K.; Tanaka, T.; Oishi, S.; Toda, A.; Takemoto, Y.; Fujii, N.; Ibuka, T. Synthesis of allenes from allylic alcohol derivatives bear-ing a bromine atom using a palladium (0)/diethylzinc system. J. Org. Chem., 2002, 67(4), 1359-1367.
[http://dx.doi.org/10.1021/jo016320y] [PMID: 11846687]
[89]
Semmelhack, M.F.; Brickner, S.J. Nickel-promoted cycliza-tion/carbonylation in the preparation of alpha-methylene-gamma lactones. stereospecific synthesis of frullanolide. J. Am. Chem. Soc., 1981, 103(13), 3945-3947.
[http://dx.doi.org/10.1021/ja00403a065]
[90]
de la Pradilla, R.F.; Rubio, M.B.; Marino, J.P.; Viso, A. Evidence for “sta-ble” organocopper intermediates in the reaction between Me2CuLi·LiI and allylic sulfinyl mesylates. Tetrahedron Lett., 1992, 33(34), 4985-4988.
[http://dx.doi.org/10.1016/S0040-4039(00)61252-2]
[91]
Lukas, J.; Visser, J.P.; Kouwenhoven, A.P. The formation of allenes via PdII and PtII complexes. J. Organomet. Chem., 1973, 50(1), 349-351.
[http://dx.doi.org/10.1016/S0022-328X(00)95121-0]
[92]
Danheiser, R.L.; Choi, Y.M.; Menichincheri, M.; Stoner, E.J. Synthesis of allenes via thermal cycloreversion of alpha-alkylidene-beta-lactones. J. Org. Chem., 1993, 58(2), 322-327.
[http://dx.doi.org/10.1021/jo00054a011]
[93]
Aronica, L.A.; Mazzoni, C.; Caporusso, A.M. Synthesis of functionalised β-lactones via silylcarbocyclisation/desilylation reactions of propargyl alco-hols. Tetrahedron, 2010, 66(1), 265-273.
[http://dx.doi.org/10.1016/j.tet.2009.10.112]
[94]
Martínez, I.; Andrews, A.E.; Emch, J.D.; Ndakala, A.J.; Wang, J.; Howell, A.R. Unusual, strained heterocycles: 3-alkylidene-2-methyleneoxetanes from Morita-Baylis-Hillman-type adducts. Org. Lett., 2003, 5(4), 399-402.
[http://dx.doi.org/10.1021/ol020202v] [PMID: 12583728]
[95]
(a) Kolakowski, R.V.; Manpadi, M.; Zhang, Y.; Emge, T.J.; Williams, L.J. Allene synthesis via C-C fragmentation: method and mechanistic insight. J. Am. Chem. Soc., 2009, 131(36), 12910-12911.
[http://dx.doi.org/10.1021/ja906189h] [PMID: 19737015]
(b) Xu, D.; Drahl, M.A.; Williams, L.J. Toward an integrated route to the vernonia al-lenes and related sesquiterpenoids. Beilstein J. Org. Chem., 2011, 7(1), 937-943.
[http://dx.doi.org/10.3762/bjoc.7.104] [PMID: 21804888]
[96]
Saget, T.; Cramer, N. Heteroatom-nucleophile-induced C-C fragmentations: synthesis of allenes and entry to domino reactions. Angew. Chem. Int. Ed. Engl., 2010, 49(47), 8962-8965.
[http://dx.doi.org/10.1002/anie.201004795] [PMID: 20927794]
[97]
(a) Delouvrié, B.; Lacôte, E.; Fensterbank, L.; Malacria, M. A new radical synthesis of allenes. Tetrahedron Lett., 1999, 40(18), 3565-3568.
[http://dx.doi.org/10.1016/S0040-4039(99)00547-X]
(b) Mouriès, V.; Delouvrié, B.; Lacôte, E.; Fensterbank, L.; Malacria, M. Radical β-elimination of a sulfinyl group to afford allenes. Eur. J. Org. Chem., 2002, 11, 1776-1787.
[http://dx.doi.org/10.1002/1099-0690(200206)2002:11<1776:AID-EJOC1776>3.0.CO;2-6]
[98]
Han, H.Y.; Kim, M.S.; Son, J.B.; Jeong, I.H. Novel synthesis of 1-aryl-1-trifluoromethylallenes. Tetrahedron Lett., 2006, 47(2), 209-212.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.166]