Recent Patents on Nanotechnology

Author(s): Ning-bo Peng and Ji-huan He*

DOI: 10.2174/1872210513666191120104149

Insight into the Wetting Property of a Nanofiber Membrane by the Geometrical Potential

Page: [64 - 70] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: There are many patents on design of a material surface with special wetting property, however, theoretical methods are lacked. The wetting property of a nanofiber member has attracted much attention. A material with different sizes or with different structures possesses different wetting properties. No theory can explain the phenomenon.

Methods: The contact angle, fiber fineness, pore size and layer of the nanofiber membrane were tested. The contact angles were measured for membranes with different thicknesses. The geometrical potential is used to explain the experimental phenomenon.

Results: The wetting property of a nanofiber membrane mainly depends on fiber diameter and thickness.

Conclusion: Wetting property of a PVA nanofiber membrane depends upon not only the hydrophilic groups, but also the geometrical structure of its surface, the latter prevails when the porous size of the membrane tends to a nanoscale, and the wetting property can be inverted from hydrophilicity to hydrophobicity.

Keywords: Wetting, lotus effect, nano-effect, geometrical potential, nanofiber, electrospinning, Cassie-Wenzel wetting.

Graphical Abstract

[1]
Wang Z, Tang Y, Li B. Excellent wetting resistance and anti-fouling performance of PVDF membrane modified with superhydrophobic papillae-like surfaces. J Membr Sci 2017; 540: 401-10.
[http://dx.doi.org/10.1016/j.memsci.2017.06.073]
[2]
Wang Y, Wang S, Fang J, et al. A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J Membr Sci 2017; 537: 248-54.
[http://dx.doi.org/10.1016/j.memsci.2017.05.023]
[3]
Ahmed E, Lalia BS, Hashaikeh R. Membrane-based detection of wetting phenomenon in direct contact membrane distillation. J Membr Sci 2017; 535: 89-93.
[http://dx.doi.org/10.1016/j.memsci.2017.04.035]
[4]
Obeisun OA, Finegan DP, Engebretsen E, Robinson JB, Brett DJ. Ex-situ characterization of water droplet dynamics on the surface of a fuel cell gas diffusion layer through wettability analysis and thermal characterization. Int J Hydrogen Energy 2017; 7: 4404-14.
[http://dx.doi.org/10.1016/j.ijhydene.2017.01.003]
[5]
Cho YH, Kim HW, Lee HD, et al. Water and ion sorption, diffusion, and transport in graphene oxide membranes revisited. J Membr Sci 2017; 544: 425-35.
[http://dx.doi.org/10.1016/j.memsci.2017.09.043]
[6]
Uddin MA, Park J, Bonville L, Pasaogullari U. Effect of hydrophobicity of gas diffusion layer in calcium cation contamination in polymer electrolyte fuel cells. Int J Hydrogen Energy 2016; 33: 14909-16.
[http://dx.doi.org/10.1016/j.ijhydene.2016.06.188]
[7]
Salahuddin M, Uddin MN, Hwang G, Asmatulu R. Superhydrophobic PAN nanofibers for gas diffusion layers of proton exchange membrane fuel cells for cathodic water management. Int J Hydrogen Energy 2018; 43(25): 11530-8.
[http://dx.doi.org/10.1016/j.ijhydene.2017.07.229]
[8]
Yu W, Yu X, Tu ST, Tian P. Superhydrophobic Pt–Pd/Al2O3 catalyst coating for hydrogen mitigation system of nuclear power plant. Int J Hydrogen Energy 2017; 21: 4829-14840.
[9]
Liu X, Zhang Y, Chen Y, et al. A superhydrophobic bromomethylated poly(phenylene oxide) as a multifunctional polymer filler in SPEEK membrane towards neat methanol operation of direct methanol fuel cells. J Membr Sci 2017; 544: 58-67.
[http://dx.doi.org/10.1016/j.memsci.2017.09.013]
[10]
Li L, Wang JW, Zhong H, et al. Novel alpha-Si3N4 planar nanowire superhydrophobic membrane prepared through in-situ nitridation of silicon for membrane distillation. J Membr Sci 2017; 543: 98-105.
[http://dx.doi.org/10.1016/j.memsci.2017.08.049]
[11]
Zhou CJ, Tian D, He JH. What factors affect lotus effect? Therm Sci 2018; 22(4): 1737-43.
[http://dx.doi.org/10.2298/TSCI1804737Z]
[12]
Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: A comprehensive review. Desalination 2012; 287: 2-18.
[http://dx.doi.org/10.1016/j.desal.2011.08.027]
[13]
Gambaryan-Roisman T. Liquids on porous layers: wetting, imbibition and transport processes. Curr Opin Colloid Interface Sci 2014; 19(4): 320-35.
[http://dx.doi.org/10.1016/j.cocis.2014.09.001]
[14]
Zhang Y, Wang X, Cui Z, Drioli E, Zhao S. Enhancing wetting resistance of poly(vinylidene fluoride) membranes for vacuum membrane distillation. Desalination 2017; 415: 58-66.
[http://dx.doi.org/10.1016/j.desal.2017.04.011]
[15]
Goh S, Zhang J, Liu Y, Fane AG. Fouling and wetting in membrane distillation (MD) and MD-bioreactor (MDBR) for wastewater reclamation. Desalination 2013; 323: 39-47.
[16]
Zuo J, Chung TS. PVDF hollow fibers with novel sandwich structure and superior wetting resistance for vacuum membrane distillation. Desalination 2017; 417: 94-101.
[http://dx.doi.org/10.1016/j.desal.2017.05.022]
[17]
Kochan J, Wintgens T, Hochstrat R, Melin T. Impact of wetting agents on the filtration performance of polymeric ultrafiltration membranes. Desalination 2009; 241(1–3): 34-42.
[http://dx.doi.org/10.1016/j.desal.2008.01.056]
[18]
Song YH, Xu L. Permeability, thermal and wetting properties of aligned composite nanofiber membranes containing carbon nanotubes. Int J Hydrogen Energy 2017; 42(31): 19961-6.
[http://dx.doi.org/10.1016/j.ijhydene.2017.06.112]
[19]
Park W, Wycisk R, Lin G, et al. Electrospun Nafion/PVDF single-fiber blended membranes for regenerative H-2/Br-2 fuel cells. J Membr Sci 2017; 541: 85-92.
[http://dx.doi.org/10.1016/j.memsci.2017.06.086]
[20]
Guo CW, Feng L, Jiang L. Method of changing the surface wettability of polymer materials EP Patents 1731551. 2006.
[21]
Ralf H, Lukas P, Sebastian G, Lars S. Contact angle measuring instrument US Patents 0362417. 2015.
[22]
Nosonovsky M, Bhushan B. Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics. Springer Science & Business Media: Berlin, Germany 2008.
[http://dx.doi.org/10.1007/978-3-540-78425-8]
[23]
Duprat C, Protière S, Beebe AY, Stone HA. Wetting of flexible fibre arrays. Nature 2012; 482(7386): 510-3.
[http://dx.doi.org/10.1038/nature10779] [PMID: 22358841]
[24]
Kong HY, He JH. Critical volume of wetting liquid. Heat Transf Res 2013; 44(5): 389-91.
[http://dx.doi.org/10.1615/HeatTransRes.2013005573]
[25]
Liu LG, He JH. Solvent evaporation in a binary solvent system for controllable fabrication of porous fibers by electrospinning. Therm Sci 2017; 21(4): 1821-5.
[http://dx.doi.org/10.2298/TSCI160928074L]
[26]
He JH, Kong HY, Yang RR, et al. Review on fiber morphology obtained by the bubble electrospinning and Blown bubble spinning. Therm Sci 2012; 16(4): 1263-79.
[http://dx.doi.org/10.2298/TSCI1205263H]
[27]
Liu P, He JH. Geometrical potential: An explanation on of nanofiber’s wettability. Therm Sci 2018; 22(1): 33-8.
[http://dx.doi.org/10.2298/TSCI160706146L]
[28]
Tian D, Zhou CJ, He JH. Strength of bubble walls and the Hall-Petch effect in bubble-spinning. Text Res J 2018; 89(7) 004051751877067
[http://dx.doi.org/10.1177/0040517518770679]
[29]
Tian D, Zhou CJ, He JH. Hall-Petch effect and inverse Hall-Petch effect: A fractal unification. Fractals 2018; 26(6) 1850083
[http://dx.doi.org/10.1142/S0218348X18500834]
[30]
Yu DN, Tian D, He JH. Snail-based nanofibers. Mater Lett 2018; 220: 5-7.
[http://dx.doi.org/10.1016/j.matlet.2018.02.076]
[31]
Peng NB, Liu YQ, Xu L, et al. A Rachford-Rice like equation for solvent evaporation in the bubble electrospinning. Therm Sci 2018; 22(4): 1679-83.
[http://dx.doi.org/10.2298/TSCI1804679P]
[32]
Zhao L, Liu P, He JH. Sudden solvent evaporation in bubble electrospinning for fabrication of unsmooth nanofibers. Therm Sci 2017; 21(4): 1827-32.
[http://dx.doi.org/10.2298/TSCI160725075Z]
[33]
Pakravan HR, Jamshidi M, Latifi M. The effect of hydrophilic (polyvinyl alcohol) fiber content on the flexural behavior of Engineered Cementitious Composites (ECC). J Textil Inst 2018; 109(1): 79-84.
[34]
He JH, Wan Y, Xu L. Nano-effects, quantum-like, properties in electrospun nanofibers. Chaos Solitons Fractals 2007; 33(1): 26-37.
[http://dx.doi.org/10.1016/j.chaos.2006.09.023]
[35]
Ain QT, He JH. On two-scale dimension and its applications. Therm Sci 2019; 23(3B): 1707-12.
[http://dx.doi.org/10.2298/TSCI190408138A]
[36]
He JH, Ji FY. Two-scale mathematics and fractional calculus for thermodynamics. Therm Sci 2019; 23(4): 2131-3.
[http://dx.doi.org/10.2298/TSCI1904131H]
[37]
He JH, Ji FY. A fractal variational theory for one-dimensional compressible flow in a microgravity space. Fractals 2019.
[http://dx.doi.org/10.1142/S0218348X20500243]
[38]
He CH, Shen Y, Ji FY, et al. Taylor series solution for fractal Bratu-type equation arising in electrospinning process. Fractals 2019.
[http://dx.doi.org/10.1142/S0218348X20500115]
[39]
He JH. A simple approach to one-dimensional convection-diffusion equation and its fractional modification for E reaction arising in rotating disk electrodes. J Electroanal Chem 2019; 854 113565
[http://dx.doi.org/10.1016/j.jelechem.2019.113565]
[40]
He JHJIFY. Taylor series solution for Lane-Emden equation. J Math Chem 2019; 57(8): 1932-4.
[http://dx.doi.org/10.1007/s10910-019-01048-7]