Gene Selection for the Discrimination of Colorectal Cancer

Page: [415 - 428] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Colorectal cancer (CRC) is the third most common cancer worldwide. Cancer discrimination is a typical application of gene expression analysis using a microarray technique. However, microarray data suffer from the curse of dimensionality and usual imbalanced class distribution between the majority (tumor samples) and minority (normal samples) classes. Feature gene selection is necessary and important for cancer discrimination.

Objectives: To select feature genes for the discrimination of CRC.

Methods: We improve the feature selection algorithm based on differential evolution, DEFSw by using RUSBoost classifier and weight accuracy instead of the common classifier and evaluation measure for selecting feature genes from imbalance data. We firstly extract differently expressed genes (DEGs) from the CRC dataset of the TCGA and then select the feature genes from the DEGs using the improved DEFSw algorithm. Finally, we validate the selected feature gene sets using independent datasets and retrieve the cancer related information for these genes based on text mining through the Coremine Medical online database.

Results: We select out 16 single-gene feature sets for colorectal cancer discrimination and 19 single-gene feature sets only for colon cancer discrimination.

Conclusions: In summary, we find a series of high potential candidate biomarkers or signatures, which can discriminate either or both of colon cancer and rectal cancer with high sensitivity and specificity.

Keywords: Colorectal cancer, feature genes selection, discrimination of cancer, imbalanced data

[1]
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5): E359-86.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[2]
Minsky BD. Unique considerations in the patient with rectal cancer. Semin Oncol 2011; 38(4): 542-51.
[http://dx.doi.org/10.1053/j.seminoncol.2011.05.008] [PMID: 21810513]
[3]
Ghorai S, Mukherjee A, Sengupta S, et al. Cancer classification from gene expression data by NPPC ensemble IEEE/ACM Trans Comput Biol Bioinform 2011; 8(3): 659-71.
[http://dx.doi.org/10.1109/TCBB.2010.36]
[4]
Liu JX, Xu Y, Zheng CH, et al. RPCA-based tumor classification using gene expression data. IEEE/ACM Trans Comput Biol Bioinform 2015; 12(4): 964-70.
[5]
Sun S, Peng Q, Shakoor A. A kernel-based multivariate feature selection method for microarray data classification. PLoS One 2014; 9(7)e102541
[http://dx.doi.org/10.1371/journal.pone.0102541] [PMID: 25048512]
[6]
Aziz R, Verma CK, Srivastava N. A fuzzy based feature selection from independent component subspace for machine learning classification of microarray data. Genom Data 2016; 8: 4-15.
[http://dx.doi.org/10.1016/j.gdata.2016.02.012] [PMID: 27081632]
[7]
Sackler B GM SR, Dror G. Feature selection methods for classification of gene expression profiles 2008.
[8]
Alshamlan H, Badr G, Alohali Y. mRMR-ABC: A hybrid gene selection algorithm for cancer classification using microarray gene expression profiling. BioMed Res Int 2015; 2015604910
[http://dx.doi.org/10.1155/2015/604910] [PMID: 25961028]
[9]
Lin C, Zou Y, Qin J, et al. Hierarchical classification of protein folds using a novel ensemble classifier. PLoS One 2013; 8(2)e56499
[http://dx.doi.org/10.1371/journal.pone.0056499] [PMID: 23437146]
[10]
Guyon I, Weston J, Barnhill S, et al. gene selection for cancer classification using support vector machines. Mach Learn 2002; 46(1-3): 389-422.
[http://dx.doi.org/10.1023/A:1012487302797]
[11]
Zhou W, Dickerson JA. A novel class dependent feature selection method for cancer biomarker discovery. Comput Biol Med 2014; 47: 66-75.
[http://dx.doi.org/10.1016/j.compbiomed.2014.01.014] [PMID: 24561345]
[12]
Wang L, Chu F, Xie W. Accurate cancer classification using expressions of very few genes IEEE/ACM Trans Comput Biol Bioinform 2007; 4(1): 40-53.
[http://dx.doi.org/10.1109/TCBB.2007.1006]
[13]
Guyon I, Elisseeff A, Jankowski N, et al. Feature Extraction. Studies in Fuzziness & Soft Comput 2006; 31(7): 1737-44.
[14]
Al-Ani A, Alsukker A, Khushaba RN. Feature subset selection using differential evolution and a wheel based search strategy. Swarm Evol Comput 2013; 9: 15-26.
[http://dx.doi.org/10.1016/j.swevo.2012.09.003]
[15]
Haupt RL. Practical Genetic Algorithms. 2nd ed. 2004.
[16]
Oh IS, Lee JS, Moon BR. Hybrid genetic algorithms for feature selection. IEEE Trans Pattern Anal Mach Intell 2004; 26(11): 1424-37.
[http://dx.doi.org/10.1109/TPAMI.2004.105] [PMID: 15521491]
[17]
Firpi HA, Goodman E. Swarmed feature selection. In 33rd Applied Imagery Pattern Recognition Workshop 2004. 112-8.
[18]
Chuang LY, Chang HW, Tu CJ, Yang CH. Improved binary PSO for feature selection using gene expression data. Comput Biol Chem 2008; 32(1): 29-37.
[http://dx.doi.org/10.1016/j.compbiolchem.2007.09.005] [PMID: 18023261]
[19]
Khushaba RN, Al-Ani A, Al-Jumaily A. Differential evolution based feature subset selection. International Conference on Pattern Recognition 2008. 1-4.
[20]
Al-Ani A. Feature subset selection using art colony optimization. International Journal of Computation Intelligence 2005; 2: 53-8.
[21]
Yang J, Zhou J, Zhu Z, Ma X, Ji Z. Iterative ensemble feature selection for multiclass classification of imbalanced microarray data. J Biol Res (Thessalon) 2016; 23(Suppl. 1): 13.
[http://dx.doi.org/10.1186/s40709-016-0045-8] [PMID: 27437198]
[22]
Seiffert C, Khoshgoftaar TM, Hulse JV, et al. rusboost: a hybrid approach to alleviating class imbalance. IEEE Trans Syst Man Cybern A Syst Hum 2010; 40(1): 185-97.
[http://dx.doi.org/10.1109/TSMCA.2009.2029559]
[23]
Chawla NV, Lazarevic A, Hall LO, et al. smoteboost: improving prediction of the minority class in boosting. Lect Notes Comput Sci 2003; 2838: 107-19.
[http://dx.doi.org/10.1007/978-3-540-39804-2_12]
[24]
Ashari A PI MA. Performance comparison between naïve bayes, decision tree and k-nearest neighbor in searching alternative design in an energy simulation tool. Int J Adv Comput Sci Appl 2013; 4
[25]
Akara Sopharak BUSB. Comparing SVM and naive bayes classifier for automatic microaneurysm detections. International Journal of Computer, Electrical, Automation. Control Inform Eng 2014; 8(5): 797-800.
[26]
Draminski M, Rada-Iglesias A, Enroth S, Wadelius C, Koronacki J, Komorowski J. Monte Carlo feature selection for supervised classification. Bioinformatics 2008; 24(1): 110-7.
[http://dx.doi.org/10.1093/bioinformatics/btm486] [PMID: 18048398]
[27]
Kosinski MBP. RTCGA: The Cancer Genome Atlas Data Integration 2016.https://rtcga.github.io/RTCGA
[28]
Marisa L, de Reyniès A, Duval A, et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med 2013; 10(5)e1001453
[http://dx.doi.org/10.1371/journal.pmed.1001453] [PMID: 23700391]
[29]
Novoselova N, Wang J, Pessler F, Klawonn F. Biocomb: Feature selection and classification with the embedded validation procedures for biomedical data analysis. R package version 04 2018.https://CRAN.R-project.org/package=Biocomb
[30]
Wuttig D, Zastrow S, Füssel S, et al. CD31, EDNRB and TSPAN7 are promising prognostic markers in clear-cell renal cell carcinoma revealed by genome-wide expression analyses of primary tumors and metastases. Int J Cancer 2012; 131(5): E693-704.
[http://dx.doi.org/10.1002/ijc.27419] [PMID: 22213152]
[31]
Rokavec M, Öner MG, Li H, et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest 2014; 124(4): 1853-67.
[http://dx.doi.org/10.1172/JCI73531] [PMID: 24642471]
[32]
Rose-John S, Waetzig GH, Scheller J, Grötzinger J, Seegert D. The IL-6/sIL-6R complex as a novel target for therapeutic approaches. Expert Opin Ther Targets 2007; 11(5): 613-24.
[http://dx.doi.org/10.1517/14728222.11.5.613] [PMID: 17465721]
[33]
Liu D, Liu C, Wang X, Ingvarsson S, Chen H. MicroRNA-451 suppresses tumor cell growth by down-regulating IL6R gene expression. Cancer Epidemiol 2014; 38(1): 85-92.
[http://dx.doi.org/10.1016/j.canep.2013.12.005] [PMID: 24445140]
[34]
Kapral M, Wawszczyk J, Smolik S, Weglarz L. Transcriptional regulation of interleukin 6 and its receptor in colon cancer cells by phytic acid. Acta Pol Pharm 2010; 67(6): 701-5.
[PMID: 21229891]
[35]
Siegall CB, Schwab G, Nordan RP, FitzGerald DJ, Pastan I. Expression of the interleukin 6 receptor and interleukin 6 in prostate carcinoma cells. Cancer Res 1990; 50(24): 7786-8.
[PMID: 2253221]
[36]
Souverijn JH. Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med 2014; 371(2): 187.
[PMID: 25006740]
[37]
Zou H, Harrington JJ, Shire AM, et al. Highly methylated genes in colorectal neoplasia: implications for screening. Cancer Epidemiol Biomarkers Prev 2007; 16(12): 2686-96.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-0518] [PMID: 18086775]
[38]
Chen XR, Wang JW, Li X, Zhang H, Ye ZY. Role of BMP3 in progression of gastric carcinoma in Chinese people. World J Gastroenterol 2010; 16(11): 1409-13.
[http://dx.doi.org/10.3748/wjg.v16.i11.1409] [PMID: 20238409]
[39]
Kraunz KS, Nelson HH, Liu M, Wiencke JK, Kelsey KT. Interaction between the bone morphogenetic proteins and Ras/MAP-kinase signalling pathways in lung cancer. Br J Cancer 2005; 93(8): 949-52.
[http://dx.doi.org/10.1038/sj.bjc.6602790] [PMID: 16175182]
[40]
Bentley H, Hamdy FC, Hart KA, et al. Expression of bone morphogenetic proteins in human prostatic adenocarcinoma and benign prostatic hyperplasia. Br J Cancer 1992; 66(6): 1159-63.
[http://dx.doi.org/10.1038/bjc.1992.427] [PMID: 1280991]
[41]
Dabanaka K, Chung S, Nakagawa H, et al. PKIB expression strongly correlated with phosphorylated Akt expression in breast cancers and also with triple-negative breast cancer subtype. Med Mol Morphol 2012; 45(4): 229-33.
[http://dx.doi.org/10.1007/s00795-011-0565-0] [PMID: 23224602]
[42]
Chung S, Furihata M, Tamura K, et al. Overexpressing PKIB in prostate cancer promotes its aggressiveness by linking between PKA and Akt pathways. Oncogene 2009; 28(32): 2849-59.
[http://dx.doi.org/10.1038/onc.2009.144] [PMID: 19483721]
[43]
Denko N, Schindler C, Koong A, Laderoute K, Green C, Giaccia A. Epigenetic regulation of gene expression in cervical cancer cells by the tumor microenvironment. Clin Cancer Res 2000; 6(2): 480-7.
[PMID: 10690527]
[44]
Kim DS, Choi YP, Kang S, et al. Panel of candidate biomarkers for renal cell carcinoma. J Proteome Res 2010; 9(7): 3710-9.
[http://dx.doi.org/10.1021/pr100236r] [PMID: 20455597]
[45]
Xing X, Lai M, Gartner W, et al. Identification of differentially expressed proteins in colorectal cancer by proteomics: down-regulation of secretagogin. Proteomics 2006; 6(9): 2916-23.
[http://dx.doi.org/10.1002/pmic.200401355] [PMID: 16586428]
[46]
Xing XM, Wang YH, Huang Q, Lü BJ, Lai MD. [Differential expression of secretagogin and glucose-related protein 78 in colorectal carcinoma: a proteome study]. Zhonghua Bing Li Xue Za Zhi 2007; 36(2): 107-12.
[PMID: 17493385]
[47]
Bai Y, Sun Y, Peng J, et al. Overexpression of secretagogin inhibits cell apoptosis and induces chemoresistance in small cell lung cancer under the regulation of miR-494. Oncotarget 2014; 5(17): 7760-75.
[http://dx.doi.org/10.18632/oncotarget.2305] [PMID: 25226615]
[48]
Kropotova ES, Zinovieva OL, Zyryanova AF, et al. Altered expression of multiple genes involved in retinoic acid biosynthesis in human colorectal cancer. Pathol Oncol Res 2014; 20(3): 707-17.
[http://dx.doi.org/10.1007/s12253-014-9751-4] [PMID: 24599561]
[49]
Parks SK, Pouyssegur J. the na(+)/hco3(-) co-transporter slc4a4 plays a role in growth and migration of colon and breast cancer cells. J Cell Physiol 2015; 230(8): 1954-63.
[http://dx.doi.org/10.1002/jcp.24930] [PMID: 25612232]
[50]
Yamada H, Yamazaki S, Moriyama N, et al. Localization of NBC-1 variants in human kidney and renal cell carcinoma. Biochem Biophys Res Commun 2003; 310(4): 1213-8.
[http://dx.doi.org/10.1016/j.bbrc.2003.09.147] [PMID: 14559244]
[51]
Bauer R, Valletta D, Bauer K, et al. Downregulation of P-cadherin expression in hepatocellular carcinoma induces tumorigenicity. Int J Clin Exp Pathol 2014; 7(9): 6125-32.
[PMID: 25337260]
[52]
Sousa B, Ribeiro AS, Nobre AR, et al. The basal epithelial marker P-cadherin associates with breast cancer cell populations harboring a glycolytic and acid-resistant phenotype. BMC Cancer 2014; 14: 734.
[http://dx.doi.org/10.1186/1471-2407-14-734] [PMID: 25269858]
[53]
Albergaria A, Resende C, Nobre AR, et al. CCAAT/enhancer binding protein β (C/EBPβ) isoforms as transcriptional regulators of the pro-invasive CDH3/P-cadherin gene in human breast cancer cells. PLoS One 2013; 8(2)e55749
[http://dx.doi.org/10.1371/journal.pone.0055749] [PMID: 23405208]
[54]
Sun L, Hu H, Peng L, et al. P-cadherin promotes liver metastasis and is associated with poor prognosis in colon cancer. Am J Pathol 2011; 179(1): 380-90.
[http://dx.doi.org/10.1016/j.ajpath.2011.03.046] [PMID: 21703417]
[55]
Turashvili G, McKinney SE, Goktepe O, et al. P-cadherin expression as a prognostic biomarker in a 3992 case tissue microarray series of breast cancer. Mod Pathol 2011; 24(1): 64-81.
[http://dx.doi.org/10.1038/modpathol.2010.189] [PMID: 20852590]
[56]
Van Marck V, Stove C, Jacobs K, Van den Eynden G, Bracke M. P-cadherin in adhesion and invasion: opposite roles in colon and bladder carcinoma. Int J Cancer 2011; 128(5): 1031-44.
[http://dx.doi.org/10.1002/ijc.25427] [PMID: 20473917]
[57]
Hibi K, Sakata M, Kitamura YH, et al. Demethylation of the CD133 gene is frequently detected in advanced colorectal cancer. Anticancer Res 2009; 29(6): 2235-7.
[PMID: 19528487]
[58]
Hibi K, Kitamura YH, Mizukami H, et al. Frequent CDH3 demethylation in advanced gastric carcinoma. Anticancer Res 2009; 29(10): 3945-7.
[PMID: 19846933]
[59]
Imai K, Hirata S, Irie A, et al. Identification of a novel tumor-associated antigen, cadherin 3/P-cadherin, as a possible target for immunotherapy of pancreatic, gastric, and colorectal cancers. Clin Cancer Res 2008; 14(20): 6487-95.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1086] [PMID: 18927288]
[60]
Mannello F, Tonti GA, Medda V, Pederzoli A, Sauter ER. Increased shedding of soluble fragments of P-cadherin in nipple aspirate fluids from women with breast cancer. Cancer Sci 2008; 99(11): 2160-9.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00921.x] [PMID: 18811693]
[61]
Jarrard DF, Paul R, van Bokhoven A, et al. P-Cadherin is a basal cell-specific epithelial marker that is not expressed in prostate cancer. Clin Cancer Res 1997; 3(11): 2121-8.
[PMID: 9815605]
[62]
Zhao L, Jiang R, Xu M, et al. Concomitant high expression of BRAFV600E, P-cadherin and cadherin 6 is associated with High TNM stage and lymph node metastasis in conventional papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2016; 84(5): 748-55.
[http://dx.doi.org/10.1111/cen.12878] [PMID: 26285159]
[63]
Lysne D, Johns J, Walker A, Ecker R, Fowler C, Lawson KR. P-cadherin potentiates ligand-dependent EGFR and IGF-1R signaling in dysplastic and malignant oral keratinocytes. Oncol Rep 2014; 32(6): 2541-8.
[http://dx.doi.org/10.3892/or.2014.3545] [PMID: 25322858]
[64]
Yi S, Yang ZL, Miao X, et al. N-cadherin and P-cadherin are biomarkers for invasion, metastasis, and poor prognosis of gallbladder carcinomas. Pathol Res Pract 2014; 210(6): 363-8.
[http://dx.doi.org/10.1016/j.prp.2014.01.014] [PMID: 24636838]
[65]
García-Solano J, Conesa-Zamora P, Trujillo-Santos J, Torres-Moreno D, Mäkinen MJ, Pérez-Guillermo M. Immunohistochemical expression profile of β-catenin, E-cadherin, P-cadherin, laminin-5γ2 chain, and SMAD4 in colorectal serrated adenocarcinoma. Hum Pathol 2012; 43(7): 1094-102.
[http://dx.doi.org/10.1016/j.humpath.2011.08.020] [PMID: 22209340]
[66]
Fink SP, Myeroff LL, Kariv R, et al. Induction of KIAA1199/CEMIP is associated with colon cancer phenotype and poor patient survival. Oncotarget 2015; 6(31): 30500-15.
[http://dx.doi.org/10.18632/oncotarget.5921] [PMID: 26437221]
[67]
Evensen NA, Li Y, Kuscu C, et al. Hypoxia promotes colon cancer dissemination through up-regulation of cell migration-inducing protein (CEMIP). Oncotarget 2015; 6(24): 20723-39.
[http://dx.doi.org/10.18632/oncotarget.3978] [PMID: 26009875]
[68]
Xu J, Liu Y, Wang X, et al. Association between KIAA1199 overexpression and tumor invasion, TNM stage, and poor prognosis in colorectal cancer. Int J Clin Exp Pathol 2015; 8(3): 2909-18.
[PMID: 26045799]
[69]
Terashima M, Fujita Y, Togashi Y, et al. KIAA1199 interacts with glycogen phosphorylase kinase β-subunit (PHKB) to promote glycogen breakdown and cancer cell survival. Oncotarget 2014; 5(16): 7040-50.
[http://dx.doi.org/10.18632/oncotarget.2220] [PMID: 25051373]
[70]
Zhang Y, Jia S, Jiang WG. KIAA1199 and its biological role in human cancer and cancer cells (review). Oncol Rep 2014; 31(4): 1503-8.
[http://dx.doi.org/10.3892/or.2014.3038] [PMID: 24573670]
[71]
Jami MS, Hou J, Liu M, et al. Functional proteomic analysis reveals the involvement of KIAA1199 in breast cancer growth, motility and invasiveness. BMC Cancer 2014; 14: 194.
[http://dx.doi.org/10.1186/1471-2407-14-194] [PMID: 24628760]
[72]
Chivu Economescu M, Necula LG, Dragu D, et al. Identification of potential biomarkers for early and advanced gastric adenocarcinoma detection. Hepatogastroenterology 2010; 57(104): 1453-64.
[PMID: 21443102]
[73]
Chatterjee A, Ronghe A, Singh B, Bhat NK, Chen J, Bhat HK. Natural antioxidants exhibit chemopreventive characteristics through the regulation of CNC b-Zip transcription factors in estrogen-induced breast carcinogenesis. J Biochem Mol Toxicol 2014; 28(12): 529-38.
[http://dx.doi.org/10.1002/jbt.21594] [PMID: 25130429]
[74]
Oh HR, An CH, Yoo NJ, Lee SH. Somatic mutations of amino acid metabolism-related genes in gastric and colorectal cancers and their regional heterogeneity--a short report. Cell Oncol (Dordr) 2014; 37(6): 455-61.
[http://dx.doi.org/10.1007/s13402-014-0209-1] [PMID: 25450519]
[75]
Campbell TM, Main MJ, Fitzgerald EM. Functional expression of the voltage-gated Na+-channel Nav1.7 is necessary for EGF-mediated invasion in human non-small cell lung cancer cells. J Cell Sci 2013; 126(Pt 21): 4939-49.
[http://dx.doi.org/10.1242/jcs.130013] [PMID: 23986482]
[76]
Xia J, Huang N, Huang H, et al. Voltage-gated sodium channel Nav 1.7 promotes gastric cancer progression through MACC1-mediated upregulation of NHE1. Int J Cancer 2016; 139(11): 2553-69.
[http://dx.doi.org/10.1002/ijc.30381] [PMID: 27529686]
[77]
Diss JK, Calissano M, Gascoyne D, Djamgoz MB, Latchman DS. Identification and characterization of the promoter region of the Nav1.7 voltage-gated sodium channel gene (SCN9A). Mol Cell Neurosci 2008; 37(3): 537-47.
[http://dx.doi.org/10.1016/j.mcn.2007.12.002] [PMID: 18249135]
[78]
Yasunaga M, Matsumura Y. Role of SLC6A6 in promoting the survival and multidrug resistance of colorectal cancer. Sci Rep 2014; 4: 4852.
[http://dx.doi.org/10.1038/srep04852] [PMID: 24781822]
[79]
Tran TT, Mu A, Adachi Y, Adachi Y, Taketani S. Neurotransmitter transporter family including SLC6A6 and SLC6A13 contributes to the 5-aminolevulinic acid (ALA)-induced accumulation of protoporphyrin IX and photodamage, through uptake of ALA by cancerous cells. Photochem Photobiol 2014; 90(5): 1136-43.
[http://dx.doi.org/10.1111/php.12290] [PMID: 24842606]
[80]
Lei Y, Hu X, Li B, et al. miR-150 modulates cisplatin chemosensitivity and invasiveness of muscle-invasive bladder cancer cells via targeting PDCD4 in vitro. Med Sci Monit 2014; 20: 1850-7.
[http://dx.doi.org/10.12659/MSM.891340] [PMID: 25287716]
[81]
Chen Z, Yuan YC, Wang Y, Liu Z, Chan HJ, Chen S. Down-regulation of programmed cell death 4 (PDCD4) is associated with aromatase inhibitor resistance and a poor prognosis in estrogen receptor-positive breast cancer. Breast Cancer Res Treat 2015; 152(1): 29-39.
[http://dx.doi.org/10.1007/s10549-015-3446-8] [PMID: 26026468]
[82]
Chang KH, Miller N, Kheirelseid EA, et al. MicroRNA-21 and PDCD4 expression in colorectal cancer. Eur J Surg Oncol 2011; 37(7): 597-603.
[http://dx.doi.org/10.1016/j.ejso.2011.04.001] [PMID: 21546206]
[83]
Horiuchi A, Iinuma H, Akahane T, Shimada R, Watanabe T. Prognostic significance of PDCD4 expression and association with microRNA-21 in each Dukes’ stage of colorectal cancer patients. Oncol Rep 2012; 27(5): 1384-92.
[PMID: 22267128]
[84]
Mudduluru G, Medved F, Grobholz R, et al. Loss of programmed cell death 4 expression marks adenoma-carcinoma transition, correlates inversely with phosphorylated protein kinase B, and is an independent prognostic factor in resected colorectal cancer. Cancer 2007; 110(8): 1697-707.
[http://dx.doi.org/10.1002/cncr.22983] [PMID: 17849461]
[85]
Allgayer H. Pdcd4, a colon cancer prognostic that is regulated by a microRNA. Crit Rev Oncol Hematol 2010; 73(3): 185-91.
[http://dx.doi.org/10.1016/j.critrevonc.2009.09.001] [PMID: 19836969]
[86]
Yu H, Zeng J, Liang X, et al. Helicobacter pylori promotes epithelial-mesenchymal transition in gastric cancer by downregulating programmed cell death protein 4 (PDCD4). PLoS One 2014; 9(8)e105306
[http://dx.doi.org/10.1371/journal.pone.0105306] [PMID: 25144746]
[87]
Ding X, Cheng X, Gong M, Chen X, Yin F, Lai K. Hypermethylation and expression silencing of pdcd4 gene in hepatocellular carcinoma: A consort study. Medicine (Baltimore) 2016; 95(6)e2729
[http://dx.doi.org/10.1097/MD.0000000000002729] [PMID: 26871813]
[88]
Zhen Y, Li D, Li W, et al. reduced pdcd4 expression promotes cell growth through pi3k/akt signaling in non-small cell lung cancer. Oncol Res 2016; 23(1-2): 61-8.
[http://dx.doi.org/10.3727/096504015X14478843952861] [PMID: 26802652]
[89]
Zhang X, Gee H, Rose B, et al. Regulation of the tumour suppressor PDCD4 by miR-499 and miR-21 in oropharyngeal cancers. BMC Cancer 2016; 16: 86.
[http://dx.doi.org/10.1186/s12885-016-2109-4] [PMID: 26867589]
[90]
Echevarría-Vargas IM, Valiyeva F, Vivas-Mejía PE. Upregulation of miR-21 in cisplatin resistant ovarian cancer via JNK-1/c-Jun pathway. PLoS One 2014; 9(5)e97094
[http://dx.doi.org/10.1371/journal.pone.0097094] [PMID: 24865582]
[91]
Dong B, Shi Z, Wang J, Wu J, Yang Z, Fang K. il-6 inhibits the targeted modulation of pdcd4 by mir-21 in prostate cancer. PLoS One 2015; 10(8)e0134366
[http://dx.doi.org/10.1371/journal.pone.0134366] [PMID: 26252635]
[92]
Dou X, Wang RB, Meng XJ, et al. PDCD4 as a predictor of sensitivity to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Asian Pac J Cancer Prev 2014; 15(2): 825-30.
[http://dx.doi.org/10.7314/APJCP.2014.15.2.825] [PMID: 24568503]
[93]
Lu YY, Zheng JY, Liu J, Huang CL, Zhang W, Zeng Y. miR-183 induces cell proliferation, migration, and invasion by regulating PDCD4 expression in the SW1990 pancreatic cancer cell line. Biomed Pharmacother 2015; 70: 151-7.
[http://dx.doi.org/10.1016/j.biopha.2015.01.016] [PMID: 25776494]
[94]
García-Godoy MJ, López-Camacho E, García-Nieto J, Nebro AJ, Aldana-Montes JF. Molecular docking optimization in the context of multi-drug resistant and sensitive egfr mutants. Molecules 2016; 21(11)E1575
[http://dx.doi.org/10.3390/molecules21111575] [PMID: 27869781]
[95]
Lucas B, Grigo K, Erdmann S, Lausen J, Klein-Hitpass L, Ryffel GU. HNF4alpha reduces proliferation of kidney cells and affects genes deregulated in renal cell carcinoma. Oncogene 2005; 24(42): 6418-31.
[http://dx.doi.org/10.1038/sj.onc.1208794] [PMID: 16007190]
[96]
Siamakpour-Reihani S, Owzar K, Jiang C, et al. Genomic profiling in locally advanced and inflammatory breast cancer and its link to DCE-MRI and overall survival. Int J Hyperthermia 2015; 31(4): 386-95.
[http://dx.doi.org/10.3109/02656736.2015.1016557] [PMID: 25811737]
[97]
Zhang L, Kurogi K, Liu MY, et al. Sulfation of benzyl alcohol by the human cytosolic sulfotransferases (SULTs): a systematic analysis. J Appl Toxicol 2016; 36(9): 1090-4.
[http://dx.doi.org/10.1002/jat.3268] [PMID: 26663444]
[98]
Fernández-Santander A, Gaibar M, Novillo A, et al. Relationship between genotypes Sult1a2 and Cyp2d6 and tamoxifen metabolism in breast cancer patients. PLoS One 2013; 8(7)e70183
[http://dx.doi.org/10.1371/journal.pone.0070183] [PMID: 23922954]
[99]
Kim YS, Ahn YH, Song KJ, et al. Overexpression and β-1,6-N-acetylglucosaminylation-initiated aberrant glycosylation of TIMP-1: a “double whammy” strategy in colon cancer progression. J Biol Chem 2012; 287(39): 32467-78.
[http://dx.doi.org/10.1074/jbc.M112.370064] [PMID: 22859303]
[100]
St Hill CA, Baharo-Hassan D, Farooqui M. C2-O-sLeX glycoproteins are E-selectin ligands that regulate invasion of human colon and hepatic carcinoma cells. PLoS One 2011; 6(1)e16281
[http://dx.doi.org/10.1371/journal.pone.0016281] [PMID: 21283832]
[101]
Kang MY, Lee BB, Ji YI, et al. Association of interindividual differences in p14ARF promoter methylation with single nucleotide polymorphism in primary colorectal cancer. Cancer 2008; 112(8): 1699-707.
[http://dx.doi.org/10.1002/cncr.23335] [PMID: 18327804]
[102]
St Hill CA, Farooqui M, Mitcheltree G, et al. The high affinity selectin glycan ligand C2-O-sLex and mRNA transcripts of the core 2 beta-1,6-N-acetylglucosaminyltransferase (C2GnT1) gene are highly expressed in human colorectal adenocarcinomas. BMC Cancer 2009; 9: 79.
[http://dx.doi.org/10.1186/1471-2407-9-79] [PMID: 19267921]
[103]
Nie H, Liu X, Zhang Y, et al. Specific N-glycans of hepatocellular carcinoma cell surface and the abnormal increase of core-α-1, 6-fucosylated triantennary glycan via n-acetylglucosaminyltransferases-IVA regulation. Sci Rep 2015; 5: 16007.
[http://dx.doi.org/10.1038/srep16007] [PMID: 26537865]
[104]
Okano M, Yamamoto H, Ohkuma H, et al. Significance of INHBA expression in human colorectal cancer. Oncol Rep 2013; 30(6): 2903-8.
[http://dx.doi.org/10.3892/or.2013.2761] [PMID: 24085226]
[105]
Lascorz J, Försti A, Chen B, et al. Genome-wide association study for colorectal cancer identifies risk polymorphisms in German familial cases and implicates MAPK signalling pathways in disease susceptibility. Carcinogenesis 2010; 31(9): 1612-9.
[http://dx.doi.org/10.1093/carcin/bgq146] [PMID: 20610541]
[106]
Reis FM, Luisi S, Carneiro MM, et al. Activin, inhibin and the human breast. Mol Cell Endocrinol 2004; 225(1-2): 77-82.
[http://dx.doi.org/10.1016/j.mce.2004.02.016] [PMID: 15451571]
[107]
Taylor C, Loomans HA, Le Bras GF, et al. Activin a signaling regulates cell invasion and proliferation in esophageal adenocarcinoma. Oncotarget 2015; 6(33): 34228-44.
[http://dx.doi.org/10.18632/oncotarget.5349] [PMID: 26447543]
[108]
Zhang X, Yang JJ, Kim YS, Kim KY, Ahn WS, Yang S. An 8-gene signature, including methylated and down-regulated glutathione peroxidase 3, of gastric cancer. Int J Oncol 2010; 36(2): 405-14.
[PMID: 20043075]
[109]
Wagner K, Peters M, Scholz A, et al. Activin A stimulates vascular endothelial growth factor gene transcription in human hepatocellular carcinoma cells. Gastroenterology 2004; 126(7): 1828-43.
[http://dx.doi.org/10.1053/j.gastro.2004.03.011] [PMID: 15188178]
[110]
Walentowicz P, Krintus M, Sadlecki P, et al. Serum inhibin A and inhibin B levels in epithelial ovarian cancer patients. PLoS One 2014; 9(3)e90575
[http://dx.doi.org/10.1371/journal.pone.0090575] [PMID: 24599287]
[111]
Togashi Y, Kogita A, Sakamoto H, et al. Activin signal promotes cancer progression and is involved in cachexia in a subset of pancreatic cancer. Cancer Lett 2015; 356(2 Pt B): 819-27.
[http://dx.doi.org/10.1016/j.canlet.2014.10.037] [PMID: 25449777]
[112]
Kang HY, Huang HY, Hsieh CY, et al. Activin A enhances prostate cancer cell migration through activation of androgen receptor and is overexpressed in metastatic prostate cancer. J Bone Miner Res 2009; 24(7): 1180-93.
[http://dx.doi.org/10.1359/jbmr.090219] [PMID: 19257827]
[113]
Montanaro L, Calienni M, Ceccarelli C, et al. Relationship between dyskerin expression and telomerase activity in human breast cancer. Cell Oncol 2008; 30(6): 483-90.
[PMID: 18936525]
[114]
Turano M, Angrisani A, De Rosa M, Izzo P, Furia M. Real-time PCR quantification of human DKC1 expression in colorectal cancer. Acta Oncol 2008; 47(8): 1598-9.
[http://dx.doi.org/10.1080/02841860801898616] [PMID: 18607840]
[115]
Smith IM, Mithani SK, Mydlarz WK, Chang SS, Califano JA. Inactivation of the tumor suppressor genes causing the hereditary syndromes predisposing to head and neck cancer via promoter hypermethylation in sporadic head and neck cancers. ORL J Otorhinolaryngol Relat Spec 2010; 72(1): 44-50.
[http://dx.doi.org/10.1159/000292104] [PMID: 20332657]
[116]
Liu B, Zhang J, Huang C, Liu H. Dyskerin overexpression in human hepatocellular carcinoma is associated with advanced clinical stage and poor patient prognosis. PLoS One 2012; 7(8)e43147
[http://dx.doi.org/10.1371/journal.pone.0043147] [PMID: 22912812]
[117]
Penzo M, Casoli L, Ceccarelli C, et al. DKC1 gene mutations in human sporadic cancer. Histol Histopathol 2013; 28(3): 365-72.
[PMID: 23348390]
[118]
Sieron P, Hader C, Hatina J, et al. DKC1 overexpression associated with prostate cancer progression. Br J Cancer 2009; 101(8): 1410-6.
[http://dx.doi.org/10.1038/sj.bjc.6605299] [PMID: 19755982]
[119]
Miyoshi M, Okajima T, Matsuda T, Fukuda MN, Nadano D. Bystin in human cancer cells: intracellular localization and function in ribosome biogenesis. Biochem J 2007; 404(3): 373-81.
[http://dx.doi.org/10.1042/BJ20061597] [PMID: 17381424]
[120]
Galamb O, Kalmár A, Péterfia B, et al. Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer. Epigenetics 2016; 11(8): 588-602.
[http://dx.doi.org/10.1080/15592294.2016.1190894] [PMID: 27245242]
[121]
Ben Ammar Y, Takeda S, Sugawara M, Miyano M, Mori H, Wakabayashi S. Crystallization and preliminary crystallographic analysis of the human calcineurin homologous protein CHP2 bound to the cytoplasmic region of the Na+/H+ exchanger NHE1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61(Pt 10): 956-8.
[http://dx.doi.org/10.1107/S1744309105030836] [PMID: 16511206]
[122]
Amith SR, Vincent KM, Wilkinson JM, Postovit LM, Fliegel L. Defining the Na+/H+ exchanger NHE1 interactome in triple-negative breast cancer cells. Cell Signal 2017; 29: 69-77.
[http://dx.doi.org/10.1016/j.cellsig.2016.10.005] [PMID: 27751915]
[123]
Wang X, Zbou C, Qiu G, Fan J, Tang H, Peng Z. Screening of new tumor suppressor genes in sporadic colorectal cancer patients. Hepatogastroenterology 2008; 55(88): 2039-44.
[PMID: 19260473]
[124]
Chen Y, Tsai YH, Tseng SH. Regulation of the expression of cytoplasmic polyadenylation element binding proteins for the treatment of cancer. Anticancer Res 2016; 36(11): 5673-80.
[http://dx.doi.org/10.21873/anticanres.11150] [PMID: 27793888]
[125]
Zou CD, Zhao WM, Wang XN, et al. MicroRNA-107: a novel promoter of tumor progression that targets the CPEB3/EGFR axis in human hepatocellular carcinoma. Oncotarget 2016; 7(1): 266-78.
[http://dx.doi.org/10.18632/oncotarget.5689] [PMID: 26497556]
[126]
Thorsen K, Sørensen KD, Brems-Eskildsen AS, et al. Alternative splicing in colon, bladder, and prostate cancer identified by exon array analysis. Mol Cell Proteomics 2008; 7(7): 1214-24.
[http://dx.doi.org/10.1074/mcp.M700590-MCP200] [PMID: 18353764]
[127]
Meyer C, Brieger A, Plotz G, et al. An interstitial deletion at 3p21.3 results in the genetic fusion of MLH1 and ITGA9 in a Lynch syndrome family. Clin Cancer Res 2009; 15(3): 762-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1908] [PMID: 19188145]
[128]
Pfarr N, Penzel R, Klauschen F, et al. Copy number changes of clinically actionable genes in melanoma, non-small cell lung cancer and colorectal cancer-A survey across 822 routine diagnostic cases. Genes Chromosomes Cancer 2016; 55(11): 821-33.
[http://dx.doi.org/10.1002/gcc.22378] [PMID: 27218826]
[129]
Ziółko E, Kokot T, Skubis A, et al. The profile of melatonin receptors gene expression and genes associated with their activity in colorectal cancer: a preliminary report. J Biol Regul Homeost Agents 2015; 29(4): 823-8.
[PMID: 26753642]
[130]
Asada K, Miyamoto K, Fukutomi T, et al. Reduced expression of GNA11 and silencing of MCT1 in human breast cancers. Oncology 2003; 64(4): 380-8.
[http://dx.doi.org/10.1159/000070297] [PMID: 12759536]
[131]
Hernandez KG, Ezzat S, Morel CF, et al. Familial pheochromocytoma and renal cell carcinoma syndrome: TMEM127 as a novel candidate gene for the association. Virchows Arch 2015; 466(6): 727-32.
[http://dx.doi.org/10.1007/s00428-015-1755-2] [PMID: 25800244]
[132]
Qin Y, Deng Y, Ricketts CJ, et al. The tumor susceptibility gene TMEM127 is mutated in renal cell carcinomas and modulates endolysosomal function. Hum Mol Genet 2014; 23(9): 2428-39.
[http://dx.doi.org/10.1093/hmg/ddt638] [PMID: 24334765]
[133]
Bugalho MJ, Silva AL, Domingues R. Coexistence of paraganglioma/pheochromocytoma and papillary thyroid carcinoma: a four-case series analysis. Fam Cancer 2015; 14(4): 603-7.
[http://dx.doi.org/10.1007/s10689-015-9818-8] [PMID: 26071763]