A Novel FSK Generator Using a Second Generation Current Controlled Conveyor

Page: [902 - 908] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Objective: The interest concern towards the development of enabling technology towards new current mode devices has forced the designers and researchers for the invention of devices, which has having the characteristics like such as low power, robustness, compactness, efficiency and scalability.

Methods: Second Generation Current Controlled Conveyor (CCCII) is the prevailing current mode device of the times today. Since its invention by A. Fabre, it has prominent applications in the field of analog signal processing and in biomedical applications too. In this manuscript, CCCII is used as an enabling device to design a Frequency Shift Keying (FSK) Generator.

Results: The proposed topology is designed using a single active device CCCII with least passive components. The circuit enjoys the features of like electronic tunability of frequency using the bias current.

Conclusion: It can be concluded that the FSK generator circuit designed using single CCCII confers better results in contrast to the existing structures. The maximum power consumption is 0.196 mW. The proposed circuit has the benefit of simple configuration, which is very much proficient for IC fabrication.

Keywords: Second generation current controlled conveyor, CCCII, montecarlo analysis, FSK technique, FSK generator, digital communication.

Graphical Abstract

[1]
Abuelmaatti, M.T. New ASK/FSK/PSK/QAM wave generator using multiple-output operational transconductance amplifiers. IEEE Trans. Circ. Syst., 2001, 48, 4.
[2]
Kar, S.K.; Sen, S. Tunable square-wave generator for integrated sensor applications. IEEE Trans. Instrum. Meas., 2011, 60(10), 3369-3375.
[http://dx.doi.org/10.1109/TIM.2011.2128490]
[3]
Dalibor, B.; Senani, R.; Biolkova, V.; Kolka, Z. Active elements for analog signal processing: Classification, review, and new proposals. Wuxiandian Gongcheng, 2008, 17(4), 15-32.
[4]
Pal, D.; Srinivasulu, A.; Pal, B.B.; Demosthenous, A.; Das, B.N. Current conveyor-based square/triangular waveform generators with improved linearity. IEEE Tran. Instr. Meas., 2009, 58(7), 2174-2180.
[5]
Abbuelma’atti, M.T. Ahmad, Al-Absi, M. A current conveyor based relaxation oscillator as a versatile electronic interface for capacitive and resistive sensors. Int. J. Electron., 2005, 92, 473-477.
[http://dx.doi.org/10.1080/08827510410001694798]
[6]
Fagbohun, O.O. Development of a low-cost frequency shift keying signal transmittrer for digital signal processing. IOSR J. Electron. Commun. Eng., 2014, 9, 36-43.
[7]
Toumazou, F.J. Lidegy and David Haigh, —Analog IC Design: The Current-Mode Approach; Peter Peregrinus: London, 1990.
[8]
Sotner, R.; Jerabek, J.; Herencsar, N.; Lahiri, A.; Petrzela, J.; Vrba, K. Practical aspects of operation of simple triangular and square wave generator employing diamond transistor and controllable amplifiers. Proceedings of the 36th International Conference on Telecommunications and Signal Processing, Rome, ItalyJul. 2-4, 2013
[http://dx.doi.org/10.1109/TSP.2013.6613968]
[9]
Sedra, Smith K.C. A second-generation current conveyor and its applications. IEEE Trans. Circuit Theory, 1970, 17(1), 132-134.
[10]
Sedra, S.; Roberts, G.W.; Gohh, F. The current conveyor: History, progress and new results. Proc. Inst. Electr. Eng., 1990, 137(2), 78-87.
[http://dx.doi.org/10.1049/jp-g-2.1990.0015]
[11]
Ghovanloo, M.; Najafi, K. A small size large voltage compliance programmable current for biomedical implantable microstimulators.IEEE, 2003, 2, 1979-1982.
[12]
Chen, Z.; Zhang, Z.; Lau, J.A. CMOS 2- and 4-FSK Demodulator for Direct-Conversion Radio Paging Receivers Proceedings of the IEEE International Conference on Communication Circuit and System, Chengdu, China29 June-1 July 2002, pp. 1289-1292.
[13]
Choudhury, D.R.; Jain, S.B. Modulator FSK using IC Linear Integrated Circuits.New Age International (P) Ltd., India; , 2017.
[14]
Ghovanloo, M.; Najafi, K. A wideband frequency-shift keying wireless link for inductively powered biomedical implants. IEEE Trans. Circ. Syst., 2004, 51, 2374-2383.
[http://dx.doi.org/10.1109/TCSI.2004.838144]
[15]
Haider, M.R.; Mostafa, S.; Islam, S.K. A low-power sensor read-out circuit with FSK telemetry for inductively-powered implant system Proceedings of the IEEE Midwest Symposium on Circuits and Systems, Knoxville, TN, USAAug. 10-13, 2008
[16]
Chanapromma, N. A practical implementation of the CC - CFA based on commercially available ICs and its applications. Proceedings of the International Conference on Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology (ECTI-CON 2009), Pattaya, Chonburi, Thailand, May,6-9, 2009.
[17]
Hannan, M.A.; Abbas, S.M.; Samad, S.A.; Chien, A.H. Modulation techniques for biomedical implanted devices and their challenges. Sensors (Basel), 2012, 12, 297-319.
[http://dx.doi.org/10.3390/s120100297]
[18]
Srinivasulu, A.; Pal, D. CCII+ based novel waveform generator with grounded resistor/capacitor for tuning. Proceedings of the International Conference on Applied Electronics (AEic), Pilsen, Czech RepublicSeptember 6-7, 2016, pp. 247-252.
[http://dx.doi.org/10.1109/AE.2016.7577283]
[19]
Haque, A.K.M.S.; Hossain, M.M.; Davis, W.A.; Howard, T. Russell and Ronald L. Carter, Design of sinusoidal, triangular, and square wave generator using current feedback amplifier (CFOA), IEEE Region 5 Conference, Kansas, USA, April 17-20. 2008.
[20]
De Marcellis, C.D.C.; Ferri, G.; Stornelli, V. A CCII-based wide frequency range square waveform generator. Int. J. Circuit Theory Appl., 2013, 41(1), 1-13.
[21]
Srinivasulu, A. A novel current conveyor based-Schmitt trigger and its application as a relaxation oscillator. Int. J. Circuit Theory Appl., 2011, 39(6), 679-686.
[http://dx.doi.org/10.1002/cta.669]
[22]
Cicekoglu, M.O. On the design of CCII+ based relaxation oscillator employing single grounded passive element for linear period control. Microelectronics J., 1998, 29(12), 983-989.
[http://dx.doi.org/10.1016/S0026-2692(98)00054-8]
[23]
Pal, D.; Srinivasulu, A.; Goswami, M. Novel current-mode waveform generator with independent frequency and amplitude control. Proceedings of the IEEE International Symposium on Circuits and Systems, Taipei, TaiwanMay 24-27, 2009
[24]
Chien, H.C. Switch-controllable dual-hysteresis mode bistable multivibrator employing single differential voltage current conveyor. Microelectronics J., 2011, 42(5), 745-753.
[http://dx.doi.org/10.1016/j.mejo.2011.01.012]
[25]
Srinivasulu, A. Current conveyor-based square-wave generator with tunable grounded resistor/capacitor. Proceedings of the IEEE Applied Electronics International Conference (AEIC 2009), Pilsen, Czech republic2009, pp. 233-236.
[26]
Chien, H.C. Voltage-controlled dual slope operation square/triangular wave generator and its application as a dual mode operation pulse width modulator employing differential voltage current conveyors. Microelectronics J., 2012, 43(12), 962-974.
[http://dx.doi.org/10.1016/j.mejo.2012.08.005]
[27]
Ghovanloo, M. A Wideband frequency-shift keying wireless link for inductively powered biomedical implants. IEEE Trans. Circ. Syst., 2004, 51, 2374-2383.
[28]
Milman, J.; Halkias, C.C. Integrated electronics: Analog and digital circuits and systems, 30th ed; Mc-Graw-Hill: USA, 2004.
[29]
Beasley, J.S.; Miller, G.M. Modern electronic communication; Pearson Education Inc.: Hoboken, NJ, 2005.
[30]
Vijay, V.; Srinivasulu, A. Grounded resistor and capacitor based square wave generator using CMOS DCCII. IEEE International Conference on Inventive Computation Technologies (IEEE ICICT-2016), Coimbatore, India, Aug. 26-27, 2016,.
[31]
Vijay, V.; Srinivasulu, A. A DCCII based square wave generator with grounded capacitor. In Proceedings of the 2016 IEEE International Conference on Circuits Power and Computing Technologies (ICCPCT-2016), Kumaracoil, India, March 18-19,. 2016.
[32]
Vijay, V.; Srinivasulu, A. A novel square wave generator using second generation differential current conveyor. Arab. J. Sci. Eng., 2017, 42(12), 4983-4990.
[http://dx.doi.org/10.1007/s13369-017-2539-6]
[33]
Kim, H.; Kim, H.J.; Chung, W.S. Pulsewidth modulation circuits using CMOS OTAs. IEEE Trans. Circuits Syst. I, 2007, 54(9), 1869-1878.
[http://dx.doi.org/10.1109/TCSI.2007.904677]
[34]
Chung, W-S.; Kim, H.; Cha, H-W.; Kim, H-J. Frequency and amplitude. IEEE Trans. Instrum. Meas., 2005, 54(1), 105-109.
[http://dx.doi.org/10.1109/TIM.2004.840238]
[35]
Yu-Kang, L. Switch-Controllable OTRA-Based Square/Triangular Wave form Generator. IEEE Trans. Circuits Syst. II, 2007, 54, 1110-1114.
[36]
Hou, L.; Chien, H-C.; Lo, K.Y. Squarewave generators employing OTRAs,‖. IEE Proc., Circ. Devices Syst., 2005, 152(6), 718-722.
[http://dx.doi.org/10.1049/ip-cds:20045167]
[37]
Lo, Y.K.; Chien, H.C. Switch controllable OTRA based square/triangular waveform generator. IEEE Trans. Circuits Sys. II, 2007, 54(12), 1110-1114.
[38]
Lo, Y.K.; Chien, H.C. Single OTRA-based current-mode mono stable multivibrator with two triggering modes and a reduced recovery time. IET Circuits Dev. Syst., 2007, 1(3), 257-261.
[http://dx.doi.org/10.1049/iet-cds:20060359]
[39]
Tomasi, W. Advanced Electronic Communication System, 2nd ed; Prentice Hall inc: New Jersey, 1992.
[40]
Ashish, G.; Raj, S.; Bhaskar, D.R.; Singh, A.K. OTRA-based grounded-FDNR and grounded-inductance simulators and their applications. Circuits Syst. Signal Process., 2012, 31(2), 489-499.
[http://dx.doi.org/10.1007/s00034-011-9345-2]
[41]
Alaybeyoglu, E.; Kuntman, H. CMOS implementations of VDTA based frequency agile filters for encrypted communications‖. Analog Integr. Circuits Signal Process., 2016, 89(3), 675-684.
[http://dx.doi.org/10.1007/s10470-016-0760-y]
[42]
Siripruchyanun, M.; Satthaphol, P.; Payakkakul, K. A simple fully controllable schmitt trigger with electronic method using VDTA, Applied Mechanics and Materials; Trans Tech Publication: Switzerland, 2015, pp. 180-183.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.781.180]
[43]
Abuelma’atti, M.T.; Al-Absi, M.A. A current conveyor-based relaxation oscillator as a versatile electronic interface for capacitive and resistive sensors. Int. J. Electron., 2005, 92(8), 473-477.
[http://dx.doi.org/10.1080/08827510410001694798]
[44]
Siripruchyanun, M.; Payakkakul, K.; Pipatthitikorn, P.; Satthaphol, P. A current mode square/triangular wave generator based on Multiple output VDTAs. Proceedings of the International Electrical Engineering Congress, 2016.
[http://dx.doi.org/10.1016/j.procs.2016.05.040]
[45]
Chien, H-C. Square/triangular wave generator using single DO-DVCC and three grounded passive components. Am. J. Elect. Electron. Eng., 2013, 1(2), 32-36.
[46]
Hasan, S.; Khan, I.A. Translinear-C function generator using MOCCCIIs. Arab. J. Sci. Eng., 2007, 32, 127-132.
[47]
Siripruchyanun, M. .A novel simple current-mode Square/ Triangular wave generator with electronic tenability. Proceedings of 28th Electrical Engineering Conference, EECON-28, 2005, availabale from:. http://opac.wu.ac.th/catalog/BibItem.aspx?BibID=b00112153
[48]
Drinovsky, M.; Hospodka, J. Triangular/Square waveform generator using area efficient hysteresis comparator. Wuxiandian Gongcheng, 2016, 25(2), 332-337.
[http://dx.doi.org/10.13164/re.2016.0332]
[49]
Siripruchyanun, M.; Payakkakul, K.; Pipatthitikorn, P.; Satthaphol, P. A current-mode square/triangular wave generator based on multiple output VDTAs. Proc Comput. Sci., 2016, 86, 152-155.
[50]
Kumbun, J.; Siripruchyanun, M. MO-CTTA-based Electronically controlled current-mode Square/Triangular wave generator. Proceedings of the 1st International Conference on Technical Education, ICTE2009, Bangkok, ThailandJanuary 21-22, 2010
[51]
Zahiruddin, S. A High Frequency Tunable Sinusoidal Oscillator Using Single CCCII+. Proceedings of the IEEE International Conference on Control, Instrumentation, Communication & Computational Technologies. Kumaracoil, India, Dec. 18-19,. 2015.
[52]
Yuce, E. Design of a simple current-mode multiplier topology using a single CCCII+. IEEE Trans. Instrum. Meas., 2008, 57(3), 631-637.
[http://dx.doi.org/10.1109/TIM.2007.910112]
[53]
Hasan, S.; Khan, I.A. Translinear-C function generator using MOCCCIIS. Arab. J. Sci. Eng., 2007, 32(2C), 127-132.
[54]
Rishi, P. Rajashwari., P, Neeta, P., and Tiwari, R. C. Single CDBA based voltage mode bistable multivibrator and its applications. Circuits Sys., 2015, 6(11), 237-251.
[http://dx.doi.org/10.4236/cs.2015.611024]
[55]
Sotner, R.; Jerabek, J.; Herencsar, N.; Dostal, T.; Vrba, K. Design of Z-copy controlled-gain voltage differencing current conveyor based adjustable functional generator. Microelectron J., 2015, 46(2), 143-152.
[http://dx.doi.org/10.1016/j.mejo.2014.11.008]
[56]
Fabre, A. Third-generation current conveyor: A new helpful active element. Electron. Lett., 1995, 31(5), 338-339.
[http://dx.doi.org/10.1049/el:19950282]
[57]
Analog, Devices AD844 current feedback Op-Amp data sheet; Analog Devices Inc.: Norwood, MA, 1990.
[58]
National Semiconductor Corporation. LM13600. Dual Operational Transconductance Amplifiers Data Sheet.. 1995.