[1]
Turkington C, Krag KJ. The encyclopedia of breast cancer. Facts on file 2005.
[2]
Rosen L, Rosen G. Breast cancer: early detection. The importance of finding breast cancer early. American Cancer Society, Inc. Retrieved from: American Cancer Society/Learn about cancer.Breast Cancer/Early Detection 2011.
[3]
Kopans DB. Breast imaging. Philadelphia, Pa: Lippincott 1989; pp. 274-7.
[12]
Erhan D, Manzagol PA, Bengio Y, Bengio S, Vincent P. The difficulty of training deep architectures and the effect of unsupervised pre-training. Comp Sci 2009; 2009: 153-60.
[13]
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Comp Sci 2012; 2012: 1-9.
[17]
Goodfellow I, Pouget-Abadie J, Mirza M. et al. Generative adversarial nets. Mach Learn 2014; arXiv:1406.2661.
[38]
Liu Z, Bicer T, Kettimuthu R, Gursoy D, De Carlo F, Foster I. TomoGAN: low-dose X-ray tomography with generative adversarial networks. arXiv preprint arXiv:190207582.
[41]
Tanner C, Ozdemir F, Profanter R, Vishnevsky V, Konukoglu E, Goksel O. Generative adversarial networks for MR-CT deformable image registration arXiv preprint arXiv:180707349. 1807.
[42]
Hu Y, Gibson E, Ghavami N, et al. Adversarial deformation regularization for training image registration neural networks. International Conference on Medical Image Computing and Computer-Assisted Intervention 2018 Sep 16-20 Granada, Spain Cham Springer 2018.
[44]
Mahapatra D, Ge Z, Sedai S, Chakravorty R. Joint registration and
segmentation of xray images using generative adversarial networks.
9th Proceedings of 9th International Workshop on Machine Learning
in Medical Imaging. 2018 Sep16; Granada, Spain. Cham: Springer 2018
[47]
Madani A, Moradi M, Karargyris A, Syeda-Mahmood T. Semi-supervised learning with generative adversarial networks for chest X-ray classification with ability of data domain adaptation. 15th International Symposium on Biomedical Imaging 2018 Apr 4-7 Washington, DC, USA New Jersey IEEE 2018.
[49]
Lecouat B, Chang K, Foo CS, et al. Semi-supervised deep learning for abnormality classification in retinal images. arXiv preprint arXiv:181207832.
[50]
Madani A, Ong JR, Tibrewal A, Mofrad MR. Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease NPJ Dig Med 2018; 18; 1(1): 59.
[51]
Koga T, Nonaka N, Sakuma J, Seita J. General-to-detailed GAN for infrequent class medical images. arXiv preprint arXiv:181201690.
[52]
Finlayson SG, Lee H, Kohane IS, Oakden-Rayner L. Towards generative adversarial networks as a new paradigm for radiology education arXiv preprint arXiv:181201547.
[53]
Tang Y, Tang Y, Han M, Xiao J, Summers RM. Abnormal chest X-ray identification with generative adversarial one-class classifier. arXiv preprint arXiv:190302040.
[55]
Alex V. KP MS, Chennamsetty SS, Krishnamurthi G. Generative
adversarial networks for brain lesion detection. In Medical Imaging
2017: Image Processing 2017 Feb 24 (Vol. 10133, p. 101330G). International Society for Optics and Photonics.
[56]
Baumgartner CF, Koch LM, Can Tezcan K, Xi Ang J, Konukoglu E. Visual feature attribution using Wasserstein Gans. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; pp. 8309-19; arXiv:1711.08998.
[57]
Chen X, Konukoglu E. Unsupervised Detection of Lesions in Brain MRI using constrained adversarial auto-encod ers arXiv preprint arXiv:180604972. 1806.
[58]
Sekuboyina A, Rempfler M, Kukačka J, et al. Btrfly net: Vertebrae labelling with energy-based adversarial learning of local spine prior. International Conference on Medical Image Computing and Computer-Assisted Intervention 2018 Sept 16-20 Granada, Spain Berlin Springer pp.649-57.
[61]
Mardani M, Gong E, Cheng JY, et al. Deep generative adversarial networks for compressed sensing automates MRI. arXiv preprint arXiv:170600051.
[63]
Yu S, Dong H, Yang G, et al. Deep de-aliasing for fast compressive sensing MRI. arXiv preprint arXiv:170507137.
[73]
Liao H, Huo Z, Sehnert WJ, Zhou SK, Luo J. Adversarial sparse-view CBCT artifact reduction. International Conference on Medical Image Computing and Computer-Assisted Intervention; pp. 154-62. arXiv:1812.03503
[79]
Sánchez I, Vilaplana V. Brain MRI super-resolution using 3D generative adversarial networks. arXiv preprint arXiv:181211440.
[80]
Mahapatra D, Bozorgtabar B. Retinal vasculature segmentation using local saliency maps and generative adversarial networks for image super resolution. arXiv preprint arXiv:171004783.
[82]
Zhu J, Yang G, Lio P. How can we make GAN perform better in single medical image super-resolution? A Lesion Focused Multi- Scale Approach arXiv preprint arXiv:190103419.
[83]
Ying X, Guo H, Ma K, Wu J, Weng Z, Zheng Y. X2CT-GAN: reconstructing CT from biplanar x-rays with generative adversarial networks. IEEE 2019; 2019: 10619-28.
[87]
Finlayson SG, Chung HW, Kohane IS, Beam AL. Adversarial attacks against medical deep learning systems. arXiv preprint arXiv:180405296.
[90]
Mirsky Y, Mahler T, Shelef I, Elovici YCT-GAN. Malicious tampering of 3D medical imagery using deep learning. arXiv preprint arXiv:190103597.
[91]
Mahmood R, Babier A, McNiven A, Diamant A, Chan TC. Automated treatment planning in radiation therapy using generative adversarial networks arXiv preprint arXiv:180706489.
[102]
Gamdonkar Z, Tay K, Ryder W, Brennan PC, Mello-Thoms C. 2015.
[106]
Ahn CK, Heo C, Jin H, Kim JH. A novel deep learning-based approach to high accuracy breast density estimation in digital mammography. SPIE Dig Lib 2017; 2017: 1-8.
[107]
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Conference on Computer Vision and Pattern Recognition (CVPR) 2015 June 7-12 Boston, MA, USA New Jersey: IEEE 2015; pp.3431-40.
[109]
Saffari N, Rashwan HA, Herrera B, Romani S, Arenas M, Puig D. On improving breast density segmentation using conditional generative adversarial networks. In: Artificial intelligence research and development. Amsterdam IOS press 2018; pp. 386-93.
[112]
Korkinof D, Rijken T, O’Neill M, Yearsley J, Harvey H, Glocker B. High-resolution mammogram synthesis using progressive generative adversarial networks arXiv preprint arXiv:180703401.
[125]
Hofer C, Kwitt R, Niethammer M, Uhl A. Deep learning with topological signatures. 31st Conference on Neural Information Processing Systems (NIPS 2017) Long Beach, CA, USA.
[127]
Fang Y, Xie J, Dai G, et al. 3D deep shape descriptor. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2015 June 7-12 Boston, MA, USA New Jersey IEEE pp. 2319-28
[128]
Qi CR, Su H, Mo K, Guibas LJ. Pointnet: Deep learning on point sets for 3D classification and segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017 July 21-26 Honolulu, HI, USA New Jersey: IEEE 2017 pp. 652-60
[131]
Kisilev P, Sason E, Barkan E, Hashoul S. Medical image description using multi-task-loss CNN Deep learning and data labeling for medical applications. Cham: Springer 2016; pp. 121-9.
[133]
Ball JE, Bruce LM. Digital mammographic computer aided diagnosis (cad) using adaptive level set segmentation. Conf Proc IEEE Eng Med Biol Soc 2007; 2007: 4973-8.
[135]
Domingues I, Sales E, Cardoso J, Pereira W. Inbreast-database masses characterization XXIII CBEB 2012 Available from. https://www.cisuc.uc.pt/publication/show/5590